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a well-established finding (e.g., Rabbitt, 1968, 1991; Surprenant, 
1999, 2007; Murphy et al., 2000). This effect of effortful perception 
on recall is a subtle but powerful one, especially in older adults 
where declines in episodic memory may further exacerbate this 
effect (Wingfield and Kahana, 2002; Howard et al., 2006). We have 
shown, for example, that recall of a sequence of just two adjacent 
words in a running memory task to be poorer for a group of older 
adults with mild-to-moderate hearing loss as compared to better 
hearing adults matched with the first group for age and cognitive 
ability (McCoy et al., 2005). The critical point in this and the above-
cited studies is that this effect of degraded stimuli on word-list 
recall appears even when it is demonstrated that the words have 
been presented with adequate clarity to allow them to be correctly 
identified – albeit with extra effort. This general finding gives rise 
to the following conundrum: why is the process of laying down a 
memory trace of an identified word or sequence of words affected 
by the difficulty of identification? That is to say, once an acousti-
cally degraded word is correctly identified, should it not be as easily 
remembered as any other identified word?

Rabbitt’s “effortful hypothesis” suggests an asymmetric effect 
of masking stimuli: the extra effort needed to identify masked 
stimuli detracts from resources needed to store the memory of 
prior clear stimuli, but does not affect a subject’s ability to identify 

Introduction
Hearing impairment, even when mild, can cause an individual to 
miss critical words in everyday conversation or, in memory experi-
ments, when asked to recall lists of spoken words. Although our 
focus is on effects of reduced hearing acuity this will be true as well 
for words partially masked by background noise. Just over 40 years 
ago, however, Rabbitt (1968) pointed to an additional factor attend-
ant to memory in the presence of a degraded input. In a study of 
memory for short lists of eight spoken digits he found that when 
the final four digits in the to-be-recalled list were made difficult to 
recognize by presenting them masked by background noise, recall 
was adversely affected both for these stimuli as well as for the first 
four digits of the same memory set that were heard without back-
ground masking. Rabbitt suggested that the extra effort needed 
to identify degraded speech, whether due to noise masking or to 
poor hearing, draws resources that might otherwise be deployed 
for rehearsal or other mechanisms attendant to effective encoding 
of the materials in memory (Rabbitt, 1968, 1991).

Behavioral Data
The negative effect on word recall when stimulus words are made 
difficult to identify due to acoustic masking of the speech, or 
because of naturally-occurring hearing loss, has taken its place as 
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or remember later clearly presented stimuli. Rabbitt (1968) found 
evidence for such asymmetry in a second context, where he tested 
subjects’ understanding of two successive paragraphs of text that 
were read in one of two alternations of masked and clear condi-
tions. In such a context, he found that a second masked paragraph 
reduced subjects’ ability to recall a preceding clear paragraph, but 
a first masked paragraph did not affect subjects’ ability to recall a 
following clear paragraph.

Accounting for the negative effect of a weak sensory stimu-
lus on subsequent recall in terms of front-end perceptual effort 
and memory encoding competing for a single pool of limited 
resources (Schneider and Pichora-Fuller, 2000; Pichora-Fuller, 
2003; Wingfield et al., 2005) can be seen as an extension of a general 
resource argument has had long-standing descriptive utility in the 
general memory literature (Craik and Lockhart, 1972; Kahneman, 
1973). In this paper we investigate an alternative account for the 
effect of reduced richness of sensory input on word recall, even 
when the words themselves have been correctly identified. This 
account centers on a transient period of reduced neural activity 
during the added time needed for correct word identification in 
response to a weak stimulus relative to a stronger one. We instantiate 
this account using a simplified biophysical model and we imple-
ment simulations for recall of words within a word sequence when 
perceptual identification of a neighboring word is slowed. because 
it is heard in a degraded form (e.g., McCoy et al., 2005).

Our model is based on the conditional response probabilities 
found in data from free recall of serial word lists (Howard and 
Kahana, 1999; Kahana et al., 2002), using simulations correspond-
ing to pairs of words that could be extracted from longer lists. We 
test how the temporal proximity of words during presentation can 
allow recall of one word to promote recall of the following word 
or, in separate simulations, of the preceding word. We assume that 
poorer overall recall is a result of a reduction in the conditional 
response probabilities arising from weakened associations between 
proximal words.

Overview and justification of the model
Our model is based on the following biological assumptions. First, 
an auditory stimulus produces neuronal input that is stronger when 
the stimulus is clearer or in a subject with better hearing acuity. 
This first assumption is key to our model. Second, the input arrives 
at different subsets of cells according to the particular phonemes 
(speech sounds) present in the auditory stimulus. Third, when a 
word is recognized a single, word-specific group of cells maintains 
its activity. Fourth, the synaptic connections between active neurons 
change in accordance with measurements of coactive, connected 
neurons in brain slices.

We model the processes of word identification and word recall 
using a multiple-item decision-making network, comprising 
groups of spiking neurons, each representing a specific word. Cross-
inhibition between groups ensures that once a group is sufficiently 
active it suppresses the neural activity of other groups, enabling 
only a single auditory percept at a time. Such a network configura-
tion is known as a “winner-takes-all” network and has been used 
in models of both decision-making (Wang, 2001, 2002; Wong and 
Wang, 2006) and perception (Moreno-Bote et al., 2007). The sin-
gle group of cells that ends up with high activity determines the 

identity of the perceived word in our model. Thus this model differs 
from other models of a similar task of sequential recall based on 
multiple-item memory (Mongillo et al., 2003), in that we simulate 
a circuit whose activity represents only the single perceived item at 
a given time (similar to models of binocular bistability, Moreno-
Bote et al., 2007).

We assume the inputs that reach each group of cells are deter-
mined by how closely the sensory evidence matches the identity of 
the word. Even though we model presentation of just two successive 
stimuli from a word list, each stimulus can partially activate more 
than one group of cells. So to allow for the possibility of incorrect 
identification and incorrect recall, we include groups of cells that 
represent lexical alternatives to the presented words. In the case 
of perceptual identification, one would expect these lexical items 
to be those that share some phonology with the target word, with 
the number of such close neighbors affecting the ease (speed/accu-
racy) of correct identification (Luce and Pisoni, 1998). These are 
represented by the similar words within dashed boxes that create 
subsections of the word recognition network in Figure 1.

If the sensory input is clear, then one word is matched significantly 
above others, so the corresponding group of cells receives consider-
ably greater input than other groups. However, if the sensory input 
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Figure 1 | Schematic representation of network architecture. (Left) 
Winner-takes-all network of Word Groups. Each circle represents a group of 80 
excitatory cells. Cells within a group receive identical input and are connected 
to each other by recurrent excitation. Recurrent excitation is strong enough to 
enable persistent activity among cells representing a single word. Each of the 
two dashed boxes represents a set of four words with phonological similarity 
(e.g., “Bat”, “Bad”, “Mat”, “Mad”). Presentation of one word from the set 
excites, to a degree depending on clarity of the presented word, other words 
in the same set. The two-word sequence consists of a stimulus from Set one 
then from Set two. The winner-takes all character of the word-identification 
network is produced by cross-inhibition between different word groups via 
interneurons (20 inhibitory cells per excitatory pool). The cross-inhibition is 
significantly stronger than weak cross-excitation (not shown) such that after 
presentation of a stimulus only one group of cells – typically the group most 
strongly activated by the stimulus – can remain significantly active. (Right) 
Winner-takes-all network of Context Groups. Symbols have the same meaning 
as for the Word Groups. Self-excitation within Context Groups is present, but 
less strong than for Word Groups, allowing for context to change with time 
while a word can be retained in memory. Seven Context Groups are 
simulated, again, because of cross-inhibition, just one context group is active 
at a time. Coupling between the two winner-takes-all networks of cells 
(“Word” and “Context”) is absent in the first set of simulations 
(Figures 2 and 3) and comprises approximately equally matched weak 
excitatory and weak inhibitory connections in the later simulations based on 
the temporal context model (Figures 4–6). See Figure S1 and Table S1 in 
Supplementary Material for further details of the architecture.
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synapse-specific potentiation, appearing in under 12 s and last-
ing for over a minute. These data match the timescale of typical 
sequence memory tasks, so provide the basis for our standard plas-
ticity mechanism (ASTP). Our rule for ASTP differs from the rule 
for basic STDP in that it is non-linear, requiring both more than a 
single presynaptic spike and more than a single postsynaptic spike 
to produce any change at all (Erickson et al., 2009). Moreover the 
synaptic strengthening is large, able to produce a 40% increase from 
a single protocol with two presynaptic spikes, but rapidly saturates, 
so that once the maximal potentiation possible from a single pair-
ing is reached, subsequent pairings of spikes produce no further 
change in synaptic efficacy. Finally, the mechanism only produces 
potentiation, but since the potentiation decays over minutes it does 
not disrupt the long-term stability of a network.

It is worth noting that our model of recall requires the strength 
of short-term plasticity (STP) to increase with firing rate of both 
presynaptic and postsynaptic cells – and hence be associative. 
STP based only on presynaptic spiking (as is the case for synap-
tic facilitation, Mongillo et al., 2008) cannot produce the prefer-
ential recall of successive stimuli observed behaviorally, since a 
strengthening of connections from one cell to all of its postsynaptic 
partners would provide no preference to those that had fired in 
temporal proximity.

The Temporal Context Model in Free Recall
The temporal context model (TCM) (Howard and Kahana, 1999, 
2002; Sederberg et al., 2008), formulated by Kahana and Howard, 
was designed to explain the results of a wide range of serial and free 
recall memory tasks (Golomb et al., 2008) and has been shown to 
generalize to older as well as younger adults (Kahana et al., 2002; 
Wingfield and Kahana, 2002; Howard et al., 2006; Zaromb et al., 
2006). The main suggestion is that the memory items stored in 
the brain are linked to a memory of the context at the time when 
an item was presented so that recall of a word promotes recall of 
the context and vice versa. While context is altered by presentation 
of items, unlike traditional associative learning models (Crowder, 
1976; Mongillo et al., 2003) the model assumes no direct link from 
one memory item to the other. Rather, the item most likely to be 
recalled is the one whose study context is most correlated with 
the current context. Within TCM, context is assumed to evolve 
gradually over time, so that words presented closer together in 
time have a similar context and are more likely to promote each 
others recall than words separated by a wider time window. More 
recently, Howard et al. have demonstrated the role of context as 
opposed to pure temporal contiguity in the formation of prefer-
ential associations between memory items (Howard et al., 2009), 
lending further support to TCM.

To date, the widely successful implementations of TCM have 
relied on vectors and their scalar products to denote mental activ-
ity and overlap of context states. We attempt here to address the 
biological underpinnings of TCM, thus in our model, we assume 
that the firing of a certain subset of neurons comprises the neu-
ral representation of context. Therefore, in this paper, context 
simply means ongoing neural activity among cells connected 
with those cells active during auditory perception of words. We 
test how easily recall of specific words produces a recall of the 
context present during initial word presentation and how easily 

is less clear, the input received by different groups of neurons is less 
differentiated, leading to the following three consequences. First, 
errors are more likely, as stochastic fluctuations can result in a group 
of neurons with lower sensory input becoming more active and sup-
pressing other groups, even the group representing the actual stimulus 
and receiving greater sensory input. Second, the “winning” pool repre-
senting stimulus identification reaches its stable activation level more 
slowly, because of its weaker direct drive and greater competition from 
the other partially activated neuronal pools. We test whether such a 
slowing of the identification process for poorer stimuli (Lisper et al., 
1972) contributes to a diminished association between such stimuli 
and other items in memory, thus reducing their ability to be recalled. 
Third, before settling at a stable activation level following stimulus 
offset, a stronger stimulus can produce a transient peak in neural 
activity, whose absence during a weak stimulus may also diminish 
the formation of associations necessary for correct recall.

Memory formation through synaptic plasticity
We base our model on spiking neurons, since spikes reflect the main 
method of information transmission of neurons and since in vitro 
experimental measurements of the neural underpinnings of mem-
ory, namely long-term potentiation (LTP) and long-term depression 
(LTD) of synaptic strengths, can be ascribed to the temporal correla-
tions of spiking activity in connected cells (Markram et al., 1997; Bi 
and Poo, 1998, 2001). Models that take into account such temporal 
correlations fall under the umbrella of spike-timing‑dependent syn-
aptic plasticity (STDP) (Markram et al., 1997; Bi and Poo, 1998; 
Song et  al., 2000; Song and Abbott, 2001; Pfister and Gerstner, 
2006). STDP has been established in vitro as a means of chang-
ing the strengths of connections (Sjostrom et al., 2001) between 
neurons, so is hypothesized to play a role in memory formation 
(Letzkus et  al., 2007) in vivo. STDP is Hebbian (Hebb, 1949) in 
nature (both associative and reinforcing temporal causality) so that 
when spikes of one neuron precede the spikes of another, the ten-
dency is to increase the strength of connection from the first neuron 
to the second. Empirical models of STDP have evolved over the 
years, moving beyond the attribution of plasticity to a single spike 
in each cell (Song et al., 2000; Song and Abbott, 2001), to include 
triplet terms (Pfister and Gerstner, 2006) that better fit the changes 
in synaptic efficacy observed in vitro when triplets and quadruplets 
of spikes are used in the stimulation protocol (Sjostrom et al., 2001; 
Sjostrom and Nelson, 2002). Importantly, the modified triplet rule 
produces a rate-dependence for plasticity in accordance with the 
Bienenstock–Cooper–Munroe rule (Bienenstock et al., 1982), such 
that uncorrelated presynaptic spikes correlated with high postsyn-
aptic activity produce potentiation, but those correlated with low 
postsynaptic activity produce depression. In this paper, we test the 
effect on our network of two such triplet rules for STDP, in com-
parison with standard, or basic STDP.

In contrast to the vast literature on associative LTP, there are 
relatively few studies of associative short-term plasticity (ASTP) 
(but see Malenka, 1991; Castro-Alamancos and Connors, 1996; 
Brenowitz and Regehr, 2005; Rosanova and Ulrich, 2005; Rebola 
et al., 2007; Fujisawa et al., 2008; Heifets et al., 2008; Kano et al., 
2009; Sun et al., 2009). Recent measurements in hippocampal slices 
by the group of Lisman (Erickson et al., 2009), demonstrate that 
a weak associative stimulation protocol produces rapid, strong 
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While memory storage may be distributed across multiple cells 
in a manner such that many cells participate in multiple memories, 
one can think of the cells we explicitly model as those whose activ-
ity distinguishes the competing possible words. To take a specific 
example, we consider four pools of neurons explicitly, neurons in 
each pool only active to one of the four words “bat”, “bad”, “mat”, 
“mad”. If the stimulus input is clear, corresponding to a listener 
with good hearing, we assume (in our first model network) the 
relative level of input to these cell groups respectively as: 1, 0.05, 
0.05, 0.05 during stimulus presentation. The assumption of a rela-
tive input of 0.05 to other populations is arbitrary, and the results 
are mostly independent of this assumption, at least in the range 
0–0.5. Whereas if the stimulus input is unclear, corresponding to a 
subject with impaired hearing, we assume relative levels of input of: 
0.35, 0.3, 0.3, 0.3. Again, the exact values are arbitrary, but chosen 
under the assumption that cross-inhibition maintains a relatively 
constant total input, but one that is more dispersed across cells. In 
both scenarios, the cell group corresponding to the correct word 
(in this case “bat”) receives greater input, enough for correct word 
identification (see Figure 2), but the distinction between correct 
and incorrect words at the input level is weaker for the hearing-
impaired subject.

All groups of neurons contain predominantly excitatory con-
nections within the group, such that self-excitation can amplify any 
stimulus input and produce a short-term memory of it through 
persistent activity. Cross-connections between groups are both exci-
tatory and inhibitory, but dominated by inhibition so that only one 
group can be fully active at a time. See Supplementary Material for 
the specific connections strengths.

Cells in context groups are weakly, sparsely and randomly con-
nected with cells in the word-identification groups. Plastic exci-
tatory connections between context and word-representing cells 
are necessary so that activation of a group in one WTA network 
can promote preferential activation of a group in the other WTA 
network during recall.

Protocol
The protocol for the simulations comprises three stages. In the first, 
“stimulus stage” inputs to the cells in the network are activated to 
represent auditory input. Inputs are designed to cause the cells in 
the network to fire at a few tens of Hz (see Figure 2), but represent 
activation of many cells outside the network (we assume 200 cells 
producing uncorrelated inputs of 45 Hz for maximal input strength, 
but obtained identical results when assuming 20% of that total 
input rate – 100 cells at 18 Hz – through synapses with conductance 
five times larger). In all cases these inputs cause successive activa-
tion of two pools of cells in the network, representing a sequence 
of two words (assumed to be within a longer list). In our subset of 
simulations based on the TCM, in addition, a single “context” pool 
of cells is activated to overlap temporally with the word stimuli.

In the second stage we calculate all of the changes in synaptic 
strength that arise in the first stage and update the network’s con-
nections accordingly.

In the final, “recall stage” we activate just one pool of cells in the 
updated network and observe the ensuing network activity – that is, 
we see that given one word is recalled, how likely is a neighboring 
word to be recalled. Except where stated otherwise in our results, 

the recalled context can promote recall of prior or subsequent 
words. The key difference in connectivity between word-specific 
neurons and neurons representing context is a reduction in cross-
inhibition, because while perception of one word should suppress 
perception of all other words, it does not suppress contextual 
activity.

We assess whether our model must include such a separate net-
work of context cells, whose activity is not suppressed during word 
identification, in order to match the following three experimental 
findings:

(1)	 Weaker inputs (i.e., noise masking, hearing loss) lead to dimi-
nished probability of recall (McCoy et al., 2005);

(2)	 Recall is possible in reverse as well as forward order (Kahana, 
1996; Howard and Kahana, 1999; Kahana et al., 2002; Kahana 
and Howard, 2005);

(3)	 Slowing the presentation rate of stimuli increases recall pro-
bability (Riggs et al., 1993; Wingfield et al., 1999).

Simulating memory recall
During recall, we activate one group of neurons representing one 
word that is already recalled, but do not provide any preferential 
stimulus (just a small global drive representing a general attempt 
to recall a word) to the neurons representing other words to be 
recalled. We rely on the stronger connections produced by synap-
tic plasticity to enable the active group to preferentially excite the 
desired pool of neurons. Once a subsequent group of neurons is 
activated by the internal network dynamics, we assume recall of 
the word represented by such neural activity. Thus we expect in 
control cases of strong stimuli, that activity of a neuronal group 
representing the correctly identified word should reliably follow 
activation of the neuronal group representing either the previous 
word or the following word from the prior sequence.

In the model with context groups, activation of one of the pre-
sented words should produce activity in the particular group of con-
text cells that was active during the prior presentation. If there was 
insufficient synaptic plasticity, the connections to context cells could 
remain too indiscriminate to provoke significantly greater activity in 
the desired context pool and a random context pool could become 
active. Thus our network has the possibilities of retrieval of correct 
context, or incorrect context, or no retrieval of context upon word 
activation. Retrieval of correct context is a necessary link in a two-step 
process for above-chance recall of the other presented word.

Materials and Methods
Network Structure
In Figure 1, we schematically depict two winner-takes-all (WTA) net-
works, one for word recognition and one for context. In the figure, 
each circle represents a group of 100 cells that can be persistently 
active following stimulus offset. (100 was chosen for sufficient sta-
bility, without being computationally over-demanding nor reducing 
the network variability to levels below that due to noise correlations 
in the brain, Zohary et al., 1994). Cross-inhibition provided by the 
interneurons (at the center of each network) prevents more than one 
such group of cells in each network from maintaining activity in the 
absence of any external stimulus – this is the definition of winner-takes 
all, implementing our assumption of a single percept at a time.
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input in the model via a change in the relevant gating variable, s
i
, 

which increases immediately following a spike by the cell labeled 
i according to s s si i i + −α( )1 where α is the fraction of closed 
channels that open following a spike, and decays as ds

i
/dt = −s

i
/τ

s
 

between spikes.
Spike rate adaptation is included (Dayan and Abbott, 2001) 

in the final term of Eq. 1 as a potassium current (with reversal 
potential V

K
) whose conductance has a maximal value of 

gSRA and which increases by a small fraction of its maximum 
s s si i i

SRA SRA SRA SRA
 + −α ( )1  following a spike in cell i and decay-

ing between spikes according to ds dt si i
SRA SRA

SRA/ / .= − τ
All equations were solved with C++ code, running on Intel proc-

essors, using the 2nd Order Runge–Kutta method with a time-step 
of 0.1  ms and linear interpolation of threshold crossing by the 
membrane potential, to produce spike times and with random 
numbers generated via the Mersenne Twister algorithm.

Plasticity Rules
We test the effects of three different plasticity rules, which we name 
ASTP, basic STDP (B-STDP) and triplet-STDP (3-STDP). Results 
presented in figures and summarized in the main text are produced 
with ASTP unless stated otherwise.

ASTP
Based on recent hippocampal slice data, we assume an increase in 
synaptic strength by up to a maximum of 40% given the concur-
rence of two presynaptic spikes with three postsynaptic spikes. We 
require the second presynaptic spike to precede the third postsyn-
aptic spike, and given these conditions set up Gaussian temporal 
decays in the amount of plasticity, to ensure tight co-occurrence. 
Specifically, we change the synaptic weight by a fraction, ∆W

ASTP
, 

given by:
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0
 = 0.4, τ+ = 30 ms, τ
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 = 30 ms, τ
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 = 30 ms, t i

pre is the 
time of the i-th presynaptic spike and t j

post is the time of the j-th 
postsynaptic spike.

Since the precise form of the temporal window is not yet known 
(Erickson et al., 2009) and a Gaussian temporal dependency may be 
hard to justify biophysically, we also ran the simulations for ASTP 
based on exponential decays with a threshold. In the alternative 
ASTP rule, which produces the nearly identical results presented 
in Supplementary Material, we use:
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to simulate the desire for recall, we add a small, constant input 
to all inactive groups of cells that represent words. Without such 
extra input to encourage recall, our network either produces active 
words spontaneously and randomly (in fact in our standard net-
work words can become spontaneously active without a stimulus) 
or recall becomes impossible. The constant input plays no role in 
determining which inactive pool becomes the next one activated, 
but does play a temporal role, allowing activation of a pool of cells 
representing a word to occur at the time when a subject attempts 
to recall a word. During recall, no input is provided to any context 
cells: any activation of context cells must be produced purely by 
activity in the activated word-identification cells.

In order to produce a probability of recall, for each set of param-
eters we produce 20 separate independent simulations (instantia-
tions) with different random number seeds. We considered 20 
as a number sufficient to demonstrate any differences between 
parameter sets without being so costly as to restrict the numbers 
of independent parameters we could test. One can think of the 20 
separate instantiations as 20 separate pairs of words within lists 
provided for recall, or equally, as 20 separate matched subjects 
presented the same words (since our simulations cannot differenti-
ate the two cases).

Single Neuron Model
We model neurons with the simplest possible of spiking models, the 
leaky integrate-and-fire model. Since synaptic plasticity depends on 
spike times (Bi and Poo, 1998; Sjostrom et al., 2001; Nelson et al., 
2002), we require a level of realism that includes neural spikes, but 
since our model is rather general – for example, we do not know 
exactly in which neurons and in what activity pattern contextual 
information resides – generation of more sophisticated models of 
a particular neuronal class is unwarranted at present.

The basic equation for the membrane potential V
i
 of a leaky 

integrate-and-fire neuron labeled i follows (Tuckwell, 1988):

C
dV

dt
g V V g s V V

g s V V g s

m
i

L i L j
E

j i Ej

k
I

k i Ik i

= − −( ) − −

− −( ) −
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∑

( )
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(1)

where C
m
 is the membrane capacitance, g

L
 is the leak conductance, 

and reversal potentials for the leak current, excitatory inputs and 
inhibitory inputs respectively are V

L
, V

E
 and V

I
. Maximal conduct-

ances of inputs from other excitatory cells labeled j are g j
E  and from 

inhibitory cells labeled k are gk
I , while the fractions of channels 

open by inputs from these cells are given by s
j
 and s

k
 respectively. 

When the membrane potential reaches a threshold, V
T
, the cell fires 

a spike at that time and the membrane potential is reset to a lower 
level, V

R
 and held there for a refractory period, τ

R
.

The model neurons receive excitatory and inhibitory inputs, both 
from other cells connected to them which are explicitly modeled 
within the model network and from external cells, whose firing is 
modeled as a random Poisson process giving feedforward input. 
The feedforward input arrives from a set of neurons with a con-
stant rate, producing a low rate of noisy spontaneous activity in the 
modeled neurons, and from sets of cells with stimulus-dependent 
rates, causing higher activity in stimulus-dependent subgroups of 
cells within the network. Action potentials from other cells produce 
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parameter sets could be statistically significant (typically a 30% 
change in recall probability was significant at P < 0.05, two-tailed 
Binomial test) – whereas increasing the number further, while 
slightly improving our estimate of recall probability, would be 
too computationally taxing to allow us to test more than a few 
parameter sets.

Single winner-takes-all network for word identification 
and recall
In Figure  2, we see that the persistent firing rate of neurons 
representing the last word following a weak stimulus is no less 
than that following a strong stimulus (in fact rate is slightly 
higher following a weak stimulus as there is less prior adap-
tation and synaptic depression to suppress firing rates). Such 
persistent activity post-stimulus presentation on 20 of 20 tri-
als represents active memory arising from identification of the 
stimulus, whether it was weak (Figure 2E) or strong (Figure 2B). 
However, during the strong stimulus presentation, the firing 
rate of the active cells increases much more rapidly and to a 
significantly higher peak (compare Figure  2B to Figure  2E). 
For the weaker stimulus, both the delayed rise to peak and the 
reduced magnitude of peak firing rate could result in a reduced 
amount of synaptic potentiation between cells active during the 
stimulus and those active prior to the stimulus. Upon closer 
examination, we find that when the weak stimulus leads to a 
slow rise in activity for the second word, the first word remains 
active for longer, leading to little change in the overall overlap of 
activity between the successive words (Figure 2E). In both cases 
the neural activity during stimulus presentation produces suf-
ficient synaptic plasticity that on reactivation of the first word, 
the second word is recalled in all 20 random instantiations of 
the process (Figures 2D,F).

To test whether the network can produce recall in reverse order, 
we reactivate the second word and provide non-specific excitation 
to all other words (dummy words and the first word). We find no 
preferential reactivation of the first word following strong prior 
stimuli (Figure 3A) and somewhat unexpectedly, slightly better 
recall following weak prior stimuli (Figure 3B). For other plastic-
ity mechanisms which, unlike associative STP, include a window 
for synaptic depression, synapses from the second to first word 
are weakened (Figure 3C), reducing probability of reverse recall 
to below chance (Figure 3D).

Forward and reverse recall via reactivation of context
If a separate group of context cells is active during the period 
of stimulation of the two words (Figures  4A,B) then upon 
subsequent reactivation of either of the words, the context 
cells can themselves become reactivated. The reactivation of 
the context cells promotes activity of the cells representing the 
other word, producing either forward recall (Figures  4C,D) 
or reverse recall (Figures  4E,F) with a success rate of 100% 
given sufficient initial stimulation intensity and with associa-
tive STP to modify the synapses. The ability of a separate pool 
of context cells to promote reliable reverse recall, that is not 
achievable in a single winner-take-all network, is in agreement 
with expectations based on the TCM for word retrieval (Howard 
and Kahana, 1999).

with τ+ = 20 ms, τ
pre

 = τ
post

 = 20 ms for t
post

 − t
pre

 > 0 and no contri-
bution for t

post
 − t

pre
 < 0.

In line with the in vitro measurements of excitatory postsynaptic 
potentials (Erickson et al., 2009) the maximum increase across the 
trial using ASTP is given by A

0
 = 0.4 – that is, once synapses are 

strengthened by 40%, no further strengthening is possible.

Basic STDP
We implement STDP using standard methods (Capocchi et  al., 
1992; Song et al., 2000; Dayan and Abbott, 2001; Song and Abbott, 
2001), assuming an exponential window for potentiation follow-
ing a presynaptic spike at time t

pre
 and for depression following a 

postsynaptic spike at time t
post

, so that the change in connection 
strength, ∆W, follows:

∆W = A+exp[(t
post

 − t
pre

)/τ+] if t
post

 − t
pre

 > 0 and 
∆W = A−exp[(t

post
 − t

pre
)/τ−] if t

post
 − t

pre
 < 0.

Basic STDP produces changes in synaptic weight whose sign 
depends only on the relative order of spikes, thus only on the rela-
tive order and direction of changes in rate, not on the absolute 
value of the rate.

Triplet-STDP
Given many in vitro experiments, which show that a high rate of 
postsynaptic firing produces potentiation, while a low rate of post-
synaptic firing is more likely to produce depression (Dudek and 
Bear, 1993; Kirkwood and Bear, 1995), we also ran our simulations 
with a separate model of plasticity, produced by Pfister and Gerstner 
(2006), which better accounts for the measured rate-dependence 
of synaptic plasticity (Sjostrom et al., 2001). Their model includes 
triplet terms, so that recent postsynaptic spikes boost the amount 
of potentiation during a “pre-before-post” pairing, while recent 
presynaptic spikes boost the amount of depression during a “post-
before-pre” pairing. Specifically when t

post
 − t

pre
 > 0,

∆W t t A A t t y
j

PG pre post j post= −( )  + −( ) 

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 < 0,
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
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.

We use the two sets of values for parameters given by the full 
“all-to-all” model fitted to cortical data, and by the minimal model 
fitted to hippocampal data, as described in the paper by Pfister 
and Gerstner (2006), and reproduced here in the Supplementary 
Material.

Results
Our results are based on 20 separate instantiations, produced by 
simulation of the complete process of word presentation, synaptic 
plasticity, and test of word retrieval, for each set of parameters. 
These separate instantiations allowed us to produce a measure of 
recall probability, as would be found behaviorally via multiple word 
sequences and subjects. We chose a number of 20 instantiations 
per parameter set as sufficient that differences in results across 
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reactivation of the second stimulus, only 50% of instantiations (10 out 
of 20 simulations) produced recall of the first stimulus. Rather, non-
specific excitation to word pools caused other lexical alternatives, which 
had received no prior input, to become activated (Figures 5D–F). Thus 
for both forward and reverse recall, the weak stimuli had no effect on 
the post-stimulus activity that corresponds to item identification, but 
recall ability was significantly reduced (P < 0.001).

Earlier behavioral experiments (Rabbitt, 1968, 1991; McCoy 
et  al., 2005) have suggested that low stimulus quality can det-
rimentally affect the recall of preceding stimuli of good quality 

Stimulus strength affects recall probability in a model with 
contextual cells
The question that motivated this work was whether weaker stimuli 
would produce worse recall, even if the stimuli were sufficient for their 
identification. Our test stimuli used to address the question produced 
the same post-stimulus activity, as did the strong stimuli (compare 
dark to thin, light traces in Figure 5A), which in our model signi-
fies equivalent ability to identify the sets of stimuli. However, upon 
reactivation of the first stimulus, only 35% of instantiations (7 out 
of 20 simulations) produced recall of the second stimulus and upon 

Figure 2 | Forward recall via coupling between “word” populations. 
(A) Spike rasters during a single example of presentation of two stimuli. Each row 
contains the spikes of a single cell. The double-headed arrows indicate 
presentation of each word (via afferent Poisson input), which produces activity in a 
specific population that persists following stimulus offset. (B) Average firing rates 
of the populations of cells successively stimulated (blue = “BAT”, red = “DIN”) on 
each of 20 different random instantiations. (C) Spike rasters during a single 
instantiation demonstrating forward recall of the second word (“DIN”) following 
activation of the first word (“BAT”). (D) Average firing rates of the two populations 

across 20 independent random instantiations, demonstrating recall of “DIN” 
following activation of “BAT”. Gray solid bar indicates time period when first word 
is activated. (E) Protocol of weaker stimulation produces weaker and delayed initial 
activity (dark blue and red traces) compared to control (light cyan and orange 
traces). Twenty random instantiations of the weaker stimulation protocol produce 
identical final activity to controls, signifying equivalent levels of word recognition. 
(F) Average firing rates of the two populations with prior weak stimulation, 
following reactivation of the first word. Recall probability is reduced from 100% 
control to 75% of instantiations (15 out of 20 simulations).
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results hold for both forward and reverse recall, suggesting that a 
degraded stimulus (e.g., from noise masking or degraded hearing) 
would impair the recall of not only the prior word in a list, but 
also the following word.

Figures  7 and 8 summarize these results across all four 
plasticity mechanisms. Basic STDP was too weak to produce 
anything other than chance recall within our model. Both of 
the triplet-STDP mechanisms depend more on postsynaptic 
activity than presynaptic activity to produce potentiation. Thus 
connections from a weakly activated group of word cells to a 
normally activated group of context cells were often sufficiently 
strengthened for near-normal recall of the strong stimulus. 
So, in particular, the effect already seen in behavioral studies, 
that a weak stimulus can reduce recall probability of prior, 
strong stimuli, is difficult to observe if the main plasticity 
mechanism is either cortical or hippocampal triplet-STDP 
(Figure 8, reverse recall, compare SW protocol to SS protocol). 
However, following associative STP, which lasts over a times-
cale of minutes, such masking of strong stimuli is apparent 
in our model.

(though not the reverse effect to date). In our model we tested 
for such an effect on a short timescale by setting the initial two 
stimuli to be either weak then strong (Figure 6A) or strong then 
weak (Figure 6D). Using associative STP, in both protocols, the 
cells activated by the weak stimulus had less synaptic strengthen-
ing with the context cells. The reduced plasticity for the weak 
then strong stimulus protocol was both from first word cells to 
context cells and from context cells to first word cells (Figure 7). 
Similarly, when the protocol was strong then weak, the reduced 
plasticity was both from second word to context cells and context 
cells to second word cells (Figure 7). Thus having either one of 
the two stimuli being weak led to a reduced synaptic strengthen-
ing in one set of connections needed for recall. The diminished 
synaptic strengthening led to a reduction in recall probability of 
the word that had been weakly presented, because activation of 
the correct context cells was less likely to evoke activity of the 
cells associated with the weak stimulus. Moreover, the converse is 
true. Reactivation of a word that had been weakly presented was 
less likely to evoke the reactivation of context cells necessary for 
preferential recall of the other, strongly presented, word. These 

Figure 3 | Impossibility of reverse recall via connections between word 
populations. (A) 20 separate instantiations of the memory protocol, with 
activation of the second word produce chance recall of other words (3 out of 20 
instantiations). In the unsuccessful examples, pools that did not receive prior 
input become activated by chance during recall. (B) Reverse recall is slightly 
greater than chance following weak inputs, where temporal overlap of activity is 
greater. (C) Comparison of changes in mean synaptic weight as a fraction of 

original synaptic strength between two word pools receiving successive input, 
as a function of input strength and plasticity mechanism. W1 = first word; 
W2 = second word. Prior stimuli were either both strong (SS) or both weak 
(WW). Top row = associative short-term plasticity; second row = basic STDP; 
third row = triplet-STDP with cortical parameters; bottom row = triplet-STDP 
with hippocampal parameters. (D) Number of correct recalls as a function of 
prior input strength and plasticity mechanism. Row and column labels as in (C).



Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 14  |  9

Miller and Wingfield	 Neural model of sequential memory

more often lost from memory when word frequency increases. 
We tested whether such an effect could be seen in our model 
networks.

Indeed, when context groups are present, any increase in the 
interval between words increases the overlap between activity 
representing the prior word and activity representing the context 
(unless the context changes). The increase in temporal overlap 

Timing of Stimulus Presentation
For those with poor hearing, reducing the rate of word pres-
entation, for example by increasing the delay between words, 
can lead to better comprehension and better word recall (Stine 
et al., 1986; Riggs et al., 1993; Wingfield et al., 2006; Grimley, 
2007). Conversely, reducing the time between words reduces 
intelligibility of passages, as would be expected if prior words are 

Figure 4 | Forward and reverse recall in the temporal context model.  
(A, C, E) Spike rasters in a single instantiation, each row depicting the spikes of a 
single cell. (B, D, F) Population-averaged activity in each of 20 instantiations for the 
three populations stimulated in the protocol. Green = context population (“C1”), 
blue = first word population (“BAT”), red = second word population (“DIN”).  
(A, B) Initial stimulation protocol. The two word populations are activated at the 
times indicted and persist in their activity following stimulus offset. The context 

group is activated prior to the first word activation until 100 ms following the end of 
second word activation. (C, D) Forward recall. The first word, (“BAT”) is reactivated. 
Activity in the context pool (“C1”) is retrieved without external input. Non-specific 
excitation to all other word populations produces a recall of the second word 
(“DIN”). (E, F) Reverse recall. The second word (“DIN”) is reactivated. Activity in 
the population of cells retrieves activity in the context pool (“C1”), which upon 
non-specific excitation retrieves activity in the first word population (“BAT”).
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Figure 5 | Diminished forward and reverse recall following weaker prior 
stimuli. (A) Weak stimulation protocol. Bold green, blue and red traces 
represent population-averaged activity of cells representing context (“C1”), first 
word (“BAT”) and second word (“DIN”) respectively. Faint traces in yellow, cyan 
and orange reproduce the traces under a strong stimulus for comparison. Note 
the reduced peak height, but identical final firing rates following weak stimuli. 
(B) Forward recall at 35% success (compare Figure 4D with identical color 
scheme). (C) Reverse recall at 50% success (compare Figure 4F with identical 

color scheme). (D) Set of spike rasters for an example error, where a population, 
which had not received prior stimulation, becomes activated. (E) Average activity 
of populations without prior stimulation (magenta) demonstrate multiple 
examples of error during forward recall (blue and green traces depict activity of 
first word, “BAT”, and context, “C1”, as in (B)). (F) Average activity of populations 
without prior stimulation (magenta) demonstrate multiple examples of error 
during reverse recall (red and green traces depict activity of second word, “DIN”, 
and context, “C1”, as in (C)).

Figure 6 | A single weak stimulus reduces recall probability of preceding 
and following words. (A) Average firing rates of stimulated word populations 
during a protocol of weak then strong stimulation. (Green = context, “C1”; 
blue = first word, “BAT”, red = second word, “DIN”; yellow, cyan, orange faint 
lines are activity of the same populations on all control instantiations). 
(B) Reduced forward recall to 55% (11 out of 20 instantiations) following a 

weak-then-strong protocol. (C) Reduced reverse recall to 65% (13 out of 20 
instantiations) following a weak-then-strong protocol. (D) Color scheme as in 
(A)) but for a protocol of strong then weak stimulation. (E) Reduced forward 
recall to 60% (12 out of 20 instantiations) following a strong-then-weak protocol. 
(F) Reduced reverse recall to 65% (13 out of 20 instantiations) following a 
strong-then-weak protocol.



Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 14  |  11

Miller and Wingfield	 Neural model of sequential memory

Figure 7 | Mean change in synaptic weights between cell groups as a 
function of stimulus strengths and plasticity mechanism. Fractional change in 
synaptic strength is plotted. (Left) Connections needing strengthening for forward 
recall. W1–C1 = first word to context-1. C1–W2 = context-1 to second word. 
(Right) Connections needing strengthening for reverse recall. W2–C1 = second 

word to context-1. C1–W1 = context-1 to first word. Stimulus protocols are both 
strong (SS), weak then strong (WS), strong then weak (SW) or both weak (WW). 
Top row: associative short-term plasticity (ASTP). Second row: basic STDP. Third 
row: triplet-STDP (3-STDP) with parameters from cortical data (Ctx). Fourth row: 
triplet-STDP (3-STDP) with parameters from hippocampal data (HC).

Figure 8 | Number of successful recalls as a function of stimulus strengths 
and plasticity mechanism. Results are plotted from 20 random instantiations of 
each protocol. Stimulus protocols are both strong (SS), weak then strong (WS), 

strong then weak (SW) or both weak (WW). Top row: associative short-term plasticity 
(ASTP). Second row: triplet-STDP (3-STDP) with parameters from cortical data (Ctx). 
Third row: triplet-STDP (3-STDP) with parameters from hippocampal data (HC).

results in more plasticity between the cells (Figure 9) and thus 
greater success at recall (Figure 10). Such a result depends on 
the bistable nature of our word-identification network, which 
serves as a short-term memory of the most recent word identi-
fied. The single item in the short-term memory remains until the 
next item is presented. Throughout this time the corresponding 
neurons fire and synapses between these neurons and neurons 
representing context become further strengthened. If the dura-
tion of coactivity is reduced, less plasticity occurs and recall 
is worsened.

Qualitatively, such a result does not depend on the precise plas-
ticity mechanism, but does depend on the inclusion of coactive 
context cells. In the model with no context cells, altering the time 
between stimulus presentations in the same range (500–1500 ms) 
has no effect on recall probability.

Asymmetry of recall
For human subjects, forward recall is more likely than reverse 
recall, as demonstrated by asymmetry in the conditional 
response probabilities to favor following words over prior 
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ASTP with standard parameters for successive weak stimuli pro-
duced no significant effect on recall direction [P(forward) = 0.50, 
P(reverse) = 0.51]. However, given the asymmetry in connec-
tion changes, we devised an altered training protocol, where we 
reduced input to the contextual group to 3/8 its original level 
and provided input to the word groups at 2/3 the level of the 
strong stimulus. In this paradigm, recall probability is domi-
nated by ability of contextual activity to retrieve appropriate 

words (Howard and Kahana, 1999; Kahana et  al., 2002). For 
our strong simulation protocols, recall is at ceiling in both for-
ward and reverse directions, so we can observe no asymmetry. 
For the protocol with two successive weak stimuli, we produced 
extra simulations (400) to show that when using triplet-STDP 
with the cortical parameters, forward recall is significantly 
more likely than reverse recall [P(forward) = 0.33 > P(reverse)  
= 0.  3, Z = 3.08, P < 0.005, via two-tailed Binomial test]. Using 

Figure 9 | Mean change in synaptic weights between cell groups as 
a function of duration of stimulus presentation and plasticity 
mechanism.Fractional change in synaptic strength is plotted. (Left) 
Connections needing strengthening for forward recall. W1–C1 = first word to 
context-1. C1–W2 = context-1 to second word. (Right) Connections 
needing strengthening for reverse recall. W2–C1 = second word to 
context-1. C1–W1 = context-1 to first word. Stimulus protocols are two weak 

stimuli, with normal duration of other figures, 300 ms stimulus and 
1000 ms between stimulus onsets (N), or 50% reduced interval between 
stimuli (−), or doubled interval between stimuli (+) or doubled interval and 
stimulus duration (++). Top row: associative short-term plasticity (ASTP). 
Second row: basic STDP (B-STDP). Third row: triplet-STDP (3-STDP) with 
parameters from cortical data (Ctx). Fourth row: triplet-STDP (3-STDP) with 
parameters from hippocampal data (HC).

Figure 10 | Number of successful recalls as a function of duration of 
stimulus presentation and plasticity mechanism. Results are plotted from 
20 random instantiations of each plasticity mechanism. Stimulus protocols 
are two weak stimuli, with normal timings used in other figures, 300 ms 
stimulus and 1000 ms between stimulus onsets (N), or 50% reduced interval 

between stimuli (−), or doubled interval between stimuli (+) or doubled 
interval and stimulus duration (++). Top row: associative short-term plasticity 
(ASTP). Second row: triplet-STDP (3-STDP) with parameters from cortical 
data (Ctx). Third row: triplet-STDP (3-STDP) with parameters from 
hippocampal data (HC).
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of the network to a much tighter range than is likely in vivo – 
qualitatively the results were consistent, not only using multi-
ple plasticity protocols, but also across a number of networks, 
including ones where each synapse was selected randomly from 
a Gaussian distribution with standard deviation of 20% its mean 
(see Supplementary Material). It is worth noting that many of the 
shifts in parameters that could prevent our network’s operation, 
do so by producing one or more groups of cells that is either 
always highly active or never active. Presumably homeostatic 
mechanisms such as multiplicative synaptic scaling (Turrigiano 
and Nelson, 2000; Renart et al., 2003) could compensate to pro-
duce a functioning network.

Discussion
We have investigated a model that we believe contains the essential 
biological ingredients necessary for providing the neural under-
pinnings of sequential word identification and recall. The model 
is similar to others of sequential recall (Abbott and Blum, 1996; 
Blum and Abbott, 1996; Mongillo et al., 2003) but differs in the 
requirement of a single active “percept” at a time, which we imple-
ment through cross-inhibition in a winner-takes-all network for 
neurons representing word identity. We based our model on spiking 
neurons, since spikes reflect the main information transmission of 
neurons and measurements of the neural underpinnings of mem-
ory; namely, LTP and LTD, are based on the coincidences of spike 
times between cells. Within such a neurobiological framework, by 
generating simple patterns of neural activity to represent word 
identification, and providing two-word sequences, we were able to 
reproduce several key results found in behavioral data:

(1)	 We found recall in both the forward and reverse directions.
(2)	 Probability of recall depended on the stimulus strength, 

even when weak stimuli produced identical post-stimulus 
activity to strong stimuli as a sign of equivalent stimulus 
identification.

(3)	 A weak stimulus could reduce probability of recall of a prior 
stimulus.

(4)	 Probability of recall increased as a function of delay between 
stimuli on a timescale of 500–1500 ms and with the duration 
of the stimulus.

Moreover, we predict the corollary of result (3), that a weak 
stimulus can reduce the probability of recall of the following stimu-
lus. Such a prediction has yet to be demonstrated behaviorally.

Our model contains many simplifications in order to be tracta-
ble. In particular, some cells in vivo are likely to fire in response to 
recognition of multiple words and the most recent word may not be 
encoded through persistent rapid spiking in an attractor state. Also, 
activity representing temporal context is likely to be continuously 
evolving through multiple groups of cells in multiple locations, 
rather than existing in one cell group before discretely switching 
to another. We expect that our main conclusions do not depend 
on these simplifications so long as the following assumptions hold. 
First, the set of cells with high activity at any time in response to one 
word is significantly different from that in response to any other 
word in a single list. Every single cell need not be different, just 
the set must be unique. Second, activity in many cells representing 
context must evolve slowly compared to the time between stimuli, 

word activity and produces a strong asymmetry for recall in 
the forward direction [P(forward) = 0.52 > P(reverse) = 0.45, 
Z = 1.98, P < 0.05, via two-tailed Binomial test].

In summary, all of the plasticity rules that we studied do contain 
an asymmetry between presynaptic and postsynaptic cells that is 
of the same sign as basic STDP, so favors a strengthening of con-
nections from whichever groups of cells activity peaks earlier to 
the group whose activity peaks later (cf Abbott and Blum, 1996). 
In the limit of no contextual activity, the asymmetry in connection 
strengths is so strong that reverse recall is impossible. In the limit 
of contextual activity that is entirely constant in time, while word 
pools become active then become silent, there can be no asymme-
try in connections to and from context cells. In our simulations, 
there is a strong asymmetry where the second word group becomes 
active, but not inactive, while the context cells remain active. That 
produces stronger connections from context cells to the second 
word group than vice versa. In simulations of lists with many more 
words, the temporal dynamics of activity among context pools will 
be key to the form and asymmetry of the conditional response 
probability curves.

Robustness of Results
Our results are based on simulations of 20 different randomly 
connected sparse networks, each slightly different in the relative 
excitability of different groups of cells. Connectivity parameters 
were constrained by the following requirements. (1) If any group 
of cells is too excitable, it switches on in the absence of input, due 
to noise fluctuations or instability of its spontaneous state. (2) If 
any group of cells is not excitable enough, then its activity drops to 
a spontaneous level immediately following stimulus offset. (3) If 
recurrent connections are too strong, the firing rate upon stimulus 
recognition is so high that following the weakest stimulus needed 
to produce persistent activity, plasticity is similar to that follow-
ing a strong stimulus. This can result in recall at 100% follow-
ing all stimuli able to produce persistent activity. (4) If excitatory 
cross-connections are too weak, then strengthening of those cross-
connections can be insufficient to produce reliable recall. (5) If 
excitatory cross-connections are too strong, many cell groups can 
be coactive during stimulation and the winner-takes-all nature of 
the network is lost.

Requirements (1) and (2) relate to the width of the bistable 
range for groups of cells able to produce persistent activity (Amit 
and Brunel, 1997; Brunel, 2000). The practical range is narrower 
for a small group of cells because noise fluctuations can destabi-
lize both the spontaneous and persistent state (Miller and Wang, 
2006) – simulations with more cells would produce more robust 
results. Requirement (3) further restricts the bistable range, which 
is narrower when the persistent firing rate is lower. Requirements 
(4) and (5) limit the possible cross-connections, but these affect 
the excitability of each cell group, so interact with (1) and (2). 
In particular, the possibility of strong cross-excitation (allowing a 
strong effect of plasticity) combined with strong cross-inhibition 
(to maintain the winner-takes-all property) can require too high 
self-excitation (which is limited by requirement (3).

However, in spite of these requirements – which are compatible 
with cells firing at realistic rates of a few tens of Hz in response 
to preferred stimuli, but at face value restrict the parameters 
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strength (Figure 2F) and could even be more probable following 
weaker stimuli (Figure 3D). Moreover recall in reverse order was 
never reliable (Figure  3) and recall probability did not depend 
on the interval between stimuli (data not shown). We note that 
if all word groups maintained strong persistent activity together 
in memory, as suggested by some models of multi-item memory 
(Lisman and Idiart, 1995; Jensen and Lisman, 1996; Amit et al., 
2003; Mongillo et al., 2003), then coactive context cells would not 
be necessary.

Using similar methods, others have successfully modeled hip-
pocampal place fields and their recall (Abbott and Blum, 1996; 
Blum and Abbott, 1996), with no need for extra temporal context 
cells. An important difference between models of place fields and 
words reflects the logical structure of words as discrete entities 
that are not always connected in the same way with each other, 
whereas location is a continuous quantity and positions have a fixed 
relationship with each other. Thus place fields can overlap and be 
coactive, since presence at a particular position means proximity 
to a neighboring position. For example, if “A” is near “B” and “A” is 
near “C” then “B” and “C” must be near each other and are often 
visited in temporal proximity. However, pairs of words that are 
often close in speech, such as “road” followed by “trip” or “road” 
followed by “rage” do not indicate that “trip” and “rage” would have 
any temporal relationship – in fact they may be exclusive, suggesting 
cross-inhibition in the neural circuitry. Hence, we assume mutual 
inhibition between cells representing different words, in line with 
standard attractor-based models of word recognition (Seidenberg 
and McClelland, 1989; Plaut et al., 1996) and perception (Moreno-
Bote et al., 2007), permitting only a single word to be represented 
actively “in mind” at one time. This formulation omits the structure 
of normal speech, where one word increases the likelihood of com-
mon following words, but does reflect the structure of word lists 
used for multi-item memory, where successive words are completely 
unrelated to each other.

The conditional response probabilities found in behavioral data 
demonstrate the possibility of reverse recall of a series of words 
(Howard and Kahana, 1999; Kahana et  al., 2002). Such reverse 
recall is only possible if the neural activity to be recalled overlaps 
in time during the stimulus presentation. Thus in our models, a 
single winner-takes-all network model for word identification does 
not produce reverse recall. However, inclusion of connections to 
separate coactive cells, our so-called “context” cells, does allow 
reverse recall. As an alternative mechanism, a separate multi-item 
short-term memory store (Lisman and Idiart, 1995; Amit et al., 
2003) could play the role of the context cells of our simulations 
or be the locus of inter-item memory (Mongillo et al., 2003). So 
long as cells representing the two stimuli are coactive for sufficient 
time, the rate-dependent contribution to plasticity – present in all 
plasticity mechanisms described here, except for basic STDP – will 
produce bidirectional strengthening of connections and allow for 
reverse recall. However, it is unclear how the strength of stimulus 
during presentation could impact activity and influence plasticity 
of coactive cells in a short-term memory store.

Prior models of plasticity following overlapping sequential 
activity in hippocampal place cells produced forward (Abbott and 
Blum, 1996; Blum and Abbott, 1996), but not reverse replay of posi-
tion. As well as coactivity, reverse replay also requires a plasticity 

so that contextual activity during one stimulus has significant over-
lap with activity at the time of a prior stimulus. This requirement 
ensures that retrieval of activity in context cells firing at the end 
of an interstimulus interval can produce activity in context cells 
that fired at the beginning of the interstimulus interval (and vice 
versa). In future work we will assess how well different models 
of contextual activity – differentiated by the temporal dynamics 
of context and the nature of couplings to cells involved in word 
identification – reproduce the key characteristics of recall order 
using simulations with more than two words.

We used an empirical model for ASTP based on recent hippoc-
ampal slice data demonstrating that synapses could be enhanced 
in an associative manner – requiring presynaptic and postsynaptic 
correlations – relatively easily and strongly, over a timescale of a 
minute or more. Based on the slice data, our model could produce 
a 40% enhancement of synaptic efficacy with optimal timing of 
two presynaptic and three postsynaptic spikes, but further enhance-
ment beyond 40% could not be achieved and single spikes in each 
cell produced no change. By comparison, averaging multiple spike 
pairings, under the assumption that all pairings with equal time 
intervals contribute equally and sum together to produce the total 
change, has produced models of STDP with no threshold and no 
saturation. Moreover the changes produced by individual spike 
pairs are never greater than 1% (Markram et al., 1997; Bi and Poo, 
1998; Song et al., 2000; Song and Abbott, 2001; Drew and Abbott, 
2006; Pfister and Gerstner, 2006). We found that using such rules 
for STDP with a rate-dependent triplet term (Pfister and Gerstner, 
2006) produced effects qualitatively similar, though weaker than 
those wrought by ASTP. These results may be expected, given the 
large initial strength of ASTP and its decay over minutes, in line with 
findings of reduced recall probabilities on the timescales of the tens 
of minutes of STDP measurements. To highlight the dependence of 
recall probability on the underlying base amplitude for plasticity, we 
also simulated recall using half the strength for ASTP (correspond-
ing to a delay on the order of a minute) and with doubled strength 
for triplet-STDP (since parameters in vivo may differ from those 
in slice). Given such changes, triplet-STDP produces better per-
formance than ASTP. It is noteworthy that, compared to ASTP, the 
triplet-STDP rules more reliably produced a stronger asymmetry – 
diminished reverse recall compared to forward recall, as is observed 
behaviorally (Kahana and Caplan, 2002; Howard et  al., 2009) – 
notably when the preceding stimulus is weak (Figure 8). Thus, if our 
ASTP rule is a good model of plasticity over tens of seconds, while 
triplet-STDP is a better model for timescales larger than minutes, 
we would expect the strength of asymmetry in recall to increase 
with time from the presentation of words.

Basic STDP lacks any of the observed dependence of the sign 
of plasticity on firing rate, so was unable to produce the bidirec-
tional increases in synaptic strength necessary for both forward and 
reverse recall of sequences – in fact reverse recall is below chance 
as STDP depresses the connections, whose activation is necessary 
for reverse recall.

We ran simulations with removal of context cells, to test their 
importance in our model of word recall. In these simulations, the 
overlap of activity of cells representing successive words could 
produce sufficient plasticity to generate later recall (Figure 2D). 
However, such recall was relatively independent of stimulus 
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firing rate. In particular, older adults with age-related reductions 
in hearing acuity are likely to have slower and weaker initial neural 
responses to stimuli and thus less of the synaptic plasticity needed 
for later recall than those with perfect hearing.

Separate “context cells” that can be coactive with cells responsive 
to specific words are essential in our network to produce recall of 
pairs of words in reverse order. Such retrieval of preceding words 
has been observed and characterized in behavioral data using con-
ditional response probabilities (Kahana, 1996; Howard and Kahana, 
1999). Moreover, only by including such context cells, are we able 
to replicate the observed improvement in recall of weak stimuli 
with increased time interval between successive stimuli. Finally, 
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in recall probability as prior stimulus strength is reduced in the 
above-threshold range. Our simulations are limited to a winner-
takes-all network for word identification, in which neural activity 
representing one word suppresses activity representing other words, 
so we can not demonstrate emphatically that serial recall in the brain 
can be only via context. However, taking these three results together, 
our simulations do provide support for the TCM – or a variation of 
it – as a description of memory and recall of word sequences.
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mechanism that favors potentiation over depression when both 
presynaptic and postsynaptic cells are active in a BCM-like man-
ner. Thus, unlike basic STDP, either ASTP or triplet-STDP could 
produce the more recently observed “reverse replay” in such models 
of hippocampal place fields, as they do in our models of word recall 
via temporal context.

Other models of the production and recall of sequences via syn-
aptic plasticity have focused on hippocampal place fields (Abbott 
and Blum, 1996; Blum and Abbott, 1996; Hasselmo, 2008), or 
generation of bird song (Troyer and Doupe, 2000a,b) or other 
motor sequences (Nowotny et al., 2003; Stringer et al., 2003, 2007; 
Grossberg and Pearson, 2008; Yamashita and Tani, 2008). In the lat-
ter two cases, the period of learning contains multiple, often many 
hundreds, of practices of the sequence during which plasticity in 
the network occurs via a reinforcement signal.

Our results allow us to make some behavioral predictions for 
free recall of lists:

(1)	 The asymmetry of conditional response probability curves 
favoring forward-order recall is likely to increase on a time-
scale of minutes, where the ASTP disappears and remaining 
plasticity is via more asymmetric mechanisms such as triplet-
STDP.

(2)	 In the absence of rehearsal, a single masked word will negati-
vely affect free recall of the following as well as the prior word 
in a list.

(3)	 Not only overall recall, but also the conditional recall proba-
bility of a neighboring word given recall of the masked word 
should be reduced in free recall of word lists with a single 
masked word.

These predictions depend on word presentation being at a suf-
ficient rate to prevent rehearsal – if attention to the masked word 
simply disrupts ongoing rehearsal then one expects to reproduce 
Rabbitt’s observations of a temporally asymmetric effect of mask-
ing on prior words.

In summary, we have shown how the dynamics of transient 
spiking activity of neurons in response to a stimulus determines 
the amount of strengthening of connections between neurons rep-
resenting successive stimuli and thus the likelihood of sequential 
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