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(Zang et al., 2004), network homogeneity (Uddin et al., 2008), 
amplitude of low-frequency fluctuations (ALFF) (Zang et al., 
2007), fractional ALFF (Zou et al., 2008) and fractal complexity 
(Wink et al., 2006). In contrast, the other measures the relationship 
between different brain units (i.e., highly coherent spontaneous 
fluctuations or functional connectivity), such as seed-based func-
tional connectivity analysis (Biswal et al., 1995), clustering (Cordes 
et al., 2002) and independent component analysis (ICA) (van de 
Ven et al., 2004). Connectivity-based methods have been widely 
used to detect functionally connected brain networks, including 
motor (Biswal et al., 1995), auditory (Cordes et al., 2001), visual 
(Lowe et al., 1998), language (Hampson et al., 2002), default-mode 
(Greicius et al., 2003), and attention systems (Fox et al., 2006). These 
brain networks have demonstrated high consistency and reproduc-
ibility across subjects and sessions (Damoiseaux et al., 2006; Chen 
et al., 2008a; Meindl et al., 2009; Zuo et al., 2010a), high test–retest 
reliability (Shehzad et al., 2009; Zuo et al., 2010a), high reproduc-
ibility across different analytic approaches (Long et al., 2008; Franco 
et al., 2009) and a striking correspondence to task activation maps 
(Smith et al., 2009). More recently, using novel graph theory-based 
approaches, these identified biologically plausible brain networks 
were found to topologically organize in a non-trivial manner (e.g., 
small-world architecture and modular structure) that support effi-
cient information processing of the brain.

Graph theory-based approaches model the brain as a complex 
network represented graphically by a collection of nodes and 
edges. In the virtual graph, nodes indicate anatomical  elements 

IntroductIon
As a novel, non-invasive way to measure spontaneous neural 
activity in the human brain, resting-state functional magnetic 
resonance imaging (R-fMRI) has attracted considerable atten-
tion (Biswal et al., 1995; Fox and Raichle, 2007). R-fMRI measures 
the endogenous or spontaneous brain activity as low-frequency 
fluctuations in blood oxygen level-dependent (BOLD) signals. 
This low-frequency fluctuation phenomenon is vital for a better 
understanding of human brain function because extremely dis-
proportionate energy consumption appears within the regions 
showing high resting metabolisms (Raichle et al., 2001; Raichle, 
2006). Beginning with a seminal demonstration of highly coherent 
low-frequency fluctuations within the brain motor system (Biswal 
et al., 1995), R-fMRI has been extensively used to investigate nor-
mal brain function (Greicius et al., 2003; Beckmann et al., 2005; 
Fox et al., 2005; Margulies et al., 2007; Di Martino et al., 2008; Roy 
et al., 2009; Smith et al., 2009; Yan et al., 2009b), trait variability 
and behavioral characteristics (Hampson et al., 2006; Fox et al., 
2007; Hesselmann et al., 2008; Kelly et al., 2008; Di Martino et al., 
2009; Yan et al., 2009a), as well as various clinical populations (for 
reviews, see Greicius, 2008; Broyd et al., 2009; Zhang and Raichle, 
2010). To date, many R-fMRI methods have been developed to 
explore the nature of resting-state brain.

Currently, there are two main types of R-fMRI methods used 
to characterize spontaneous brain activity. One measures specific 
regional characteristics of R-fMRI signals within a brain region 
(e.g., voxels or parcellation units), such as regional homogeneity 
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(e.g., brain regions), and edges represent the relationships between 
nodes (e.g., connectivity). After the network modeling procedure, 
various graph theoretical metrics can be used to investigate the 
organizational mechanism underlying the relevant networks. In 
contrast to those widely used R-fMRI analytic methods (e.g., 
ALFF, seed-based functional connectivity and ICA), the graph-
based network analyses allow us not only to visualize the overall 
connectivity pattern among all the elements of the brain (e.g., 
brain regions) but also to quantitatively characterize the global 
organization. In addition, this approach also gives insight into the 
topological reconfiguration of the brain in response to external 
task modulation (Eguiluz et al., 2005; Pachou et al., 2008; Bassett 
et al., 2009; Micheloyannis et al., 2009; Wang et al., 2010) or 
pathological attacks (for reviews, see Bassett and Bullmore, 2009 
and He et al., 2009a). Moreover, it provides a vital framework 
to elucidate the relationship between brain structure and func-
tion (Honey et al., 2010). Both structural and functional brain 
networks have been demonstrated to organize intrinsically as 
highly modular small-world architectures capable of efficiently 
transferring information at a low wiring cost as well as formatting 
highly connected hub regions (Salvador et al., 2005; Achard et al., 
2007; He et al., 2007, 2009b; Chen et al., 2008b; Hagmann et al., 
2008; Gong et al., 2009a). Furthermore, the utility of graph-based 
techniques has been proven by an increasing number of studies 
to probe potential mechanisms involved in normal development 
(Fair et al., 2007, 2008, 2009; Supekar et al., 2009), aging (Achard 
and Bullmore, 2007; Gong et al., 2009b; Meunier et al., 2009a; 
Micheloyannis et al., 2009; Wang et al., 2010), and various brain 
disorders (Stam et al., 2007; He et al., 2008, 2009c; Liu et al., 
2008; Supekar et al., 2009; Wang et al., 2009b; Buckner et al., 
2009). Given the lack of relevant reviews that focus exclusively on 
graph-based brain network research using R-fMRI, the purpose 
of the present review is to increase multi-discipline apprecia-
tion and cooperation on this burgeoning field. In addition, this 
work provides the opportunity to revolutionize our view of brain 
organization and function by re-examining the progress made 
in this field.

In this review, we will summarize the recent progress made in 
the study of functional brain networks constructed by intrinsic 
brain activity measured by R-fMRI. The paper is organized to three 
main sections. First, some basic concepts regarding brain connectiv-
ity and graph theoretical approaches are introduced, along with a 
review of recent graph-based work on revealing the normal topo-
logical architecture and underlying organization of functional brain 
networks. Then, we survey various R-fMRI applications of graph-
based approaches to uncover changes in the network properties of 
brain development, aging and disorders. Finally, we highlight some 
technical challenges and future directions in this rapidly emerging 
research area.

BasIc conceptIons
BraIn connectIvIty networks
A network is a collection of nodes and edges, where nodes indi-
cate basic elements within the system of interest and edges indi-
cate the associations among those elements. An accurate method 
for defining the most essential elements of a network (i.e., nodes 
and edges) is vital for network construction. Specifically, for brain 

networks, they can be described at different spatial levels, such as 
microscale, mesoscale, and macroscale or large-scale (Sporns et al., 
2005). Given technical limitations and computational demand, 
most current studies focus on the macroscale or large-scale brain 
networks. In this review, we will also concentrate on the macroscale 
brain networks.

In a macroscale brain network, nodes can be defined as EEG 
electrodes, MEG channels, or regions of interest (ROI) derived 
from anatomical atlases in MRI. After the definition of nodes, the 
edges among nodes can be defined by the functional or structural 
associations among different neuronal elements of the brain. To 
date, functional associations are measured by either the temporal 
correlation between spatially remote neurophysiological events, 
often referred to as the functional connectivity, or the influence 
that one neural system exerts over another, also termed effective 
connectivity (Friston et al., 1993). Structural associations can be 
measured by examining either direct diffusion-based anatomical 
connectivity or indirect morphology-based statistical interdepend-
encies across populations (Bullmore and Sporns, 2009; He and 
Evans, 2010). Once these two basic elements of a network, nodes 
and edges, are extracted from the dataset, the constructed brain 
connectivity network can be further characterized using graph 
theoretical approaches. Figure 1 illustrates the schematic repre-
sentation of network constructions using R-fMRI.

Graph theoretIcal approaches
Graph theory is the natural framework for the exact mathe-
matical representation of complex networks. Formally, a com-
plex network can be represented as a graph by G(N, K), with 
N denoting the number of nodes and K the number of edges 
in graph G. Graphs can be classified as directed or undirected 
based on whether the edges have sense of direction information. 
Likewise, graphs can also be divided into unweighted (binary) 
graphs if every edge in the graph has an equal weight of 1 or 
weighted graphs if its edges are assigned with different strengths. 
In this review, we will only focus on undirected and unweighted 
graphs. The descriptions for other types of graphs can be found 
in previous literature (Boccaletti et al., 2006; Bang-Jensen and 
Gutin, 2008).

For an undirected and unweighted graph G(N, K), the con-
nectivity pattern can be completely described by an N × N sym-
metric square matrix named adjacency matrix A whose entry a

ij 

(i,j = 1,…,N) is 1 if there exists an edge between node i and j or 0 
if one does not. Now we will list some important metrics that are 
frequently used in the field of neuroscience.

Degree and degree distribution
In a graph G(N, K), the degree of node i is the number of edges 
linked to it and is calculated as k a

i
j G

ij= ∑
∈

, where a
ij
 is the ith row 

and jth column element of adjacency matrix A. Degree is a simple 
measurement for the connectivity of a node with the rest of the 
nodes in a network. The mean of degrees over all the nodes in G, 
referred to as the average degree, measures the extent to which 
the graph is connected. The degree distribution P(k) is defined 
as the probability that a node chosen uniformly at random has 
degree k or, equivalently, as the fraction of nodes in the graph 
having degree k. In terms of the form of degree distribution, 
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Small-world
The small-world (Watts and Strogatz, 1998) is an important model 
to characterize the organization principles that govern a remark-
able variety of social, economic, and biological complex networks. 
A small-world network can be described by high local clustering, 
characterized by a high clustering coefficient, C

p
, and low mini-

mum path length between any pair of nodes, characterized by a low 
characteristic path length, L

p
 (Watts and Strogatz, 1998). The C

p
 

of a network is defined as the average of the clustering coefficients 

networks can be classified into different  categories (e.g., power 
law or scale-free networks where nodal degrees are extremely 
heterogeneous) that possess distinct resilience to the removal of 
nodes. For example, networks of exponentially truncated power 
law degree were demonstrated to be equally resilient to random 
failures (random removal of nodes) but more resilient to targeted 
attacks (selective removal of nodes, such as those with the highest 
degrees) compared with the scale-free network in spontaneous 
human brain functional networks (Achard et al., 2006).

FIguRe 1 | A flowchart for the construction of functional brain network in 
the human brain by R-fMRI. (1) Extraction of the time course (C) from 
R-fMRI data (B) within each anatomical unit (i.e., network node).  
(B) Anatomical units are obtained according to a prior brain atlas (A) or voxels; 

(2) Calculation of a functional connectivity (i.e., network edge) correlation 
matrix (D) between any pairs of nodes; (3) Thresholding the correlation matrix 
into a binary connectivity matrix (i.e., association matrix, e); (4) Visualization of 
the association matrix as a graph (F).
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Nodal centrality
Nodal centrality quantifies how important a node is within a net-
work. Several different metrics exist for measuring nodal centrality, 
such as degree centrality, nodal efficiency (Achard and Bullmore, 
2007), closeness centrality (Freeman, 1979), and betweenness cen-
trality (Freeman, 1977). For a node i in a network G(N,K), the 
degree is defined as the number of edges linked directly to it. The 
nodal efficiency of node i is computed as E Ni j i G dij

= − ≠ ∈1 1 1/ Σ . Nodal 
efficiency measures the ability of a node to propagate information 
with the other nodes in a network. The closeness centrality of node 
i is computed as Ci

N
dj i G ij

= −
≠ ∈

1
Σ , and it reflects the average distance 

from a node to all the other nodes in a network. The betweenness 
centrality captures the influence that one node has over the flow 
of information between all other nodes in the network and can be 
calculated as Bi m i n G

imn

mn
= ≠ ≠ ∈Σ σ

σ
( ) , where σmn is the total number of 

shortest paths from node m to node n and σmn i( ) is the number 
of shortest paths from node m to node n that pass through node 
i. A node with high centrality is considered a hub in the network 
(Sporns et al., 2007; He et al., 2008; Buckner et al., 2009).

Modularity
Modularity reflects the degree to which a network is organized 
into a modular or community structure. Modules refer to a set of 
nodes with denser links among them but sparser links with the rest 
of the network (Newman, 2006). Detection and characterization 
of modular structure in the brain system can help us to identify 
groups of anatomically and/or functionally associated components 
that perform specific biological functions. Several optimization 
algorithms are currently available, each with different advantages 
(Clauset et al., 2004). Based on the identified modular structure, 
hubs can be further subdivided in terms of their roles in maintain-
ing intra- or inter-module connectivity. Provincial hubs are con-
nected mainly to nodes in their own modules, whereas connector 
hubs are connected to nodes in other modules (Guimera et al., 
2005; Chen et al., 2008; He et al., 2009b).

Hierarchy
Hierarchical structure is a fundamental characteristic of many 
social and biological networks (Ravasz et al., 2002; Ravasz and 
Barabasi, 2003; Sales-Pardo et al., 2007). In a hierarchical net-
work, highly connected nodes (hubs) are connected predomi-
nantly to nodes that are not otherwise connected to each other. 
That is, the larger the degree, the lower the clustering coefficient. 
Such a hierarchical organization favors top-down relationships 
between nodes and minimizes wiring costs, but it is vulnerable to 
attacks on hubs (Ravasz and Barabasi, 2003; Sakata et al., 2005). 
Mathematically, this phenomenon can be quantified by the β 
value, an exponent of the power law relationship between clus-
tering coefficient, C

i
, and degree, k

i
, of the nodes in the network: 

C ≈ k−β. A large positive value of β signifies a typical hierarchical 
structure. Such a hierarchy has been found to exist in both struc-
tural (Bassett et al., 2008) and functional (Supekar et al., 2009) 
human brain networks.

For more details regarding the construction of brain networks, 
frequently used graph-based metrics in brain networks, and the 
final interpretations of results, see (Bullmore and Sporns, 2009; 
He et al., 2009a; Rubinov and Sporns, 2009).

over all nodes in the network where the clustering coefficient C
i
 of 

a node i is calculated as C i E k ki i( ) / ( )= × −2 1 , with E denoting the 
number of existing connections among the node i’s neighbors and 
k

i
 representing the degree of node i. C

p
 quantifies the extent of local 

interconnectivity or cliquishness of a network. The L
p
 is defined as 

the average of the shortest path lengths (minimum number of edges 
needed to link one node to another) between any pair of nodes in the 
network. L

p
 measures the distance (i.e., number of edges) between 

any pair of nodes in a network or the extent of overall communica-
tion efficiency of a network. A shorter distance means higher routing 
efficiency because information is exchanged via fewer steps. Notably, 
this original definition of L

p
 is problematic in networks with multiple 

components where there exist nodal pairs that have no connecting 
path. The shortest path lengths for such disconnected node pairs 
are infinite. To avoid this problem, L

p
 can be measured by using a 

“harmonic mean” distance between any pairs of network nodes as 
proposed by Newman (2003), that is, the reciprocal of the average of 
the reciprocals. Notably, L

p
 calculated by “harmonic mean” distance is 

numerically the inverse of global efficiency (see below for the defini-
tion of global efficiency). Mathematically, a real network would be 
considered as small-world if it meets the following two conditions: 
γ = C

p
/C

p−rand
 > 1 and λ = L

p
/L

p−rand
 ≈ 1, where C

p−rand
 and L

p−rand
 are 

the mean clustering coefficient and characteristic path length of the 
matched random networks (random networks have low C

p
 and short 

L
p
), respectively. These two conditions can also be summarized into 

a simple quantitative measurement, small-worldness, σ = γ/λ > 1 
(Humphries et al., 2005). Small-world is an attractive model for the 
description of complex brain networks because it not only supports 
both specialized/modularized and integrated/distributed informa-
tion processing but also maximizes the efficiency of information 
transfer at a relatively low wiring cost (Sporns et al., 2004; Bassett 
and Bullmore, 2006). Using these measurements, small-world topol-
ogy has been recently demonstrated in many complex brain net-
works across multiple species in both healthy and diseased states 
(for reviews, see Stam and Reijneveld, 2007; Bassett and Bullmore, 
2009; Bullmore and Sporns, 2009; He et al., 2009a).

Network efficiency
Efficiency is a more biologically relevant metric to describe brain 
networks from the perspective of information flow, which can deal 
with the disconnected graphs, nonsparse graphs or both (Latora and 
Marchiori, 2001; Bassett and Bullmore, 2006). For a graph G(N,K), 
the global efficiency is defined as E G N N i j G dijglob( ) / ( )= − ≠ ∈1 1 1Σ , 
where d

ij
 is the shortest path length between node i and node j in 

G. The local efficiency of G is measured as E G E GN i G iloc glob( ) ( )= ∈
1 Σ , 

where E
glob

(G
i
) is the global efficiency of Gi , the sub-graph composed 

of the neighbors of node i. Global efficiency and local efficiency 
measure the ability of a network to transmit information at the glo-
bal and local level, respectively (Latora and Marchiori, 2001, 2003). 
An important metric that concisely couples with network efficiency 
is network cost, which measures how expensive it is to build a net-
work. For an unweighted and undirected network, network cost 
can be defined as the ratio of the existing number of edges to the 
number of all possible edges in the network. Using these measure-
ments, networks with high efficiency, both local and global, and low 
cost are said to be economic small-world networks (Achard et al., 
2007; Wang et al., 2009b).
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demonstrated that the network included several major functional 
clusters corresponding to four neocortical lobes (frontal, tempo-
ral, parietal-(pre)motor, and occipital), the medial temporal lobe 
and subcortical nuclei. In a following study that also utilized the 
AAL atlas, Achard et al. (2006) investigated frequency-dependent 
spontaneous brain networks in five healthy volunteers. They found 
that the small-world topology was most salient in the low-frequency 
(0.03–0.06 Hz) brain network. Furthermore, several heteromo-
dal association cortex regions were found to act as hubs in the 
brain network. The authors also found that the network obeys 
an exponentially truncated power law degree distribution, which 
appears to confer a distinctive tolerance against random failures 
and target attacks compared with scale-free or power law distri-
bution. Recently, Wang et al. (2009a) investigated the topologi-
cal organization of functional brain networks constructed from 
two different brain atlases [AAL atlas (90 parcellation units) and 
Automatic Nonlinear Imaging Matching and Anatomical Labeling 
(ANIMAL) atlas (70 parcellation units)]. They found that the spon-
taneous functional brain networks exhibited robust small-world 
topology and a common form of exponentially truncated power 
law degree distribution regardless of parcellation strategies. This 
suggests a stable intrinsic architecture in the resting human brain. 

restInG-state functIonal BraIn networks
Spontaneous neural activity can be recorded by multiple imaging 
techniques, such as EEG, MEG, and R-fMRI, each with different 
advantages. Several studies have successfully used EEG or MEG to 
construct intrinsic brain connectivity networks and further investi-
gated state-dependent alterations in network topological properties 
(Stam and Reijneveld, 2007; Bassett and Bullmore, 2009). More 
recently, R-fMRI-based network analysis has gained popularity 
because of its high spatial and temporal resolution. This review 
will primarily focus on graph-based brain network studies using 
R-fMRI. Table 1 presents the relevant literature reviewed here.

normal populatIon
Region-based resting-state brain networks
Salvador et al. (2005) were the first to utilize R-fMRI to investigate 
the whole brain functional network. Based on a prior Automated 
Anatomical Labeling (AAL) atlas, a 90-node group-level network 
generated from 12 healthy volunteers was constructed. Graph 
theoretical methods revealed that the brain functional network 
showed a small-world topology characterized by high local cluster-
ing and short path lengths linking different brain regions. Further 
hierarchical clustering and multidimensional scaling analyses 

Table 1 | graph-based brain functional network studies by R-fMRI.

Study Clinical state Node definition N Correlation metrics Network type

Salvador et al. (2005) Normal Regions (AAL) 90 Partial correlation B

Achard et al. (2006) Normal Regions (AAL) 90 Wavelet correlation B, W

Wang et al. (2009a) Normal Regions (AAL, ANIMAL) 90, 70 Pearson correlation B

He et al. (2009b) Normal Regions (AAL) 90 Pearson correlation B

Meunier et al. (2009b) Normal Regions (AAL-based) 1808 Wavelet correlation B

Ferrarini et al. (2009) Normal Regions (AAL) 90 Partial correlation B

Dosenbach et al. (2007) Normal ROIs 39 Pearson correlation B

Van den Heuvel et al. (2008a) Normal Voxels ∼10000 Pearson correlation B

Van den Heuvel et al. (2008b) Normal Voxels 8500∼9500 Pearson correlation W

Valencia et al. (2009) Normal Voxels 20898 Pearson correlation B, W

Laurienti et al. (2009) Normal Voxels ∼20000 Pearson correlation B

Hayasaka and Laurienti (2009) Normal Regions (AAL), voxels 90∼16000 Pearson correlation B

van den Heuvel et al. (2009b) Normal (IQ) Voxels ∼9500 Pearson correlation B

Park et al. (2008) Normal Regions (AAL) 73 Pearson correlation B

Fair et al. (2007) Development ROIs 39 Pearson correlation B

Fair et al. (2008) Development ROIs 13 Pearson correlation B

Fair et al. (2009) Development ROIs 34 Pearson correlation B

Supekar et al. (2009) Development Regions (AAL) 90 Wavelet correlation B

Achard et al. (2007) Aging Regions (AAL) 90 Wavelet correlation B, W

Meunier et al. (2009a) Aging Regions (AAL) 90 Wavelet correlation B

Supekar et al. (2008) AD Regions (AAL) 90 Wavelet correlation B

Buckner et al. (2009) AD Voxels None Pearson correlation B

Liu et al. (2008) Schizophrenia Regions (AAL) 90 Partial correlation B

Wang et al. (2009b) ADHD Regions (AAL) 90 Pearson correlation B

Liao et al. (2010) Epilepsy Regions (AAL) 90 Pearson correlation B

Nakamura et al. (2009) TBI None 112 Partial correlation B, W

Liu et al. (2009) Drug (heroin) Regions (AAL) 90 Partial correlation B

AD, Alzheimer’s disease; ADHD, attention-deficit hyperactivity disorder; TBI, traumatic brain injury; AAL, Automated Anatomical Labeling; ANIMAL, Automatic 
Nonlinear Imaging Matching and Anatomical Labeling; ROI, region of interest; N, the number of network nodes; B, binarized; W, weighted.



Frontiers in Systems Neuroscience www.frontiersin.org June 2010 | Volume 4 | Article 16 | 6

Wang et al. Graph theoretical analysis of resting fMRI

lead to a possible blurring out of some local specific informa-
tion,  particularly for those functionally heterogeneous parcella-
tion units. The high spatial resolution (e.g., 4 mm) provided by 
R-fMRI allows investigation of the topological properties of brain 
networks at a finer-grained voxel-level, which is beneficial to our 
understanding of brain organization at a more refined level (e.g., 
20,000 nodes). The next section will be devoted to reviewing some 
work in this area.

Voxel-based resting-state brain networks
Eguiluz et al. (2005) conducted the first study of human brain func-
tional networks constructed at the voxel-level and found general 
scale-free small-world architecture under multiple task conditions. 
Focusing on the same features, van den Heuvel et al. (2008a) first 
examined the resting-state functional network of the human brain 
at voxel-level. After constructing individual brain networks for 28 
participants, the graph theoretical analysis confirmed the small-
world organization in spontaneous brain network consistent with 
previous region-level network analyses. This finding suggests that 
small-world topology is a robust organizational principle governing 
the global pattern of coherent fluctuations in spontaneous neural 
activity across multiple spatial scales (i.e., region-level and voxel-
level). However, in contrast to the exponentially truncated power 
law degree distribution observed frequently in region-level brain 
networks, the voxel-level brain network exhibited a scale-free or 
power law form. This discrepancy implies that intrinsic functional 
networks of the human brain may organize differently at different 
spatial scales, at least in some features, therefore pointing out the 
need to elucidate how the organization of brain networks depends 
on the scale in which they are constructed.

Instead of global small-world architecture, several groups have 
focused on the identification of intrinsic modular/community 
structure in resting-state brain networks at voxel-level. Using a 
normalized cut graph clustering algorithm, van den Heuvel et al. 
(2008b) found seven resting-state networks, such as default-mode 
network, parietal-frontal network and motor and visual network, 
resembling those sub-networks or components revealed by ICA 
studies on R-fMRI datasets. This consistency of modularity struc-
ture or sub-systems in intrinsic functional brain networks across 
analytical methods was also validated by more recent voxel-level 
network studies (Laurienti et al., 2009; Valencia et al., 2009). Valencia 
et al. (2009) constructed voxel-level functional brain networks for 
seven healthy subjects and then investigated the modular archi-
tecture of these networks using a random-walk-based method. It 
is not surprising that all individuals exhibited significant modular 
structure with moderate stability. Refreshingly, the authors com-
pared the spatial distribution of retrieved modules with a prior 
anatomical AAL atlas and found that some modules aligned well 
with certain brain systems. For example, 75% of the primary visual 
area, V1, was gathered into one module. More importantly, some 
modules included functionally related but spatially distant regions. 
These results imply that the modular organization has an underly-
ing basis of neural functions, rather than being a consequence of 
vascular processes or local physiological activities. Another notable 
finding from this work is the exponentially truncated power law 
model of degree distribution for intrinsic brain networks, which 
contrasts with the observation of power law form by van den Heuvel 

More  importantly, they observed significant parcellation-related 
differences in multiple network topological parameters (e.g., 
small-worldness and network efficiency) between the two sets of 
networks. For example, the global efficiency of networks based 
on the AAL atlas was higher than those based on the ANIMAL 
atlas. Given that most current studies construct the brain networks 
using prior brain templates, this work has important implications 
for the consideration of parcellation-related effects in future brain 
network studies.

Using R-fMRI, He et al. (2009b) demonstrated modular struc-
tures of intrinsic functional brain networks (Figure 2). A group-level 
brain connectivity network was obtained and fed into a simulated 
annealing algorithm to detect the modular structure. The results 
showed that the resting-state brain network was modularly config-
ured and optimally organized into five modules: somatosensory/
motor and auditory, vision, attention, default-mode, and limbic/
paralimbic and sub-cortical systems. Interestingly, when the modu-
larity detection algorithm was iteratively applied to those identi-
fied modules, several more segregated sub-modules were observed, 
suggesting a hierarchical modularity. Furthermore, they demon-
strated significant differences in the network structure between 
modules and the whole brain network, suggesting module-specific 
organization patterns. In a more detailed exploration, specific sets 
of connector nodes and bridge edges that were involved in different 
modules were shown to be important for maintaining the con-
nectivity and stability of the functional brain networks. Another 
similar study from Meunier et al. (2009b) also demonstrated the 
hierarchical modularity in resting-state functional networks of the 
human brain. In this case, a larger brain network, consisting of 1808 
regional nodes, was constructed for each of the 18 right-handed 
healthy volunteers and was fed into a multi-level method for detect-
ing the hierarchical modularity. The results indicated a significant 
hierarchical modularity of the resting-state brain functional net-
work, with the five largest modules observed at the highest level of 
the hierarchy: medial occipital, lateral occipital, central, parieto-
frontal, and fronto-temporal systems. Intriguingly, the occipital 
modules showed less sub-modular organization in comparison 
with other modules, implying that distinctive organizational prin-
ciples exist in function-specific sub-systems, which is consistent 
with previous findings (He et al., 2009b). Additionally, the nodal 
roles analysis indicated that connector nodes and inter-modular 
connections were largely concentrated in posterior modules that 
contain regions of association cortex. In addition to the studies 
mentioned above, Ferrarini et al. (2009) also validated small-world 
properties and hierarchical modularity by focusing on revising a 
clustering algorithm to detect the modularity of resting-state func-
tional networks of the human brain.

Beyond the region-level explorations of the intrinsic topology 
mentioned above, brain network analyses have been done at the 
voxel-level. Although some intriguing results were demonstrated 
in intrinsic large-scale (region-level) functional brain networks, 
these findings may be biased by the fact that all of the analyses 
were restricted to predefined anatomical structures. Specifically, at 
the region-level, inter-regional connectivity was routinely evalu-
ated in terms of representative time courses obtained by averaging 
the signals within predefined parcellation structures. However, 
despite the simplicity, the averaging process may simultaneously 
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FIguRe 2 | The modular architecture of resting-state functional brain 
network (He et al., 2009b). (A) Five modules were identified in a functional 
network of the human brain, represented by five different colors. The geometric 
distance between brain regions on the drawing space approximates the shortest 
path length between them. The network is visualized with Pajek (http://vlado.fmf.
uni-lj.si/pub/networks/pajek/). The intra-module and inter-module connections are 
shown in gray and dark lines, respectively. For the abbreviations of the regions, 

see He et al. (2009b). (B) Surface representation of modular architecture of a 
functional brain network. All 90 brain regions are marked by using different colored 
spheres (different colors represent distinct network modules) and further mapped 
onto the cortical surfaces in the lateral and medial views, respectively. Notably, the 
regions are located according to their centroid stereotaxic coordinates. For 
visualization purposes, the subcortical regions are projected to the medial cortical 
surface according to their y and z centroid stereotaxic coordinates.
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covering different ages were generated: 49 children (7–9 years; 
mean 8.6), 43  adolescents (10–15 years; mean 11.9), and 47 adults 
(20–31 years; mean 24.1). Visualization analysis showed a clear 
dynamic reorganization of brain network structure over the course 
of development. For example, the interconnected fronto-parietal 
and cingulo- opercular components in children gradually became 
two disconnected networks in adults. Using similar methods, the 
authors also demonstrated a more densely connected network 
structure in the adult default-mode network when compared 
with children, implying an increased functional integration during 
development (Fair et al., 2008). Moving beyond a single functional 
network, the authors expanded their interests to a wide system that 
included four functional networks: cingulo-opercular, fronto-pari-
etal, default-mode and cerebellar. Based on large R-fMRI datasets 
(210 subjects: 66 aged 7–9; 53 aged 10–15; 91 aged 19–31), they 
studied the dynamic developmental trajectory of functional brain 
network organization using a sliding boxcar grouping method (Fair 
et al., 2009). The most important finding was the observation of 
concurrent segregation and integration in brain networks during 
development, which was revealed by both qualitative and quantita-
tive analyses. This dichotomy of development was further found 
to be related to a general decrease in short-range connections and 
an increase in long-range connections. Another interesting result 
in this study was the comparable small-world topology observed 
across the entire range of ages examined, from 8 to 25 years old, 
as indicated by very little changes in path lengths and clustering 
coefficients. This suggests a largely conserved architecture over age. 
All the aforementioned studies focused on some specific brain func-
tional systems, such as the default network or control network, 
leaving development effects on whole brain network organization 
unclear. Filling this gap, Supekar et al. (2009) assessed develop-
ment-related alterations in brain functional networks in great detail 
using R-fMRI and graph theoretical techniques. After the construc-
tion of brain networks for each of 23 children (7–9 years) and 22 
IQ-matched young-adult subjects (19–22 years), obvious differ-
ences were found in both global and local properties of functional 
brain networks between children and young adults. For example, 
children showed a globally lower level of hierarchical organization 
in the whole network and locally higher efficiency in sub-cortical 
division. Of particular importance, combining with DTI-based fiber 
tracking, the authors found a pattern of simultaneous emergence 
of decreased functional segregation and increased functional inte-
gration with development, characterized by lower short-range and 
higher long-range functional connectivity in young adults when 
compared with children. Taken together, these results show that 
development is strongly related to a weakening of short-range func-
tional segregation and a strengthening of long-range functional 
integration, which suggests a general developmental principle for 
intrinsic functional brain architecture.

In addition to development-related changes, some groups have 
also investigated the effects of normal aging on the functional organi-
zation of large-scale brain networks during rest (Achard et al., 2007; 
Meunier et al., 2009a). Using graph theoretical approaches, Achard 
et al. (2007) tested the hypothesis that resting-state functional brain 
networks have economical small-world properties and that their 
performance would be disrupted by normal aging. R-fMRI data 
were collected from 11 old and 15 young healthy volunteers, and 

et al. (2008b). This discrepancy may be attributed to the different 
 network construction methods (i.e., network nodes were abstracted 
from gray matter voxels by van den Heuvel et al. vs. whole brain by 
Valencia et al.) given the findings of tissue specific organization that 
networks constructed from white matter and cerebral spinal fluid 
voxels did not exhibited typical power law degree distribution (van 
den Heuvel et al., 2008b). Almost simultaneously, Laurienti et al. 
(2009) combined R-fMRI and graph theory to explore the modular 
structure of resting-state brain networks derived from six normal 
young adults. Modular architecture was again uncovered in spite 
of the use of a different module detection algorithm of QCut. It 
is noteworthy that the default-mode network was separated into 
three primary modules: the module of the medial frontal cortex, 
the module of sections from the parietal lobe and parahippoc-
ampal gyrus and the module of portions from the cuneus gyrus, 
parietal cortex and middle frontal gyrus. This was consistent with 
the finding of functional brain networks (He et al., 2009b). The 
split of the default-mode network into multiple sub-networks is 
also observed in previous ICA studies (Zuo et al., 2010a) and could 
imply functional segregation or heterogeneity within the default-
mode network (Buckner et al., 2008; Harrison et al., 2008; Kiviniemi 
et al., 2009; Uddin et al., 2009). Given the high sensitivity of the 
default-mode network to numerous mental disorders (Broyd et al., 
2009), studies that focus on the pattern within and between these 
sub-modules may lead to new insights into the pathophysiology 
of these disorders.

Rather than work with whole brain network studies, Dosenbach 
et al. (2007) concentrated exclusively on a putative task-control net-
work. Thirty-nine ROIs associated with task-control were selected as 
the network nodes, and a group-level network from 74 young adults 
was formed. Analogous to the whole brain network, the sub-network 
of task-control system also exhibited small-world features. Further 
visualization of the network connectivity pattern revealed eight dis-
connected components, including the fronto-parietal component and 
cingulo-opercular component, which were clearly associated with 
task control. More importantly, the authors found that the wiring 
patterns of the fronto-parietal and cingulo-opercular components to 
other parts of the brain were obviously different. The fronto-parietal 
component preferentially connected with cerebellar regions, whereas 
the cingulo-opercular component tended to connect firstly with puta-
tive downstream sensory regions in the occipital cortex. Inspired by 
this phenomenon, the authors proposed a ‘‘dual-network’’ hypothesis 
to model task control, in which the fronto-parietal network supports 
adaptive control function and the cingulo-opercular network handles 
stable set-maintenance function.

development/aGInG
The mature human brain has been optimally organized into a col-
lection of specialized functional networks that flexibly interact in 
rapid response to various cognitive demands. Studying the forma-
tion of the architecture in a maturing brain from a global level may 
provide more insights into the organizing principle that guides the 
maturation process. In this topic, Fair and colleagues carried out a 
series of experiments to explore the mechanisms of development 
using R-fMRI and modern network techniques. They first stud-
ied a task control related network (Fair et al., 2007), containing 
39 nodes (i.e., task control regions). Three group-level networks 
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can distinguish the AD participants from the controls with a sensitiv-
ity of 72% and a specificity of 78%, suggesting that these network 
measures could serve as an imaging-based biomarker in AD diag-
nosis. These findings suggested that AD is associated with disrupted 
functional integrity in the intrinsic spontaneous neuronal activity 
of the brain functional system. In a relevant large- and multiple-
datasets study, Buckner et al. (2009) performed another AD-related 
study using graph theoretical approaches and R-fMRI to address the 
spatial distribution and stability of hub regions in intrinsic functional 
brain networks of human. They also assessed whether the identified 
hubs had a preferential vulnerability to AD pathology. One hundred 
twenty-seven healthy young adults participated in MRI sessions, and 
39 older adults (29 controls and 10 AD patients) participated in 
PET sessions. The results showed that hub regions were dominated 
mainly by heteromodal areas of the association cortex, such as the 
posterior cingulate and medial/lateral prefrontal cortices, consistent 
with previous studies (Achard et al., 2006). Of more importance, the 
pattern of hubs was highly consistent between datasets and activity 
states (passive fixation vs. semantic classification task), suggesting 
that this is a stable property of cortical network architecture. Finally, 
the authors demonstrated a striking overlap and strong correlation 
(r = 0.68) between the pattern of cortical hubs derived from young 
subjects and the Aβ deposition map in AD patients. The results imply 
a dual role for hubs in brain networks. On one hand, they act as 
critical stations for information processing, and on the other hand, 
they are preferential candidates of pathology.

Schizophrenia
Using R-fMRI, Liu et al. (2008) utilized graph-based network analy-
sis to characterize networks in schizophrenia patients. Individual 
brain networks were built for 31 schizophrenia patients and 31 age- 
and gender-matched healthy subjects. Subsequent graph theoretical 
analysis revealed that schizophrenia patients showed abnormalities 
in multiple network attributes, including lower absolute clustering 
coefficients, normalized clustering coefficient, small-worldness and 
network efficiency, as well as longer absolute path length. In addi-
tion, multiple nodal characteristics were altered in several specific 
regions predominately located in prefrontal, parietal and temporal 
lobes in schizophrenia patients. Collectively, these abnormalities 
suggest a dysfunctional organization of the intrinsic functional 
brain network in schizophrenia. It is worth noting that multiple 
network metrics, such as the absolute clustering coefficient and 
local network efficiency, were found to have a significant negative 
correlation with the duration of illness and the dose of medication, 
suggesting a potential use of the graph theoretical tool in monitor-
ing the progression and therapy evaluation of schizophrenia.

Attention-deficit hyperactivity disorder
Wang et al. (2009b) were the first to apply graph theoretical 
approaches to explore the spontaneous brain networks in patients 
with attention-deficit hyperactivity disorder (ADHD). Based upon 
R-fMRI datasets from 29 ADHD and 27 control boys, the authors 
found that the functional brain networks in both groups exhib-
ited economic small-world behaviors. However, the ADHD group 
exhibited significant increases in local efficiency but statistically 
unchanged global efficiency in comparison with the control subjects, 
suggesting a shift toward regular networks in ADHD children. In 

individual brain networks were constructed using the methods 
from Achard et al. (2006). The results confirmed the economic 
small-world configuration hypothesis of intrinsic functional brain 
networks in both young and old people. However, normal aging 
significantly reduced the global and local efficiency of parallel 
information processing. Furthermore, regional efficiency analysis 
found that the detrimental effects of aging were mainly localized 
to frontal and temporal cortical and sub-cortical regions. Notably, 
in this study the authors also successfully detected alterations in 
the overall performance of economical small-world properties in 
intrinsic functional brain networks associated with the pharma-
cological blockade of dopamine neurotransmission. This finding 
highlights the potential value of graph theoretical tools for char-
acterizing the mechanisms involved in different pathophysiologi-
cal processes, such as the role of dopamine transmission system. 
In another study of normal aging, Meunier et al. (2009a) stud-
ied aging-related changes in the module or community structure 
of resting-state brain functional networks from two groups: 17 
younger participants (18–33 years, mean age = 24.3 years) and 13 
older participants (62–76 years, mean age = 67.3 years). The module 
structure analyses showed that both age groups exhibited signifi-
cant, non-random, and robust modularity. However, both module 
size and composition differed between the age groups. For instance, 
five modules were detected in young brain functional networks, 
whereas six were seen in the older group. Interestingly, the authors 
found a trend for modules to segregate into multiple components 
in the brain networks of older people compared with younger peo-
ple. For example, the dorsal fronto-cingulo-parietal module in the 
young brain network was segregated into two smaller and more 
local modules in the old brain network, a dorsal prefronto-striato-
thalamic module and a medial posterior module. Thereby, tracing 
the profile of modular architecture throughout both development 
and aging will be an important topic.

Overall, the use of R-fMRI and graph theoretical approaches has 
demonstrated that normal development and aging are associated 
with alterations of brain organization, particularly in the modular 
architecture. The reconfiguration of network structure may allow 
for more flexibility to meet the demands during different states of 
life, such as high plasticity and fast learning at young ages. Future 
longitudinal studies could help address this question.

applIcatIons In clInIcal populatIon
To date, the combination of R-fMRI and graph theory-based net-
work approaches has proven to be a powerful tool to investigate 
the abnormalities in the organization of intrinsic brain networks 
under different pathological conditions (Bassett and Bullmore, 
2009; Bullmore and Sporns, 2009; He et al., 2009a).

Alzheimer’s disease
Supekar et al. (2008) were the first to study Alzheimer’s disease (AD)-
related changes in the coordination of large-scale brain functional 
networks using R-fMRI. After constructing functional brain net-
works for each of 21 AD patients and 18 age-matched controls, they 
found that AD patients showed deterioration of the small-world 
network properties, characterized by a significantly lower normalized 
clustering coefficient, implying disrupted local network connectivity. 
Furthermore, the differences in the normalized clustering coefficient 
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technIcal challenGe and future perspectIves
In this review, we summarized the recent advances in the applica-
tion of modern graph theory-based network analysis techniques to 
study the intrinsic or spontaneous human brain functional networks 
derived from R-fMRI. Several consistent characteristics are dem-
onstrated in the normal population, such as small-world topology, 
modular structure, and core regions, some of which are sensitive 
to normal development, aging and neuropsychiatric disease. These 
findings provide novel insights into the functional architecture of 
the human brain and its adaptive reconfiguration in brain maturing, 
aging and against pathological attacks. However, we should acknowl-
edge that the studies of complex brain networks formed by spontane-
ous activity, even in normal subjects, are still in the early stages. There 
are still a number of unanswered questions in this research field.

First, given that the human brain is a complex network at multi-
ple spatial and time scales, how to appropriately represent the brain 
as a network that can precisely reflect the natural state of the brain 
is a considerable task. For instance, what are the nodes and edges 
in a brain network? Which time scale is best suited for the brain 
network? As Butts (2009) stated, the inappropriate representation 
of nodes and edges in a network and failure to consider the dynam-
ics of the system of interest will lead to misleading conclusions 
and generally poor results. Recent evidence has demonstrated the 
meaningful influence of node choice on the properties of resulting 
networks (Hayasaka and Laurienti, 2009; Wang et al., 2009a; Zalesky 
et al., 2009). For example, Hayasaka and Laurienti constructed func-
tional brain networks at multiple resolutions (90∼160,000 nodes) 
using the same R-fMRI dataset from 10 normal subjects and found 
more prominent small-worldness and robustness against network 
fragmentation in networks at the voxel-level compared with the 
region-level. In parallel with the definition of nodes, how to deter-
mine the functional connectivity-based edges in functional brain 
networks is another important issue. Multiple choices are currently 
available for estimating the functional connectivity between brain 
areas, such as partial correlation, Pearson correlation and mutual 
information that depict the functional associations from different 
angles. Our recent work (not published) demonstrates significant 
connectivity-related differences in the architecture of resting brain 
networks, implying that different organization patterns can be gen-
erated using different functional connectivity measures. Therefore, 
a combined analysis of multiple connectivity metrics could be more 
fruitful for brain network studies. In addition to intuitively conceiv-
able nodes and edges, the human brain is a dynamic system over 
multiple time scales with ongoing and adaptive functional activities 
(Honey et al., 2009). Therefore, capturing the dynamic network 
behaviors at different time scales is an important topic in future.

Second, although graph theoretical brain network analysis based 
on R-fMRI attracts a great deal of attention, the reliability and 
reproducibility of network measurements, both across subjects and 
over time, needs to be addressed. R-fMRI has shown reliability in 
local low-frequency fluctuations (Zuo et al., 2010b), ROI-based 
functional connectivity (Shehzad et al., 2009) and ICA components 
(Zuo et al., 2010a). However, the reliability of topological structures 
has not yet been validated in R-fMRI brain networks. Nonetheless, 
a recent magnetoencephalography study has shown that graph met-
rics exhibited sufficient reliability both in resting-state and during 
performance of the n-back working memory task, though greater 

addition, the authors also tested regional nodal efficiency and found 
decreased nodal efficiency in the medial prefrontal, temporal, and 
occipital cortex regions and increased nodal efficiency in the infe-
rior frontal cortex and sub-cortical regions. These differences imply 
a loss of the optimal organization pattern in ADHD children.

Epilepsy
The first study of mesial temporal lobe epilepsy (mTLE) to use graph 
theoretical approaches was performed by Liao et al. (2010). They 
constructed endogenous brain connectivity networks for 18 mTLE 
patients and 27 healthy controls using R-fMRI signals. A direct 
between-group comparison in functional connectivity revealed sig-
nificantly increased connectivity within the medial temporal lobes 
but decreased connectivity within the frontal and parietal lobes 
and between frontal and parietal lobes in mTLE patients relative to 
controls. Subsequent graph theoretical analyses demonstrated that 
regions showing a significantly decreased number of connections 
were mainly from components of default-mode networks in mTLE 
patients. In addition, normalized path length was also found to be 
significantly lower in mTLE patients. These alterations in functional 
connectivity and topological properties may be used to define tenta-
tive disease markers for mTLE after the validation of repeatability.

Others
In addition to the application of this approach to neuropsycho-
pathic diseases, graph theoretical approaches have also been used to 
explore the changes in intrinsic functional brain networks during 
recovery from traumatic brain injury (Nakamura et al., 2009) and 
in drug addicts (Liu et al., 2009). Nakamura et al. (2009) studied 
the changes of intrinsic coordinated brain connectivity networks 
in six subjects in recovery from severe traumatic brain injury. They 
found that high-value functional connections decreased with recov-
ery but the overall number of connections maintained relatively 
stable. Further analyses revealed multiple altered topological indi-
ces during the recovery timeline, such as a significant reduction 
of global and local efficiency in brain networks at 6 months post 
injury compared with those at 3 months post injury. These results 
suggest that graph-based network techniques could be useful in 
evaluating the adaptation of intrinsic brain networks to neural dis-
ruption during recovery. Liu et al. (2009) concentrated on a specific 
population of chronic heroin users and evaluated the impairments 
of their brain functions from a functional integration perspective. 
The results demonstrated a typical small-world configuration in the 
brain networks constructed from 12 chronic heroin users; however, 
the extent of small-worldness (i.e., σ) was much smaller than that 
of non-drug users. Furthermore, some regions in the prefrontal 
cortex, ventral striatum, and limbic/paralimbic area were found to 
have dysfunctional connectivity, which may be responsible for the 
decreased self-control, impaired inhibitory function and deficits 
in stress regulation observed in chronic heroin users.

Taken together, these results demonstrate the utility of the com-
bination of R-fMRI and graph theoretical techniques in capturing 
the abnormal alterations in topological organization of spontane-
ous brain networks caused by different brain disorders. Further 
studies are needed to ascertain whether this kind of topology-based 
approach could be used as a novel way to identify biomarkers for 
the diagnosis and monitoring of these diseases.
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the small-world attributes and network hubs but specific features 
for each modality such as network modules (Hagmann et al., 2008; 
Chen et al., 2009; He et al., 2009b). Moreover, several studies have 
directly compared DTI-based structural connectivity and R-fMRI 
based functional connectivity, and largely convergent results were 
found that the strength of resting-state functional connectivity 
correlated positively with structural connectivity strength (for 
a review, see Damoiseaux and Greicius, 2009). This implies that 
functionally linked resting brain networks likely reflect underly-
ing structural connectivity (Greicius et al., 2009; van den Heuvel 
et al., 2009a; Teipel et al., 2010). In particular, by focusing on the 
whole brain connectivity pattern, previous studies have demon-
strated overall, though imperfect, agreement between functional 
and structural connectivity at different spatial levels (Skudlarski 
et al., 2008; Honey et al., 2009). In spite of these efforts, the exact 
nature of the bi-directional interaction between brain structure 
and function, especially in the global topological organization 
remains unclear. Concentrating on this point, Park et al. (2008) 
demonstrated significantly distinct topological features between 
structural and functional brain networks. For example, structural 
brain networks showed higher efficiency than the functional brain 
networks. Collectively, by combining multiple imaging modali-
ties (e.g., fMRI, sMRI, and DTI), direct comparisons of the net-
work properties using large-sample neuroimaging data would be 
vital to address these issues. Specifically, we need to point out that 
the public release of the “1000 Functional Connectomes Project” 
dataset (1200+ resting-state R-fMRI and structural MRI datasets 
independently collected at 35 sites, http://www.nitrc.org/projects/
fcon_1000/) (Biswal et al., 2010) will be extremely important for 
the exploration and refinement of topological organization and 
relevant approaches to structural and functional networks in the 
human brain.

conclusIon
Through the combination of R-fMRI and graph theory-based 
network analysis techniques, intrinsic functional networks of 
the human brain have been generated and demonstrate converg-
ing and highly conserved topological organization over different 
scales and types of measurement, such as small-world and modu-
lar structures. More importantly, some of these features exhibit 
specific changes associated with normal development, aging and 
various pathological attacks, which indicates the potential value of 
these approaches in capturing and monitoring the brain organi-
zation under different mental states. With the advances in brain 
imaging techniques (e.g., higher spatiotemporal resolution) and 
the maturity and perfection of multiple analytical approaches on 
complex system in parallel, we can expect important progress in 
our understanding of how the brain works and how it interacts 
with other systems of the body.
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reliability was seen in the performance of the n-back task compared 
with resting-state (Deuker et al., 2009). We speculate that graph-
based metrics in R-fMRI may also have acceptable reliability and 
reproducibility, but this hypothesis needs to be tested directly by 
multi-center and longitudinal datasets.

Third, how do resting-state functional brain networks relate to 
individual traits and genetic factors? The answer to these questions 
may provide new insights into brain function. Smit et al. (2008) 
demonstrated that individual differences in the topological proper-
ties of resting-state functional brain networks constructed using 
EEG signals are heritable. van den Heuvel et al. (2009b) found that 
the overall organization of spontaneous functional brain networks 
had a strong association with intelligence quotient (IQ) as char-
acterized by a negative correlation between the normalized char-
acteristic path length and IQ, consistent with the findings from a 
recent structural brain network study (Li et al., 2009). Accordingly, 
it is of great interest to further investigate the relationship between 
network organization and individual characteristics, such as geno-
type and education level.

Fourth, only a few articles concentrate on the topological archi-
tecture of neuronal networks during the performance of tasks. 
Eguiluz et al. demonstrated scale-free small-world topology in 
human brain networks across different task conditions. Bassett 
et al. (2006) indicated that behavioral state in a finger-tapping task 
did not strongly influence the global topology of the human brain 
network derived from MEG signals during rest but was associated 
with emergence of some long-range connections. Their subsequent 
work (Bassett et al., 2009) further demonstrated that the superior 
task performance of work memory was positively correlated with 
the cost-efficiency (the difference between the global efficiency and 
cost of a network) of the β-band brain networks. More recently, 
Wang et al. (2010) investigated the age-related changes of functional 
brain networks during memory encoding and recognition, and 
they found longer path length in older adults due to the loss of 
long-range connections. Consequently, studying the brain networks 
under both resting and task conditions as well as the transition 
between these states may offer new insights into the rapid adaptive 
reconfiguration of neuronal assemblies that underlie the change 
between cognitive states.

Finally, the relationship between brain structure and function, 
both how brain function emerges from its structural substrate and 
inversely how experience-related functional plasticity reshapes 
brain structure, is an important future topic. The current review 
mainly focused on recent studies of R-fMRI based brain networks. It 
has been demonstrated that brain networks can also be constructed 
by using other imaging modalities (e.g., structural MRI, diffusion 
MRI, and EEG/MEG). For instance, researchers have been capa-
ble of constructing structural brain networks by measuring inter-
regional correlations of cortical thickness or gray matter volume 
across populations (He et al., 2007, 2008, 2009c; Bassett et al., 2008), 
and found that the resultant networks had small-world properties. 
Several diffusion MRI studies have utilized deterministic or proba-
bilistic white-matter tractography approaches to build structural 
brain networks, and also showed small-world topology and high 
connected hubs in the medial parietal and frontal regions. Of note, 
the brain networks derived from different imaging modalities have 
been found to show many common topological properties such as 
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