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The presynaptic compartment of the chemical synapse is a small, yet extremely complex
structure. Considering its size, most methods of optical microscopy are not able to
resolve its nanoarchitecture and dynamics. Thus, its ultrastructure could only be studied
by electron microscopy. In the last decade, new methods of optical superresolution
microscopy have emerged allowing the study of cellular structures and processes at
the nanometer scale. While this is a welcome addition to the experimental arsenal, it
has necessitated careful analysis and interpretation to ensure the data obtained remains
artifact-free. In this article we review the application of nanoscopic techniques to the
study of the synapse and the progress made over the last decade with a particular
focus on the presynapse. We find to our surprise that progress has been limited,
calling for imaging techniques and probes that allow dense labeling, multiplexing, longer
imaging times, higher temporal resolution, while at least maintaining the spatial resolution
achieved thus far.
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INTRODUCTION

The classical chemical synapse in the central nervous system (CNS) of vertebrates is a discontinuous
structure consisting of a presynapse formed by the signal transducing neuron and a postsynapse
formed by the receiving neuron. The existence of the synapse was originally put forward by Ramón
y Cajal (1904), but the first direct observation and most of our current knowledge about the
structure of this intercellular contact site has been derived from electron microscopy (EM) (for
review see, e.g., Siksou et al., 2009; Harris and Weinberg, 2012). The two halves of the synapse are
separated by a synaptic cleft with a width of approximately 15–20 nm (De Robertis and Bennett,
1955; Palay and Palade, 1955) and the presynaptic swelling or bouton is densely filled with granular
structures designated as synaptic vesicles (SVs). The discovery of SVs occurred in parallel with
establishment of the quantal hypothesis of neurotransmitter (NT) release (Del Castillo and Katz,
1954) and it was only later that SVs were unambiguously identified as subcellular compartments
releasing discrete packages of NT (“quanta”) upon fusion with the plasma membrane (PM) (De
Robertis et al., 1963; Heuser and Reese, 1973).

The advent of nanoscopic light microscopy techniques more than a decade ago, held the
particular promise that nanometer resolution in combination with highly efficient protein labeling
strategies, either by immunostaining or genetically encoded fluorescent proteins will greatly
increase our understanding of the presynaptic nano-architecture and protein networks far beyond
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the electron-microscopic picture. Thus, in combination with
live cell experiments, nanoscopic light microscopy should
contribute to a better understanding of fundamental presynaptic
processes such as SV release, compensatory endocytosis and
cargo sorting. After briefly summarizing the previous results
made by EM, we ascertain the advances in our understanding
of the presynaptic nano-architecture driven by the application of
nanoscopic techniques.

THE SYNAPSE IN THE ELECTRON
MICROSCOPIC PICTURE

The classical chemical synapse in the vertebrate CNS has a
size of 0.5 to 2 µm and can harbor between 100 and 400
SVs in boutons of hippocampal pyramidal neurons. In contrast,
large mossy fiber boutons of dentate gyrus granular cells in the
hippocampus contain up to several thousand SVs (Schikorski
and Stevens, 1997; Rollenhagen et al., 2007). In most mature
synapses SVs exhibit a low size variation with a typical diameter
of 40–50 nm (De Robertis and Bennett, 1955; Harris and Sultan,
1995). A small pool of SVs is docked at the presynaptic PM at
the active zone (AZ), a spatially defined region where SV fusion
and NT release occur (Couteaux and Pecot-Dechavassine, 1970;
Heuser et al., 1979). Docked SVs are associated with a dense
amorphous material, termed the cytomatrix of the presynaptic
active zone (CAZ) (Pfenninger et al., 1972; Harlow et al., 2001).
In the postsynapse, a submembrane layer of electron-dense
material can be distinguished, the so-called postsynaptic density
(PSD) (Palay, 1958; Gulley and Reese, 1981). Based on the
observation that SVs in the presynapse tend to cluster opposite
to the PSD, it is common sense today that the PSD constitutes
a postsynaptic cytoskeleton involved in organizing postsynaptic
receptor localization face to face to the presynaptic AZ. The size
of the average presynaptic AZ, estimated by the size of the PSD is
200–400 nm in diameter (Cohen and Siekevitz, 1978).

Besides such common features, EM also revealed a remarkable
diversity in synaptic ultrastructure both between different
organisms and between neuronal types (Figure 1). Synapses
at the neuromuscular junction (NMJ) vary noticeably between
species but display common structural features, such as their
large size compared to CNS synapses (30 µm in mice). NMJs
are also notable for their complex internal structure including
hundreds of individual regularly distributed AZs with a mean
inter-AZ spacing of about 1 µm (Rowley et al., 2007). In
vertebrates, the synaptic cleft of the NMJ contains the basal
lamina and evidently, the width of the cleft is much larger
compared to CNS synapses (de Harven and Coërs, 1959).
In the NMJ of Drosophila larvae (Figure 1D), CAZ proteins
form specialized electron-dense projections, the so called T-bars
(Prokop and Meinertzhagen, 2006).

Large specialized hippocampal mossy fiber boutons in the
mammalian CNS (Figure 1F) contain more than a few ten
AZs and contact multiple postsynaptic partners (Rollenhagen
et al., 2007). Another type of specialized synapses comprises
ribbon synapses of the visual and auditory system of vertebrates
(Figure 1C). Their distinguishing feature is the presence of

large rod-shaped structures in the presynaptic terminal. These
structures are joined by dozens of SVs (Sjoestrand, 1958).
It is believed that these ribbons facilitate fusion of SVs with
the presynaptic membrane either by an active mechanism
that shuttles SVs downward toward docking/release sites
(conveyor belt model) or by compound fusion of SVs allowing
multivesicular release and thus, extremely high release rates
(safety belt hypothesis) (Parsons and Sterling, 2003; Matthews
and Sterling, 2008). Remarkably, presynaptic filamentous
structures that partially resemble those of ribbons also exist in
the cytomatrix of hippocampal boutons (Siksou et al., 2007).

In classical EM chemical fixation methods are applied,
such as aldehyde and/or osmium fixation. Fixation is typically
followed by dehydration, embedding in a suitable resin, slicing
and heavy metal staining (Hayat, 2000). Large structures can
be reconstructed in 3D by manual serial sectioning (Stevens
et al., 1980), automated serial block face imaging (Denk and
Horstmann, 2004) or by focused ion beam (FIB) milling in
combination with scanning electron microscopy (SEM) (Knott
et al., 2008). For the 3D reconstruction of fine structures, electron
tomography (ET) with axial resolution well below slice thickness
can be utilized (Perkins et al., 2015).

However, chemical fixation may alter the synaptic
ultrastructure by inducing protein polymerization and tissue
shrinkage. For example, EM tomography in frog NMJ revealed
intricate scaffold structures forming a highly ordered network.
The macromolecular assemblies could be sorted according to
their shape into distinct classes such as beams, pegs or booms
(Harlow et al., 2001, 2013). Nonetheless, the dense projections
observed in these chemically fixed synapses might at least
partially stem from condensation and collapse of filamentous
structures by cross-linking during chemical fixation. In recent
years, physical fixation methods have become widespread, and
these methods allow overcoming most of the artifacts inherent in
chemical fixation.

High-pressure freezing (HPF) followed by freeze-substitution
preserves the synaptic ultrastructure significantly better and
avoids distortions of the cellular morphology induced by slow
chemical fixation (Studer et al., 2001; Rostaing et al., 2006).
In addition, it allows rapid vitrification within a few tens of
milliseconds even for thicker specimens. HPF in combination
with ET of rat hippocampal slices uncovered that SVs are
surrounded by a dense network of filaments that link SVs
together. Furthermore, longer filaments were observed that
directly link SVs to the AZ (Siksou et al., 2007). Nevertheless,
HPF is also not artifact-free since ice-crystal formation, high
pressure-induced shearing and collapse of air-filled spaces can
deform the tissue.

In freeze fracturing, samples are also rapidly frozen and then
broken up in the vacuum. A carbon-platinum replica is prepared
from the fractured sample surface that can be analyzed by EM
(Moor and Mühlethaler, 1963; Bullivant and Ames, 1966). Since
PMs can be split into half-membrane leaflets, this method is
very well suited for membrane studies. In addition, epitopes
of membrane proteins are partially preserved for immune-gold
labeling after SDS replica cleaning (Fujimoto, 1995; Masugi-
Tokita et al., 2007). This method contributed to the further
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FIGURE 1 | Common cellular model systems for studying synaptic structure and function with super-resolution methods include (A) Chromaffin cells
(B) Hippocampal cell culture (C) Retinal biopolar neurons (D) Drosophila neuromuscular junction (E) Calyx of Held (F) Isolated mossy fiber boutons. However, all
these model systems have their advantages and disadvantages, which we briefly discuss in this figure.
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characterization of presynaptic SV recycling (Heuser et al., 1979;
Heuser and Reese, 1981). However, as with HPF, freeze fracturing
necessitates rapid cooling and some biological samples require
treatment with a cryo-protectant to minimize ice crystal damage.

Cryo-electron tomography (cryo-ET) in conjunction with
cryo-fixation techniques and relative mild sample preparation
also aims to overcome some of the above mentioned limitations
and allows reconstruction of molecular assemblies under more
native conditions (Lucić et al., 2005). This technique is discussed
in more detail in a later section.

Though for all EM techniques the preservation of biological
structures in a state as native as possible is a crucial and
vividly discussed issue, EM in principle resolves fine structures
well and in conjunction with correlative approaches, like
electrophysiology and genetic modification of synapses by gene
ablation, EM gave a wealth of information on the structural
organization of synapses. Yet, labeling of specific proteins
to unravel the exact molecular assembly of proteins remains
challenging in EM. Pre- or post-embedding protein labeling
using gold-conjugated antibodies usually results in low labeling
densities. A notable exception is the giant reticulospinal axons
in lamprey. These axons can be cut along their longitudinal axis
providing access for antibodies to target the sites of SV recycling
(Evergren et al., 2004).

Genetically encoded tags suitable for EM, like the singlet
oxygen generator miniSOG (Shu et al., 2011) or the peroxidase
APEX (Martell et al., 2012) are still far from being used
routinely since the experimental conditions for the generation of
precipitate resolvable by EM have to be carefully adjusted. Thus,
we are still lacking tools in EM akin to fluorescent proteins in cell
biology and light microscopy.

SUB-DIFFRACTION MICROSCOPY:
BEARING FRUIT AFTER A DECADE OF
IMPLEMENTATION

A wide range of fluorescence microscopy techniques using
different physical principles to overcome the diffraction limit
has emerged during the last two decades (for review see, e.g.,
Sahl et al., 2017; Schermelleh et al., 2019) and consequently,
these techniques found their way into neuroscience (Tønnesen
and Nägerl, 2013; Igarashi et al., 2018). Among these super-
resolution (SR) concepts, stimulated emission depletion (STED)
and stochastic optical reconstruction microscopy (STORM) or
photoactivated localization microscopy (PALM) are the most
commonly used techniques and have been rewarded with the
Noble Prize for Chemistry in 2014. Here, we briefly describe the
main principles underlying these techniques (Table 1).

In STED microscopy, the effective excitation volume is
shrunk by overlaying the excitation spot with a doughnut-
shaped red-shifted depletion laser that de-excites molecules in the
periphery of the excitation spot. By these means, a resolution of
40 nm and below can be achieved (Hell and Wichmann, 1994;
Klar et al., 2000).

In STORM or PALM, stochastic switching of photoactivatable
(PA) or switchable fluorophores is employed to visualize single

emitters. Subsequently, the intensity profiles of single emitters
are fit by, e.g., a 2D Gaussian function to determine the exact
localization of these molecules. After repeatedly imaging different
subsets of fluorescent molecules, a high-resolution image is
reconstructed by summing up the single molecule coordinates.
Depending on the number of detected photons per molecule, a
localization precision down to 10 nm is feasible (Betzig et al.,
2006; Hess et al., 2006; Bates et al., 2007) allowing to separate,
e.g., pre- and postsynaptic compartments with fluorescence light
microscopy (Figure 2).

Other concepts in SR microscopy are structured
illumination microscopy (SIM) and lattice light sheet
microscopy (LLSM). In SIM, the sample is illuminated
with a periodic excitation pattern. By these means, high-
resolution information is shifted into the resolvable regime
and can be extracted by linear image processing to obtain a
final image with twofold increased resolution (Gustafsson,
2000). Resolution in SIM can be even further improved by
using nonlinear structured illumination patterns (Gustafsson,
2005). LLSM is a specialized version of ultramicroscopy in
which light sheets are created by 2D optical lattices. This
illumination mode enables high spatiotemporal resolution
and low phototoxicity for live cell imaging. Furthermore,
LLSM can be operated in different modes allowing either
high-speed 3D imaging down to the single molecule
level or spatial resolution beyond the diffraction limit
(Chen et al., 2014).

A further SR approach that was recently introduced is
MINFLUX. Like in STED microscopy, the exact position of
individual molecules is determined with a doughnut-shaped laser
beam. However, the doughnut is not used to deplete but to
excite fluorescence, and emitter positions are probed with the
local intensity minimum of the doughnut. This way, the absolute
photon number for precise emitter localization is minimized
(Balzarotti et al., 2017).

While at first the application of these techniques was reserved
for a few expert laboratories, the commercial availability of these
instruments today also enables the non-advanced user to perform
SR microscopy. Here, we briefly summarize some of the key
applications in the neuronal field.

Time-lapse STED microscopy has been successfully employed
to visualize plasticity-dependent morphological changes of YFP-
positive dendritic spines in hippocampal organotypical slices
with a resolution of ∼ 70 nm (Nägerl et al., 2008) and the
distribution and dynamics of actin within spines could be
resolved at a resolution of 60–80 nm in (Urban et al., 2011).

The distances between synaptic proteins and even individual
epitopes of single proteins in fixed brain slices and cultured
neurons were determined using 3D STORM (Dani et al., 2010;
Herrmannsdörfer et al., 2017; Lagache et al., 2018). These studies
revealed, e.g., that the large AZ proteins Bassoon and Piccolo are
organized in an extended and oriented manner forming the CAZ
together with other presynaptic proteins.

PALM in combination with single particle tracking (sptPALM)
was used in live cells to analyze the distribution and
mobility of individual synaptic proteins such as Syntaxin1A
(Bademosi et al., 2017), voltage gated Ca2+ channels (VGCCs)
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TABLE 1 | Comparison of different super-resolution methods.

Super-resolution method SIM STED Single molecule localization microscopy

STORM PALM/sptPALM DNA-PAINT

Illumination/ Detection Wide-field/TIRF Scanning confocal Wide-field/TIRF Wide-field/TIRF TIRF/ spinning disk
confocal

Lateral resolution ∼100 nm (linear)
∼60 nm (non-linear)

40–70 nm 10–30 nm 10–30 nm 10–30 nm

Axial resolution 300 nm (3D SIM) Down to 40 nm (iso-STED) ∼20 nm (astigmatism)
∼10 nm (interference)

∼20 nm (astigmatism)
∼10 nm (interference)

∼100 nm (TIRF)
∼80 nm (astigmatism)

Acquisition time Seconds Seconds Minutes ms-seconds (sptPALM)
minutes (PALM)

Minutes-hours

Dyes Conventional Dyes suitable for efficient
stimulated emission

Photoswitchable dyes Photo-activatable
fluorescent proteins

Dye-conjugated
oligonucleotides

Live cell imaging Yes Yes No Yes Very limited

Number of frames for single SR-image 9–15 frames 1 frame Several thousand
frames

Several thousand
frames

Several thousand
frames

Post-processing Yes (reconstruction in
reciprocal space)

No Yes
(emitter localization)

Yes
(emitter localization)

Yes
(emitter localization)

(Schneider et al., 2015; Heck et al., 2019) and postsynaptic AMPA
receptors (Hoze et al., 2012; Nair et al., 2013). The results show,
e.g., that physical interactions with a large number of PM surface
binding sites rather than molecular crowding is responsible
for the high density of AMPA receptors at the postsynapse
(Hoze et al., 2012).

However, one of the most surprising observations in this
context is certainly the discovery of periodic Actin cytoskeleton
rings by STORM and STED microscopy (Xu et al., 2013; D’Este
et al., 2015). Here it was shown that Actin and Spectrin form
alternating ring-like structures with a periodicity of 180–190 nm
to stabilize the dendritic and axonal PM.

The application of SR techniques to the presynapse comes
along with several challenges. Synapses are usually small
structures with a high density of supramolecular complexes.

FIGURE 2 | Pre- and postsynaptic compartments resolved with STORM
microscopy. A classical CNS synapse and STORM reconstruction of primary
hippocampal neurons stained for presynaptic (Bassoon, red) and postsynaptic
(Homer, green) markers (adapted from Boening et al., 2017; Copyright (2017)
Wiley. Used with permission).

The orientation in space of CNS synapses in culture or slices is
random, complicating reconstruction of synaptic structures by
simple averaging approaches unless 3D imaging is performed. In
addition, the differentiation of pre- and postsynaptic structures
is hampered by the small width of the synaptic cleft. Therefore,
many structural reconstructions of protein distributions have
been performed on large and highly specialized synapses such as
the NMJ of Drosophila larvae (Figure 1D).

THE PRESYNAPTIC COMPARTMENT
AND SV RECYCLING

Excitatory synapses of cultured hippocampal neurons have a
diameter of 600–800 nm and are densely filled with SVs of
40 nm size (Schikorski and Stevens, 1997). A combination of
genetic perturbation, electrophysiology, EM and fluorescence
microscopy culminated in the current model of NT release
(Lisman et al., 2007). First, membrane docked SVs fuse with
the presynaptic PM by Ca2+-triggered exocytosis. Subsequently,
exocytosed SV membranes and proteins are resorted and recycled
by triggered compensatory endocytosis, followed by refilling
of newly formed SVs with NTs. The hallmark of presynaptic
SV recycling is the tight coupling of exo- and endocytosis in
space and time, which is necessary to sustain high release rates.
Therefore, processes like exocytosis, release site clearance, re-
sorting of SV components post fusion and endocytosis have to
occur in a highly coordinated manner. A complex set of proteins
is required to organize the SV release and retrieval machinery
and they are a natural target for SR microscopy to elucidate
their molecular organization and dynamics at the presynapse to
finally address the following questions: (1) Are there defined SV
fusion sites? (2) How tight are release sites and VGCCs coupled
in space? (3) Are there defined endocytic sites? (4) What is the
mechanism responsible for tight temporal and spatial coupling
of exo- and endocytosis? (5) What is the fate of SV proteins at
the presynaptic PM after SV fusion? (6) Are presynaptic release
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sites and postsynaptic NT receptors spatially correlated across the
synaptic cleft?

AZ ARCHITECTURE AND
ORGANIZATION OF SV RELEASE SITES

Synaptic vesicles fuse with the presynaptic PM at the AZ
(Heuser et al., 1979). In order to elucidate the molecular
organization of the underlying release sites, it is essential
to understand the molecular assembly and relative position
of CAZ-proteins, VGCCs, SNARE proteins and other release
factors. STED microscopy has been intensively used in the
NMJ of Drosophila larvae to unravel the molecular scaffold
responsible for AZ organization (Figure 3). These presynaptic
terminals contain several AZs and the protein Bruchpilot
(BRP) was observed in doughnut-shaped structures centered
at these AZs (Kittel et al., 2006). AZs of a BRP mutant
displayed loss of T-bars, reduced clustering of VGCCs and
depressed evoked SV release. Thus, BRP was one of the first
scaffolding proteins identified as being responsible for AZ
integrity by establishing a close proximity between docked SVs
and VGCCs. Later on, other CAZ proteins such as Rab3-
interacting molecule (RIM), RIM-binding protein (RIM-BP) and
Fife were identified to play major roles in correct AZ formation
and thus, NT release (Liu et al., 2011; Graf et al., 2012; Bruckner
et al., 2017). A recent two-color STED microscopy study in
Drosophila NMJ uncovered yet another protein, the priming
factor Unc13A, as essential for stable release site generation
(Reddy-Alla et al., 2017).

The mammalian CAST/ELKs proteins are orthologs of BRP
and deletion of CAST/ELKs, similar to deletion of BRP in
Drosophila, led to impairment of the AZ ultrastructure in mouse
retinal ribbon synapses (Hagiwara et al., 2018). In contrast, loss of
CAST/ELKs hardly affected AZ integrity in cultured hippocampal
neurons. Here, only minor effects on readily releasable pool
(RRP) size and Ca2+ influx were observed (Liu et al., 2014;
Held et al., 2016).

In mammalian neurons, the large scaffolding proteins Bassoon
and Piccolo are integral parts of the CAZ (Figure 3). Dual-color
STED microscopy in mouse NMJ disclosed non-overlapping
punctuate patterns for these presynaptic scaffolding proteins,
and it was found that the Bassoon puncta co-localized with P/Q
type VGCCs (Nishimune et al., 2016), in agreement with the
earlier finding that Bassoon localizes P/Q type VGCCs to the AZ
in hippocampal cultures (Davydova et al., 2014). Furthermore,
loss of Bassoon impairs recruitment of SVs to release sites in
mossy fiber synapses (Hallermann et al., 2010). However, despite
the aforementioned phenotypes, loss of function studies for
Piccolo and Bassoon have not been shown to affect the AZ
ultrastructure in CNS synapses (for review see Gundelfinger et al.,
2015) pointing to functional redundancy of CAZ proteins in
these synapses. The situation is different for vertebrate sensory
synapses. In mice hair cells, STED microscopy upon genetic
disruption of Bassoon revealed a lack of ribbons and a reduced
number of VGCCs at the AZ (Frank et al., 2010). Deletion
of Piccolino, a Piccolo splice variant specifically expressed in

FIGURE 3 | AZ Nano-architecture in common synapse models as suggested
by SR microscopy. (A) Rat neuroendocrine cells. SR microscopy revealed
syntaxin clusters (Syx) potentially serve as docking sites for dense-core
vesicles in neuroendocrine cells. Vesicle fusion causes disassembly of the Syx
nanoclusters. SNAP25 also form clusters at the plasma membrane;
nevertheless, these clusters do not overlap with Syx. (B) Drosophila NMJ. The
large T-bar forming proteins Bruchpilot (BRP) and Rim-binding protein (RBP)
are positioned with their N-terminus and C-terminus, respectively, close to
Ca2+-channel clusters (CaV). Syx clusters are situated in the active zone near
Brp and RBP. (C) Mammalian CNS synapse. The large filamentous protein
Bassoon (Bas) faces the AZ with its C-terminus. Munc13-1, CaV, and Syx
clusters are positioned close to the SV release sites. The postsynaptic
neurotransmitter receptors (NTRs) are aligned with SV fusion sites in a
columnar manner via synaptic cell adhesion molecules (SCAMs).
Compensatory endocytosis of SVs occurs in a spatially distinct region of the
presynapse, the peri-active zone. Here, a surface fraction of SV proteins, the
readily retrievable pool (RRetP), is pre-assembled.

sensory ribbon synapses, compromised the synaptic ribbon
ultrastructure (Regus-Leidig et al., 2014).

Isoforms of Munc13, the mammalian homolog of Unc13, have
also been implicated in organizing SV release sites. Munc13-3
regulates density and localization of VGCCs at the AZ (Kusch
et al., 2018). However, the role of Munc13 isoforms in presynaptic
VGCC recruitment is still disputed. A direct interaction of,
e.g., Munc13-1 and VGCCs has been shown (Calloway et al.,
2015) but attributed to control of VGCC function rather than
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recruitment. 3D STORM revealed that Munc13-1 molecules
form multiple supramolecular clusters that serve as independent
SV release sites by recruiting Syntaxin1A, one of the target
SNARE proteins (t-SNARE) in the presynaptic PM (Sakamoto
et al., 2018). In this way, Munc13-1 provides platforms for open
Syntaxin1A molecules to generate activated SNARE complexes
(Rizo, 2018) that facilitate bridging of PM and SVs.

Not surprisingly, Syntaxin1A has emerged as another
candidate for organizing the SV fusion machinery. Much of
the investigation into this protein has focused on its tendency
to cluster at the PM, triggered by the interaction with PIP2
(Milovanovic et al., 2016). Early evidence from neuroendocrine
PC12 cells showed the granule fusion sites are “premarked”
with Syntaxin1A clusters (Knowles et al., 2010) and L-type
VGCCs expressed in HEK cells exhibit strong co-localization
with Syntaxin1A clusters (Bar-On et al., 2012; Sajman et al.,
2017). The role of Syntaxin1A clusters as release site organizers
is challenged by the lack of overlap with clusters of SNAP25, its
t-SNARE partner, in PC12 cells (Bar-On et al., 2012) (Figure 3).
Moreover, a significant pool of extrasynaptic t-SNARE-proteins
exists that is recruited to the presynapse during stimulation
(Maidorn et al., 2019). Furthermore, an increase in Syntaxin1A
trapping was observed after treatment with the widely used
anesthetic propofol (Bademosi et al., 2018). However, propofol-
induced clustering of Syntaxin1A is associated with impaired
neurotransmission, which lends itself to the conclusion that
clustered Syntaxin1A is excluded from the SV fusion process.
Thus, the exact function of these t-SNARE clusters in organizing
release sites remains open to debate.

In a recent study using live hippocampal neurons, single SV
fusion events were detected using the pH-sensitive fluorescent
protein pHluorin fused to the vesicular glutamate transporter
vGlut (Maschi and Klyachko, 2017). The individual fusion events
were spatially mapped with a precision of∼30 nm and the results
show that mammalian CNS synapses indeed display a dozen of
stable SV release sites per bouton. Moreover, the spatial pattern
of these fusion sites changed in an activity-dependent manner.

To summarize, presynapses harbor distinct SV fusion sites
that are defined by a complex interplay between CAZ proteins,
VGCCs, Munc13 and t-SNARES and significant contributions
from SR microscopy has helped shed to more light on AZ
architecture and organization of SV release sites.

THE MECHANISM OF SV EXOCYTOSIS

Exocytosis of SVs is mediated by SNARE-proteins that drive
fusion of the SV membrane with the presynaptic PM. However,
the exact mechanism of SNARE-mediated membrane fusion is
still under debate. Different models have been proposed and one
of these involves priming of docked SVs into a stable hemifused
intermediate, in which the inner leaflet of the PM is already fused
with the outer leaflet of the SV membrane before cargo release
(Kweon et al., 2017). ET has been utilized to reconstruct high-
resolution images of docked SVs in different preparations like
frog NMJ (Jung, 2019), mice photoreceptors (Zampighi et al.,
2011) and thin sections of rat brain (Zampighi et al., 2006). In

these studies, hemifused structures at SV/PM contact sites could
be frequently observed. However, the results depend heavily on
image processing and interpretation and have not been accepted
in the field as a strong evidence for a stable hemifused primed
state for SVs. In addition, these attempts are limited by the fact
that a real population of hemifused SVs might simply be lost
during chemical fixation.

Recently, evidence supporting the fusion-through-hemifusion
model was reported for fusion of dense core vesicles (DCVs)
in live bovine chromaffin cells (Zhao et al., 2016). The authors
analyzed the reorganization of the inner PM leaflet lipid
PtdIns(4,5)P2 before and during DCV fusion using 3D STED
microscopy. They could observe hemifused �-shaped structures
seconds before fusion pore opening with the transition to full
fusion or fission depending on a completion between fusion and
a Ca2+/Dynamin mediated fission mechanism.

Furthermore, STED microscopy enabled the observation of
dynamic fusion pore behaviors in neuroendocrine cells (Shin
et al., 2018). The results showed a surprisingly large pore size
range with varying rates for expansion, constriction and closure
(kiss-and-run), critically determining cargo release. The same
study found constriction to be mediated by Ca2+/Dynamin
while expansion was driven by Actin-dependent membrane
tension. However, these studies were only possible on bovine
chromaffin cells with large secretory granules (up to 400–500 nm
in diameter). And while chromaffin cells share essentially the
same core exocytosis machinery with neurons, AZ specializations
are missing (Neher, 2018). At presynaptic AZs, proteins like,
e.g., Rim and RimBP are implicated in docking and priming and
confer extra speed and an extra layer of control for exocytosis.
But interestingly, similar �-shaped profiles can be induced in
Lamprey synapses by electrical stimulation after treatment with
Actin-depolymerizing drugs (Wen et al., 2016), suggesting that
Actin-induced merging of �-shaped release intermediates also
occurs in neurons.

SPATIAL COUPLING OF Ca2+CHANNELS
AND RELEASE SITES

Synaptic vesicles fusion is tightly coupled to the entry of Ca2+

ions into the presynapse. Ca2+ influx upon opening of VGCCs
triggers SV priming and fusion with the presynaptic PM. Precise
timing of transmitter release relative to the arrival of an action
potential requires a certain proximity between VGCCs and
docked SVs. Typically, presynaptic VGCCs organize into distinct
clusters (Kittel et al., 2006; Holderith et al., 2012; Nishimune et al.,
2016) and using immuno-gold labeling of SDS-treated freeze
fracture replicas, it was found that the number of VGCC clusters
matches the number of presynaptic SV docking sites (Miki et al.,
2017). However, classical experiments with Ca2+ chelators like
BAPTA and EGTA have shown that the spatial coupling of Ca2+

entry points and Ca2+ sensors varies, ranging from 10 to 30 nm
in some types of cortical glutamatergic and GABAergic synapses
(Bucurenciu et al., 2008; Schmidt et al., 2013) to 100 nm in
the mature Calyx of Held (Borst and Sakmann, 1996). Using
STED microscopy in Drosophila NMJ it has been found, that the
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topology of docked SVs and VGCCs can be regulated by isoform
specific interactions between Unc13 and scaffold proteins like
Syd-1, Liprin-α, BRP, and Rim-BP (Böhme et al., 2016). In
cerebellar preparations weak synapses exhibited three-fold more
VGCCs than strong synapses, but with a five-fold longer coupling
distance pointing toward a diverse arrangement of SV/VGCCs
even in CNS synapses (Rebola et al., 2019).

The picture of VGGC coupling was further enhanced by using
sptPALM on live hippocampal neurons (Schneider et al., 2015).
Here it was shown that around 60% of VGCCs are mobile while
confined to the presynaptic PM. These data suggest that the
fractions of mobile and immobile channels are transient within
the AZ and that an interplay between channel density, mobility
and Ca2+ influx supports Ca2+ domain co-operativity to control
release probability.

PRESYNAPTIC ENDOCYTIC SITES AND
COUPLING OF EXO-ENDOCYTOSIS

Synaptic vesicle exo- and endocytosis in the presynapse
are temporally coupled but spatially segregated in different
PM domains (Wienisch and Klingauf, 2006). Compensatory
endocytosis occurs in the peri-AZ (Roos and Kelly, 1999; Teng
et al., 1999), and preformed endocytic patches organized around
the AZ could be visualized by iso-STED microscopy (Hua et al.,
2011). The main pathway for SV retrieval at the peri-AZ under
moderate stimulation conditions was considered to be Clathrin-
dependent (Heuser and Reese, 1973; Granseth et al., 2006).
However, optogenetics in combination with ultrafast freezing
followed by EM analysis revealed that after a single stimulus
SVs fuse in the AZ and are directly retrieved by a Clathrin-
independent mechanism at the AZ periphery within 50–100 ms
(Watanabe et al., 2013). EM, however, only provides snapshots
of the presynaptic ultrastructure and in order to finally resolve
the mechanism of compensatory endocytosis, it is essential to
perform high-resolution live-cell imaging and visualize single
SV recycling. Video-rate (28 frames/s) STED microscopy already
enabled mapping of the movement and mobility of single SVs in
live presynaptic boutons (Westphal et al., 2008). Furthermore,
spatially highly resolved tracking of single endocytosed SVs
has been performed (Joensuu et al., 2016). Nevertheless, these
attempts have not yet brought novel insights into the SV
retrieval mechanism.

In addition, the mechanism that tightly couples exo-
endocytosis in time is controversial and could not finally
be resolved with the help of SR microscopy. It has been
reported that Ca2+ modulates the time course of endocytosis
(Sankaranarayanan and Ryan, 2001; Wu et al., 2009; Leitz and
Kavalali, 2011). While in the calyx of Held a Ca2+/Calmodulin-
dependent mechanism was found to highly stimulate and to
initiate all modes of endocytosis (Wu et al., 2009), in hippocampal
cultures Ca2+ inhibits endocytosis for single APs (Leitz and
Kavalali, 2011). However, in most studies Ca2+ stimulates
endocytosis (Sankaranarayanan and Ryan, 2001; Wu et al., 2009;
Wu and Wu, 2014). The exact molecular mechanism how
Ca2+ can couple SV fusion and retrieval remains elusive, but

Calmodulin and myosin light chain kinase are strong candidates
(Wu et al., 2009; Yue and Xu, 2014). Recently it has been
shown that endocytosis is also triggered upon Ca2+-independent
exocytosis suggesting that compensatory endocytosis might also
be initiated by biophysical changes induced by addition of the
SV membrane to the presynaptic PM (Orlando et al., 2019).
But this finding does not rule out an important role of Ca2+ in
compensatory endocytosis.

THE FATE OF SV PROTEINS AT THE
PRESYNAPTIC PM AFTER SV FUSION

Synaptic vesicle function relies on a distinct set of proteins
present in a defined stoichiometry. The molecular sorting
mechanisms for individual SV components during exo-
endocytosis, however, remain largely unresolved. In one
scenario, SV constituents remain clustered upon fusion and
diffuse as a raft-like patch to the peri-AZ, preventing the
need for re-sorting prior to endocytosis. Indeed, it was shown
using live cell STED microscopy that Synaptotagmin1 remains
clustered after SV exocytosis (Willig et al., 2006). In contrast,
other reports claim rapid dispersion of SV proteins by diffusion
upon exocytosis (Wienisch and Klingauf, 2006; Funahashi et al.,
2018) and re-sorting and clustering into patches at the peri-AZ
(Hua et al., 2011). In this context the exact role of adaptor
proteins like, e.g., AP2, Stonin2 and AP180 in productive cargo
clustering at endocytic sites is still not fully understood since
knockdown or knockout in neurons often resulted in only minor
inhibition of SV retrieval (for review see Gauthier-Kemper et al.,
2015). The precise sorting of SV constituents for retrieval is
a complex process involving self-assembly and several layers
of adaptor protein interactions. Thus, the picture remains far
from being complete.

TRANS-CELLULAR NANO-ALIGNMENT
BETWEEN PRESYNAPTIC AND
POSTSYNAPTIC COMPARTMENTS

While on the presynaptic PM stable SV release sites exist at
which SVs fuse and release their NT content, the postsynaptic
PM harbors the NT receptors that bind NTs. SR microscopy
revealed that postsynaptic receptors and scaffolding proteins are
organized in clusters of 70–80 nm size (MacGillavry et al., 2013;
Nair et al., 2013). Based on these observations the hypothesis was
established that PM nanodomains involved in neurotransmission
in pre- and postsynaptic membranes are aligned on both sides of
the synaptic cleft (Figure 3). Indeed, a trans-synaptic alignment
of RIM1 and PSD95 nanoclusters was visualized by 3D STORM
in cultured hippocampal neurons (Tang et al., 2016). In inhibitory
synapses, postsynaptic GABAA receptors are strongly associated
with presynaptic RIM clusters (Crosby et al., 2019). According to
this model, RIM nanoclusters define SV release sites that align
opposite to postsynaptic receptor-scaffold ensembles within tens
of nanometers creating a functional unit across the synaptic cleft.
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Recently, trans-synaptic nano-alignment was also observed in the
mammalian NMJ (York and Zheng, 2017).

Clustered patterns are also described for several synaptic cell
adhesion molecules (SCAMs) including postsynaptic LRRTM2
and presynaptic Neurexin1β, while postsynaptic Neuroligin1
is dispersed in dendritic spines (Chamma et al., 2016). In
addition, Neurexin1 nanodomains are dynamically regulated
by the matrix metalloproteases ADAM-10. Blocking ADAM-
10 mediated Neurexin1 cleavage leads to an increase in cluster
size (Trotter et al., 2019). These SCAM clusters are likely to be
involved in the trans-synaptic alignment as, e.g., expression of
truncated Neuroligin1 disrupts trans-synaptic alignment causing
mislocalization of SV fusion sites away from AMPAR clusters
(Haas et al., 2018).

RECONSTRUCTION OF THE CELLULAR
ULTRASTRUCTURE BY LOCALIZATION
MICROSCOPY

For the analysis of protein distributions, localization microscopy
techniques (STORM and PALM) feature a unique advantage as
these pointillist methods provide single molecule coordinates
allowing for comprehensive cluster analysis. Cluster formation at
pre- and postsynaptic membranes has been described for CAZ
proteins, SNARE proteins, SCAMs and NT receptors. Similar
protein clusters were observed not only in neurons but also in
neuroendocrine cells (Bar-On et al., 2012). Moreover, the advent
of localization microscopy prompted a surge of publications
reporting clusters of PM and PM-associated proteins in almost
every cell type (Aaron et al., 2012; Itano et al., 2014; Lima
et al., 2018) underlining the theory, that nano-clustering of
PM proteins is an integral part of the hierarchical organization
at the PM (Garcia-Parajo et al., 2014). These results have
come to be viewed more critically because the protein clusters
observed might be at least partially based on artifacts resulting
from poor sample preparation or of inappropriate imaging
conditions and reconstruction algorithms (Burgert et al., 2015;
Culley et al., 2018).

Aggregate-forming labels and low labeling densities result in
apparent protein clusters, which hardly reflect the underlying
protein distribution (Figure 4). In addition, artificial clustering
can be induced by the interaction of cell membranes with the
polymer coating on the cover slide (Santos et al., 2018) or
by sample preparation, e.g., during chemical fixation (Whelan
and Bell, 2015). Thus, the development of improved labeling
strategies is crucial to elucidate structure and function of sub-
synaptic compartments.

High labeling densities carries its own risks since, in
combination with inappropriate photo-switching rates, it can
lead to overlapping single fluorophore signatures (Burgert et al.,
2015). This introduces artificial sharpening during data analysis
and thus, false protein clusters. This can be overcome with the
judicious application of experimental and analytical tools such
as variation of labeling density (Baumgart et al., 2016), temporal
band pass filtering using Haar wavelet kernels (Marsh et al., 2018)
or compressed sensing (Zhu et al., 2012).

Thus, the interpretation of localization microscopy data
is a non-trivial task. The localization precision for single
molecules scales with the inverse of the square root of the
number of detected photons (Thompson et al., 2002) and
benchmark studies have been performed to compare different
software packages in terms of filtering and fitting algorithms
for optimized data analysis (Sage et al., 2015). Nevertheless,
the resolution in reconstructed images depends on both, the
localization uncertainty and density of fluorescent labels, and
several approaches have been proposed to estimate the true
resolution in reconstructed images based, e.g., on estimation
theory (Fitzgerald et al., 2012) or Fourier ring correlation
(Nieuwenhuizen et al., 2013).

Once the single molecule coordinates have been accurately
determined, cluster analysis can be applied. For this purpose,
several standardized quantitative methods have been proposed.
The most widespread methods to distinguish a clustered from a
random distribution are nearest neighbor and pair correlation
analysis (Sengupta et al., 2011; Rajappa et al., 2016; Sajman
et al., 2017). Unfortunately, these methods are susceptible to the
level of single molecule background and cluster shape (Lagache
et al., 2013). It is possible to detect false clustering caused by
stochastic local density increases for proteins mostly uniformly
present in the PM (Baumgart et al., 2016). Recently, more
advanced methods for cluster analysis have been introduced.
These methods avoid artifacts caused by the geometry of the
cell surface, the level of protein labeling and multiple blinks of
fluorophores (Itano et al., 2014; Dinic et al., 2015). Bayesian
statistical analysis of localization data, e.g., significantly increases
the chance to find real protein clusters (Rubin-Delanchy et al.,
2015; Griffié et al., 2016). However, the most promising methods
for cluster analysis are Voronoi tessellation and Delaunay
triangulation (Levet et al., 2015; Alán et al., 2016; Andronov
et al., 2016; Boening et al., 2017). These methods are only
minimally sensitive to the background signals, and are applicable
for detecting clusters of various shape (Figure 4).

In addition, PALM exploits the possibility to count the number
of individual molecules (Specht et al., 2013). In contrast to small
organic fluorophores used in STORM, PA proteins emit a limited
number of photons after activation before they irreversibly
photobleach. However, most of the PA proteins display a blinking
behavior, which may cause an over counting of the molecules in
the sample. But knowing the time between multiple appearances
of a fluorophore, one can convert the number of detections into
the number of molecules (Lee et al., 2012; Nino et al., 2017).
Nevertheless, it should be borne in mind that the labeled protein
is often expressed in addition to the endogenous protein and
thus, the number of molecules in a cluster can be easily over-
or underestimated.

MOBILITY ANALYSIS BY SINGLE
TRACKING AND sptPALM

The era of SR microscopy started with the advent of
single molecule imaging and tracking techniques (Schmidt
et al., 1996; Dickson et al., 1997; Schütz et al., 2000;
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FIGURE 4 | Pointillist localization microscopy and the sparse labeling problem. Localization microscopy techniques base on the precise localization of single emitters
followed by image reconstruction using the single molecule coordinates. (A) Different methods of cluster analysis for the interpretation of STORM/PALM data.
Ripley’s K function describes the molecular density as a function of an area of interest around a reference particle. The radial distribution function (also known as pair
correlation function) describes density variations as a function of distance from a reference particle. Delaunay triangulation is a triangulation method such, that no
point is inside the circumcircle of any triangle in the triangulation. Delaunay triangulation maximizes the minimum angle of all the angles of the triangles in the
triangulation. Cluster distributions can be extracted by deleting edges longer than individually set thresholds. Voronoi tessellation splits the area into convex polygons
such that each polygon contains one seed (molecule coordinate). The polygon areas consist of all points that are closer to their generating seed than to any other.
Based on individually set thresholds (e.g., molecular density) image segmentation based on the Voronoi diagram results in cluster distributions. (B) STORM
reconstruction of a hippocampal synapse stained for presynaptic (Bassoon, red) and postsynaptic (Homer, green) markers and Delaunay triangulation built on these
localization (adapted from Boening et al., 2017; Copyright (2017) Wiley. Used with permission). (C) Though in principle the localization of single emitters can be as
precise as 10 nm, the overall resolution is also determined by labeling density. Thus, if the labeling density is not high enough, relevant information is missing and
cellular structures are falsely reconstructed.

Triller and Choquet, 2008; Kusumi et al., 2014). The evolution of
these techniques and the fluorescent probes used, from sparse
antibody or quantum dot labeling to sptPALM using photo-
convertible fluorescent proteins is well documented in a number
of studies analyzing localization and mobility of postsynaptic
AMPA receptors (Tardin et al., 2003; Opazo et al., 2010; Nair
et al., 2013). Tracking the motion of individual protein molecules
provides information, which can be used for quantification of
molecular mobility (Manley et al., 2008). However, localization
precision can be compromised by motion blur, i.e., fast diffusing
molecules spread out their emitted photons over multiple
pixels. Furthermore, high particle densities can lead to tracking
errors when molecules are falsely connected into trajectories.
Technical and analytical solutions have been provided that
overcome these biases like stroboscobic illumination (Elf et al.,
2007) or data analysis using sophisticated kinetic frameworks
(Hansen et al., 2018).

sptPALM revealed, that synaptic molecules like VGCCs,
Syntaxin1A and AMPA receptors and are highly mobile
and usually exhibit only transient trapping in nanodomains
(Bademosi et al., 2017; Lee et al., 2017). The relevance of this
mobility becomes increasingly clear since it was recently shown
that transient confinement of VGCCs shapes presynaptic short
term plasticity (Heck et al., 2019) and that AMPA receptor surface
diffusion is required for postsynaptic long term potentiation
(Penn et al., 2017).

However, in order to gain insights into molecular motion
from single molecule trajectories, adequate physical models are
needed (Masson et al., 2014; Holcman et al., 2015). Diffusing
molecules in the PM often exhibit non-Brownian motion due to
interaction with other molecules in the PM, cytoskeletal elements
or adaptor proteins (Weigel et al., 2011; Metzler et al., 2016).
Hidden Markov chain modeling (HMM) has been applied to
distinguish diffusional states with different diffusion coefficients
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in sptPALM data sets (Persson et al., 2013; Slator and Burroughs,
2018). This kind of analysis not only provides a quantitative
description of different diffusion modalities but also an estimate
of transition probabilities between them. Such an approach allows
different diffusive states to be characterized for Syntaxin1A at the
presynaptic PM of Drosophila NMJ (Bademosi et al., 2017) and
for single SVs which were labeled with internalized fluorescent
Vamp2 in hippocampal boutons (Joensuu et al., 2016).

A comprehensive analysis of diffusional properties of proteins
in the cell is essential for understanding the molecular
underpinnings of cellular processes. However, we cannot
measure the diffusion of any protein molecule without the
addition of a molecular tag. While fusion of the protein of
interest with a fluorescent protein has mostly only a minor
effect on mobility (the diffusion coefficient scales (hydrodynamic
radius)−1 or (molecular mass)−3 for spherical molecules
according to Stokes’s law) fluorescent proteins may induce
artificial dimerization, as reported for EGFP (Snapp et al., 2003).
In the PM where the local concentration of PM proteins can be
very high due to crowding, dimerization may have a significant
impact on protein mobility. It was, e.g., shown that mEos2
causes artificial clustering of PM proteins in the cell (Zhang
et al., 2012), putting the diffusion coefficients measured for
Syntaxin1A with mEos2 (Bademosi et al., 2017) or anti-EGFPF
antibodies (Wang et al., 2014) under debate. Therefore, the use of
fluorescent proteins with highly reduced dimerization properties
such as Dendra2 or mEos3.2 is preferable for cluster analysis and
diffusion coefficient estimation.

DISCUSSION

What is the status after more than a decade of SR microscopy?
At first glance, the wealth of data is impressive. With the help
of SR microscopy the architecture of the AZ could be described
in more detail, SV fusion sites could be mapped and a trans-
synaptic alignment between presynaptic SV fusion sites and
postsynaptic NT receptors could be observed. Moreover, due to
the applicability of SR microscopy to living cells, it was possible to
analyze the single molecule dynamics of presynaptic membrane
proteins. On closer examination, however, it is noticeable that
structural reconstruction in the range 100–200 nm works well,
such as in the case of the periodicity of actin filaments of 190 nm,
the width of spine necks or the localization of BRP in doughnut-
shaped structures of 190 nm length. However, the fundamental
resolution of the corresponding techniques is significantly higher
and can be as good as 20–40 nm. Structural reconstructions
in this resolution range usually produce an analysis-dependent
dot pattern, the meaning of which is subject to an individual
interpretation. The outcome strongly depends on the algorithms
and thresholds used. The mean cluster size of Syntaxin1A in the
PM of PC12 cells, e.g., has been estimated to be around 90 nm
by STORM but to be around 60 nm by STED (Sieber et al., 2007;
Bar-On et al., 2012). Thus, meticulous acquisition and analysis
is required. Fortunately, the toolbox for data acquisition and
evaluation is constantly growing, which helps to increase the
reliability of SR microscopy data interpretation.

However, in SR microscopy we now face a problem, which
has been discussed analogously in EM since years: What is the
best labeling procedure to analyze the cellular ultrastructure
in a state as native as possible? It has become increasingly
obvious that immuno-labeling is subject to a sparse labeling
problem, not as strongly as in immuno-gold EM, but in
dense protein assemblies like CAZ and PSD this is a severe
limitation. Despite this, STORM studies persist in utilizing classic
standard labeling methods like immunostaining using primary
and secondary antibodies. In principle, promising alternatives
are already available such as the use of nanobodies (Ries et al.,
2012; Seitz and Rizzoli, 2019) or RNA-based aptamers (Gomes de
Castro et al., 2017). Nevertheless, the available labeling strategies
are the limiting factor to exploit the full resolution capability of
SR microscopy right now.

For other issues like multiplexing, i.e., imaging several
proteins of interest, minimizing photon count (and thus
photodamaging), and the problem of thick specimens promising
solutions have been developed. Most of the variations of STORM,
PALM, and STED techniques are not applicable to the use of more
than two different fluorescent markers. Recently, DNA-PAINT
was introduced which is theoretically unlimited with respect to
the number of probes being analyzed (Jungmann et al., 2010;
Agasti et al., 2017). Thus, DNA-PAINT appears advantageous for
multiplexing and multi-channel reconstruction. However, DNA-
PAINT can be best applied in conjunction with total internal
refection microscopy (TIRFM), since then the background due
to freely diffusing labeled DNA strands is low compared to the
signal of bound labeled DNA. Thus, to decipher molecular events
in presynaptic boutons with this technique a TIRFM-amenable
presynaptic preparation is desirable. Some modifications of
dSTORM, such as the recently invented MadSTORM (Yi et al.,
2016) are also applicable for multiplexing.

For minimizing the number of detected photons needed
for localization and thus avoiding photobleaching as well as
photodamage, the recently introduced MINFLUX concept is one
of the most promising developments with regard to driving the
field forward (Balzarotti et al., 2017). Recently, the postsynaptic
protein PSD-95 was imaged with 3D resolution of 2–3 nm in
hippocampal cultures using MINFLUX (Gwosch et al., 2020).

For imaging of whole cells and thicker specimens like, e.g.,
slice preparations, light sheet-based methods, in particular LLSM,
will be of great importance in the future since these methods
allow imaging with strongly reduced phototoxicity (Dodt et al.,
2007; Chen et al., 2014). Bessel lightsheet microscopy has recently
successfully combined with imaging of spontaneous blinking
fluorophores to obtain an imaging speed of 2.7 × 104 µm3 s−1

with a lateral resolution of 75 nm (Lu et al., 2019).
Strong limitations for the application of SR methods in vivo

are high levels of autofluorescence and tissue photodamage,
in particular for the green/yellow spectral range (König, 2000;
Berning et al., 2012). To overcome these limitations, far red-
emitting fluorescent proteins have been employed in STED
microscopy (Wegner et al., 2017). However, red-emitting
fluorescent proteins display low photostability and quantum yield
compared to their shorter wavelengths analogs. Nevertheless, the
quality of the in vivo SR imaging could be increased by using red
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and far-red emitting organic fluorophores linked to the protein
of interest via click-chemistry (Masch et al., 2018). Here the
authors succeeded in recognizing PSD95 domains labeled with
the far-red emitting fluorophore SiR in live mouse brain using
HaloTag based labeling.

For sptPALM, it will become more relevant to circumvent
overexpression of tagged proteins and observe localization and
mobility of the endogenous population of proteins. A toolbox
for targeted genomic integration of fluorescent tags via CRISPR
mediated knock-in in neurons has recently been published
(Willems et al., 2019). Additionally, the MINFLUX concept also
appears to be an encouraging approach for single molecule
tracking since the spatiotemporal resolution can be greatly
improved (Eilers et al., 2018).

But despite the enormous achievements of EM and constant
improvements in the field of SR fluorescent microscopy, as
well as long-term biochemical and electrophysiological studies,
many questions regarding synaptic structure and function
remain unresolved. The fine structure of the presynaptic AZ
and the distribution and function of CAZ-proteins is still not
fully understood. The importance of molecular clusters, like
e.g., observed for t-SNAREs, remains enigmatic. In addition,
the dynamics and molecular mechanisms of exo-endocytosis
coupling, compensatory endocytosis and cargo sorting prior to
endocytosis are still only incompletely described.

In summary, we conclude that SR microscopy on the one
hand did deliver important insights into presynaptic molecular
mechanisms and the underlying ultrastructure, on the other
hand, SR microscopy could not fully hold its promise. However,
the limitations are mostly not the microscopy techniques
themselves but lie in sample preparation and labeling strategies.
Thus, the development of artifact-free methods for labeling and
analysis is still paramount with urgent imperative to the solution
of the sparse labeling problem.

What could be the avenues for future structural research? In
CNS synapses, however, to date EM has been only combined with
immuno-gold labeling to introduce protein-specific contrast. For
instance, the regularly spaced cone shaped structures frequently
observed in EM at the presynaptic PM (also referred to as
dense projections), could be positively correlated with the
abundance of the scaffold proteins Piccolo and Bassoon (Limbach
et al., 2011). Nevertheless, these probes were chemically fixed,
which might introduce artifacts, and immune-gold labeling is in
general poor because of steric hindrance (typically 10 nm gold
particles are used).

Therefore, correlative light and electron microscopy (CLEM)
seems to be a favorable way to go. Here, high-resolution
light microscopy provides specific protein distributions while
EM unravels the underlying cellular structures. Thus, CLEM
mitigates the sparse labeling problem, as structural information

is not solely extracted from light microscopy data. This approach
has been successfully employed to show that endocytic proteins
distribute into distinct spatial zones in relation to the edge of the
clathrin lattice in non-neuronal cells using SEM on unroofed cells
(Sochacki et al., 2017).

In terms of structure conservation, cryo-ET conjunction with
cryo-fixation techniques appears to be superior among EM
techniques. Indeed, using cryo-ET on isolated synaptosomes,
the dense projections seen in chemically fixed samples (Harlow
et al., 2001) could no longer be observed. Instead, numerous
small filamentous tethers that link docked SVs to the presynaptic
PM could be resolved and it appears that Rim1α plays a
critical role in correct tether formation (Fernández-Busnadiego
et al., 2013). Recently, an experimental pipeline for CLEM that
combines cryo-ET with cryo-fluorescence microscopy has been
published (Tao et al., 2018). Here, intact excitatory and inhibitory
synapses could be distinguished in hippocampal culture, and
their organelles and macromolecules could be visualized close to
the native state.

In addition, cryogenic techniques were successfully applied
to localization microscopy (Li et al., 2015; Weisenburger
et al., 2017). It was shown that fluorophores under cryogenic
conditions are much more photostable allowing the collection
of more than 106 photons, thus providing down to Ångstrom
resolution. Therefore, correlation of cryogenic localization
microscopy with cryogenic EM tomography appears to be a
promising approach. Recently a platform for correlative 3D
imaging of entirely frozen cells using cryo-SR fluorescence
microscopy and cryo-FIB EM has been published (Hoffman et al.,
2020). However, at the moment such correlative approaches
are reserved for a few expert labs and need to be optimized
for routine use.

In summary, we conclude that high-resolution microscopy on
its own has not fully lived up to its promises, and that we still need
to rely on EM. This is likely to remain the case until correlative
methods come to full fruition and the development of a “GFP” for
EM, i.e., a reliable protein-specific tag for EM, remains elusive.
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