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from underlying neuronal dynamics (Nir et al., 2007; Shmuel and 
Leopold, 2008). Such observations have led to the postulate that 
these so-called resting-state networks represent an intrinsic prop-
erty of functional brain organization (Fox and Raichle, 2007). They 
therefore provide an attractive means by which to characterize func-
tional connectome properties.

One method for understanding rs-fMRI connectivity at a whole-
brain level is graph analysis. Within this framework, the brain is 
represented as a graph comprising N nodes connected by M edges. 
In fMRI analyses, the nodes typically correspond to brain regions 
and the edges to some measure of inter-regional interaction, such 
as a supra-threshold temporal correlation between regional time 
series. Representing the brain in this way enables the application of 
a rich set of mathematical tools and theoretical concepts to under-
stand brain network topology and dynamics (Strogatz, 2001; Albert 
and Barabasi, 2002; Newman, 2003; Bullmore and Sporns, 2009; 
Rubinov and Sporns, 2009). In particular, graph analytic studies 
of rs-fMRI data have demonstrated that functional brain networks 
display a small-world topology which provides high communica-
tion efficiency for relatively low connection cost, high resilience to 
random and targeted attack, and a hierarchical modular organiza-
tion which offers optimal adaptability to varying circumstances 
(Simon, 1962; Achard et al., 2006; Achard and Bullmore, 2007; 
Bullmore and Sporns, 2009; Meunier et al., 2009). These proper-
ties can be compromised by disease (Liu et al., 2008; He et al., 
2009; Wang et al., 2009b), and may therefore provide important 
connectivity-based markers of neural integrity.

IntroductIon
Our perceptions, thoughts, emotions and experiences are the prod-
uct of dynamic interactions occurring between functionally special-
ized regions of the brain. Thus, a complete understanding of such 
phenomena will only be possible once we understand how these 
interactions are organized and coordinated. An important step 
toward this goal involves developing detailed maps of the brain’s 
connectivity architecture, the so-called neural connectome (Sporns 
et al., 2005), at either the anatomical or functional level, at varying 
spatio-temporal resolutions.

Recent work on functional brain networks has focused on char-
acterizing connectivity patterns of spontaneous, low-frequency 
(<0.1 Hz) fluctuations of the blood-oxygenation-level-dependent 
(BOLD) signal measured using functional Magnetic Resonance 
Imaging (fMRI). This followed seminal observations that such 
fluctuations show a high degree of coherence and spatial organi-
zation when participants are not engaged in a specific task; a condi-
tion commonly referred to as the resting-state (Biswal et al., 1995; 
Beckmann et al., 2005; Fox et al., 2005; Salvador et al., 2005a,b). 
The organization of these resting-state networks recapitulates func-
tional networks observed across a range of cognitive, emotional, 
motor, and perceptual tasks (Fox et al., 2006; Vincent et al., 2007; 
Smith et al., 2009). They are robust across individuals and time 
(Damoiseaux et al., 2006; Buckner et al., 2009; Shehzad et al., 2009), 
can affect task-evoked activity (Fox and Raichle, 2007; Hesselmann 
et al., 2008), correlate with behavioral measures (Seeley et al., 
2007; Kelly et al., 2008; van den Heuvel et al., 2009), and emerge 
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The combination of graph analysis and fMRI offers a power-
ful means for characterizing brain networks. However, the field 
is nascent, and several methodological challenges require resolu-
tion. One of the most difficult involves the appropriate selection 
of brain regions to represent the network nodes. The majority of 
studies have used an a priori anatomical template as the basis for 
regional parcellation. These templates, such as those included in 
the Automated Anatomical Labeling (AAL) toolbox (Tzourio-
Mazoyer et al., 2002), the ANIMAL atlas (Collins et al., 1995), or 
the automated regional parcellation provided with software pack-
ages such as Freesurfer (Fischl et al., 2004), are generated by manual 
delineation of distinct brain regions in either a single individual 
(e.g., AAL) or sample of individuals (e.g., Freesurfer), and then 
mapped on to the brains of new participants using some spatial 
normalization routine. The mean time series is then extracted for 
each region, and pair-wise correlations between regional time series 
are computed to obtain a functional connectivity matrix. While the 
approach is straightforward and has proven useful, it is limited for 
several reasons. First, there is no accepted gold standard for regional 
parcellation, because, particularly in the cortex, there are no clear 
macroscopic boundaries that can be used to delineate adjacent 
regions. Thus, the criteria used are inherently arbitrary and vary 
from one template to the next. Second, the regions can vary in 
size from tens to thousands of voxels, which can affect resulting 
connectivity estimates (Salvador et al., 2008). Finally, because the 
regions are often large, it is likely that they include signals from 
several different functional sub-regions, which can complicate 
interpretation of region-specific findings.

More recently, some investigators have used parcellation meth-
ods that do not depend on arbitrary regional definitions. For 
example, Hagmann et al. (2007) used a random-seeding method 
to parcellate the cortical surface (gray/white matter boundary) into 
500–4000 regions of approximately equal size. These regions were 
then projected out to fill the cortical volume for use with fMRI data 
in subsequent work (Hagmann et al., 2008; Honey et al., 2009). In 
addition, voxel-based approaches have been employed (Eguiluz 
et al., 2005; van den Heuvel et al., 2008; Hayasaka and Laurienti, 
2010). With this approach, each image voxel is treated as a distinct 
network node. While such methods are computationally intensive, 
typically requiring analysis of networks of many thousands of nodes 
and many more edges, they demonstrate that a high degree of spa-
tial specificity is achievable in graph analytic studies.

The range of possible parcellation strategies available for defin-
ing network nodes in graph analysis of fMRI data highlights the 
importance of understanding the degree to which the results of 
any one study may be contingent on the particular parcellation 
scheme employed. To our knowledge, three studies have attempted 
to directly compare the results obtained using different parcella-
tion methods. In one, Zalesky et al. (2010) compared the results 
obtained from diffusion-MRI derived anatomical connectivity 
networks when using the AAL (82 regions) and random-seed 
generated templates comprising 100, 500, 1000, 2000, 3000, and 
4000 regions. General decisions about network topology, such as 
whether the brain is small-world or scale-free, were not affected 
by parcellation scale, but differences did emerge when topology 
was quantified in terms of specific organizational parameters 
such as path length and clustering. However, this study did not 

investigate inter-individual variability of network metrics and 
it is unclear whether their results apply to measures computed 
from resting-state functional connectivity networks. Hayasaka 
and Laurienti (2010) compared rs-fMRI networks generated at 
the voxel- and region-wise levels, as well as two intermediate 
resolutions, and found a trend for increasing small-worldness, 
scale-freeness, and connectedness at higher resolutions. Wang 
et al. (2009a) compared the results obtained using two different 
anatomical parcellations applied to rs-fMRI data–the AAL (90 
regions) and ANIMAL (70 regions) templates and reached similar 
conclusions, although they did not examine spatial scaling effects 
(i.e., the use of a coarse or fine-grained template). The available 
literature suggests that there may indeed be some effect of spatial 
scale on rs-fMRI network topology. For example, studies using 
coarser templates have concluded that resting-state functional 
brain organization is characterized by an exponentially truncated 
degree distribution (Achard et al., 2006; Hagmann et al., 2007), 
whereas voxel-based studies suggest the distribution follows a 
power law and is therefore scale-free (Eguiluz et al., 2005; van den 
Heuvel et al., 2008). Such conclusions have important implica-
tions for understanding how the brain might respond to disease 
or damage (Albert et al., 2000; Achard et al., 2006), and should 
therefore be methodologically validated.

Our goal in the current study was to examine the effects of 
parcellation scale on graph analytic measures of resting-state func-
tional brain organization. To this end, we calculated a number of 
commonly used metrics from functional connectivity matrices gen-
erated using parcellation schemes spanning a wide range of spatial 
scales, and quantified the differences and similarities between them. 
More specifically, we focused on the following network properties, 
as these are by far the most commonly studied in the literature: 
functional connectivity, network connectedness, clustering coef-
ficient, characteristic path length, small-worldness, and degree dis-
tribution. These measures are fundamental to most graph analytic 
studies of network topology and are the basis upon which inferences 
regarding network small-worldness or scale-freeness are made. Our 
results draw attention to the potential role different parcellation 
strategies may have in influencing the findings of graph analytic 
studies, and should inform interpretation of any findings derived 
using such methods.

MaterIals and Methods
PartIcIPants
Thirty (19 male) participants took part in the study. The mean age 
of the sample was 26.77 years (SD = 10.30 years). Five participants 
were left-handed. All volunteers were free of personal or family 
history of serious mental illness or neurological disorder, and had 
no history of substance abuse or head injury. All participants gave 
written, informed consent in accordance with local ethics com-
mittee guidelines.

IMagIng ParaMeters
Scans were acquired at the Magnetic Resonance Imaging and 
Spectroscopy Unit (MRIS), Addenbrooke’s Hospital, Cambridge, 
UK, using a GE Signa HDxt system (General Electric, Milwaukee 
WI, USA) operating at 3 Tesla (3T). For rs-fMRI analyses, 512 
echo-planar imaging (EPI) volumes depicting blood oxygen level 
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by the AAL node were chosen at random. Each of these voxels 
defined the “origin” of a distinct micro node. The remaining vox-
els  encapsulated by the AAL node were then assigned to one and 
only one of the K origins. In particular, a voxel was assigned to the 
origin to which it was closest, as dictated by the shortest Euclidean 
distance. Any ties in distance were broken randomly. This guaran-
teed contiguity of each micro node. The allocation procedure was 
repeated independently for each AAL node. An alternative approach 
would involve arbitrary parcellation of the binarized AAL mask 
without respecting the existing divisions of the AAL template (i.e., 
permit a micro-node to lie across multiple AAL nodes), but this 
method would permit non-sensical nodes that, for example, include 
both hemispheres.

The above procedure was repeated six times, for N = 100, 250, 
500, 1000, 1500, and 5000. We also generated networks using the 
original AAL, resulting in a total of seven parcellation scales being 
studied. Each of these templates was applied to the participants’ 
functional data to extract regional mean time series. To minimize 
noise associated with variable acquisition coverage in different 
individuals, we only retained ROIs where at least 70% of the vox-
els contained a non-zero signal. ROIs not meeting this criterion 
in all subjects were excluded from further analysis. This ensured 
that all networks within a parcellation scale were constructed from 
the same number of nodes. The final result was seven templates, 
comprising 84, 91, 230, 438, 890, 1314, and 4320 regions. From 
hereon, these will be referred to as aal84, parc91, parc230, parc438, 
parc890, parc1314, and parc4320, respectively. The aal prefix is 
intended to denote that the ROI boundaries for that template are 
based on those of the original AAL. The parc prefix denotes that 
the ROI boundaries have been determined using the algorithm 
described above. Details about ROI volumes at each parcellation 
scale are presented in Table 1.

graPh analysIs
Network construction
At each parcellation scale, for each subject, the mean time series 
of each region was extracted and decomposed into four distinct 
frequency bands using the maximal overlap discrete wavelet trans-
form (Percival and Walden, 2000; Bullmore et al., 2004; Achard 
et al., 2006). We used the mean time series of each region, as this is 
the most commonly used method for estimating regional activity 
fluctuations. We note that other techniques, such as extracting the 
principal eigenvector, may also provide a representative sample 
of regional activity. The four frequency bands identified were: 
scale 1, 0.16–0.31 Hz; scale 2, 0.08–0.16 Hz; scale 3, 0.04–0.08 Hz; 
and scale 4, 0.02–0.04 Hz. In the present analysis, we focused on 
scale 3 of the wavelet decomposition (0.04–0.08 Hz), as this is the 

dependent (BOLD) contrast were acquired of the whole-brain 
using the following parameters: repetition time (TR) = 1600 ms; 
echo time (TE) = 35 ms; number of excitations (NEX) = 1; number 
of slices = 23; slice thickness = 7 mm plus 0 mm interslice gap 
(spacing between slices = 7mm); Flip Angle (FA) = 90°; field of 
view (FOV) = 240 mm × 240 mm; image matrix size = 64 × 64; 
voxel dimensions = 3.75 mm × 3.75 mm.

IMage Pre-ProcessIng
For each individual, functional volumes were realigned using 
a rigid-body transformation to correct for geometric displace-
ments associated with head movements and rotations. Temporal 
motion correction was then performed by regressing the current 
and lagged first and second order displacements against the time 
series of the realigned images. The residuals of this regression 
were then used for further analysis. These steps were implemented 
using freely available software1. Finally, the realigned, temporally 
corrected images were spatially normalized to the International 
Consortium for Brain Mapping echo-planar imaging template 
supplied with SPM52 using a 12-parameter affine transforma-
tion (Jenkinson and Smith, 2001), as implemented in the FSL 
toolkit3. The accuracy of all normalizations was verified via visual 
inspection. The images were re-sliced to 2 mm3 voxels during the 
spatial normalization.

teMPlate generatIon
To construct parcellation templates of varying spatial resolution, 
we used an algorithm adapted from that described by Zalesky et al. 
(2010) for partitioning the AAL template into N contiguous regions 
while constraining the ROI volumes to be as uniform as possible. To 
generate a parcellation of finer scale than the native AAL resolution, 
each node composing the AAL template was subdivided into a set 
of micro nodes. Each micro node was constrained to lie within the 
volume encapsulated by its parent AAL node and each micro node 
was ensured to be contiguous.

The parcellation was performed using the following algorithm: 
Let N be the total number of desired nodes (i.e., the number of 
micro nodes). The number of micro nodes into which an AAL 
node was subdivided was proportional to its volume. Specifically, 
if an AAL node encapsulated V% of the total gray-matter volume, 
it was subdivided into K = VN micro nodes. This constraint pro-
moted uniformity in the volumes encapsulated by micro nodes. To 
subdivide an AAL node into K micro nodes, K voxels encapsulated 

Table 1 | Region-of-interest (ROI) volume (mm3) statistics as a function of parcellation scale.

 aal84 parc91 parc230 parc438 parc890 parc1314 parc4320

Median  11800 11200 4536 2372 1156 768 236

Inter-quartile range 10788 10040 3688 1968 888 600 176

Ratio 0.91 0.89 0.81 0.83 0.77 0.78 0.75

Median represents the median volume across all ROIs in each template. Variability in ROI size was assessed using the inter-quartile range. The Ratio measure was 
calculated as the inter-quartile range normalized by the median.

1http://www-bmu.psychiatry.cam.ac.uk/software
2http://www.fil.ion.ucl.ac.uk/spm/software/spm5
3http://www.fmrib.ox.ac.uk/fsl
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Graph metrics
A number of graph analytic measures can be used to characterize 
diverse aspects of network organization (reviewed in Rubinov and 
Sporns, 2009). Here, we concentrated on those most frequently used 
in the literature, and which pertain to the most fundamental prop-
erties of the networks: network connectedness, small-worldness, 
and the degree distribution.

Network connectedness refers to how well connected the net-
work nodes are. If a path can be traced from any node in the network 
to all others, the network is connected. In thresholded data such as 
those provided by fMRI, this can be assessed by computing the size 
of the largest connected component of the graph as a function of 
cost. As the connectedness of a network increases, the size of the 
largest connected component will approach N.

Small-worldness was assessed in relation to five parameters: 
clustering coefficient, mean minimum path length, λ, γ, and σ. 
The clustering coefficient, C

i
, is the proportion of connections 

present between a node’s neighbors. High values imply that nodes 
connected to node i are also connected to each other, suggesting 
node i is situated in a cliquish neighborhood of connectivity. 
The mean minimum path length, L

i
, was computed for each 

node as the average number of edges comprising the shortest 
path between node i and all other nodes. The characteristic path 
length of the network, L

net
, was simply the average path length 

of the entire network. Low values indicate that information 
can be transferred between nodes with only a few connections, 
which is indicative of a more efficient topological organization 
(Latora and Marchiori, 2001). In cases where the largest con-
nected component of the network was <N, which typically occurs 
at low connection costs, we set the path length of disconnected 
nodes to the maximum observed for the network. This helped 
avoid computational problems associated with estimating path 
length for an isolated nodes, which is formally defined as ∞ (see 
also Zalesky et al., 2010). As such, our path length measure was 
inversely related to the global network efficiency measure pro-
posed elsewhere (Latora and Marchiori, 2001), where discon-
nected nodes are assigned an efficiency of zero. Separate analyses 
showed that path length and efficiency values were indeed highly 
negatively correlated (<−0.90 for most costs and templates), and 
the general pattern of results concerning the effects of different 
parcellation scales was consistent.

To diagnose small-worldness, L
net

 and C
net

 were normalized by 
their corresponding values in comparable random graphs (L

ran
 

and C
ran

, respectively), resulting in estimates of λ = L
net

/L
ran

 and 
γ = C

net
/C

ran
, respectively. In small-world networks, λ∼1 and γ >  1. 

Thus, small-world properties are evident when the scalar summary 
σ = γ/λ > 1 (Humphries et al., 2006). We calculated L

ran
 and C

ran
 

using two different methods. One involved using standard analytic 
approximations for equivalent Erdos–Rényi random graphs (Albert 
and Barabasi, 2002), where L

ran
 = ln(N)/ln(d) and C

ran
 = d/N and 

d represents the average nodal degree of the ith node. The second 
method involved using an algorithm that gradually rewired the 
edges of the thresholded adjacency matrix for each participant to 
generate a random topology (Maslov and Sneppen, 2002). In both 
cases, the normalization was matched for network size and mean 
degree, but the rewiring algorithm also matched for degree distri-
bution. From hereon, we will refer to the Erdos–Rényi method as 

band most commonly studied in rs-fMRI analyses and represents 
a reasonable trade-off between avoiding the physiological noise 
associated with higher frequency oscillations (Cordes et al., 2001) 
and the measurement error associated with estimating very low 
 frequency  correlations from limited time series (Achard et al., 
2008). To correct for BOLD signal fluctuations of a non-neuro-
nal origin, time series extracted from seed regions placed in the 
white matter and cerebrospinal fluid were regressed against the 
wavelet-filtered regional time courses, and the residuals of these 
regressions were used for further analyses (Fox et al., 2005). We did 
not correct for global signal fluctuations as this step is known to 
introduce artifactual correlations (Fox et al., 2009; Murphy et al., 
2009), and its effects on whole-brain connectivity networks are 
as yet unclear.

Correlations between each possible pair of regions were com-
puted using the filtered, corrected regional time courses to generate 
a N × N functional connectivity matrix for each individual at each 
parcellation scale. As these connectivity matrices were populated 
using a continuous association measure (i.e., wavelet correlations), 
it was necessary to apply a threshold to remove noisy edges and 
extract an underlying network topology. As the choice of a spe-
cific threshold can be arbitrary, we examined network properties 
across a range of thresholds to test for consistency of the results. 
These thresholds were expressed as a network connection cost, 
defined as the proportion of supra-threshold connections relative 
to the total possible number of connections in the network (Achard 
and Bullmore, 2007). Thus, a network thresholded at a cost of 
10% comprised only the highest 10% of correlation values in the 
matrix. The sign of the correlations in the connectivity matrices 
was ignored, so that thresholding was based only on the absolute 
correlation values.

In our analyses, for templates ranging in resolution from 
aal84 to parc1314, we examined the full range of costs from 5 
to 40%. We chose a minimum bound of 5% to avoid excess net-
work fragmentation at sparser thresholds. The upper bound of 
40% was chosen because it represents a liberal limit on estimates 
of cerebral connectivity reported in the literature (Latora and 
Marchiori, 2003; Bassett and Bullmore, 2006), and the networks 
tended toward randomness at higher costs (i.e., estimates of σ, 
an index of small-worldness, approached those of a random 
network; see also Figure 6). (Note that this approach implic-
itly assumes that randomness is a spurious property of brain 
networks.) For parc4320, we only examined costs of 10, 20, 30, 
and 40% due to the computational time involved in generating 
network measures for such large networks. After applying each 
threshold, the matrices were binarized such that supra-threshold 
connections were assigned to one and sub-threshold connections 
to zero. These binarized adjacency matrices were then used as a 
basis for network construction and graph analysis. In total, this 
procedure resulted in the construction and analysis of 6420 net-
work graphs. A schematic overview of the processing steps using 
in graph construction is provided in Figure 1. We used binary, 
globally thresholded graphs for network characterization because 
this is the most frequently used approach in the literature. Other 
methods, such as spectral graph partitioning (see Boccaletti et al., 
2006 for an overview), may also provide useful information and 
warrant further investigation.



Frontiers in Systems Neuroscience www.frontiersin.org June 2010 | Volume 4 | Article 22 | 5

Fornito et al. Network size and graph analysis

associated with the binning procedures required for constructing 
frequency-degree plots (Liu et al., 2005). We formally tested for 
scale-freeness by fitting models describing power-law (scale-free), 
exponential and exponentially truncated (broad-scale) distributions 
to the curves for each subject, and compared their goodness of fit 
using Akaike’s information criterion (AIC). The model with the 
lowest AIC value was identified as the one providing the best fit to 
the data. We used simple least squares estimation, consistent with 
prior work (e.g., Achard et al., 2006). Other methods can provide 
more accurate results when estimating power-law scaling (Bauke, 
2007; Clauset et al., 2009), but may be limited in cases where there is 
a truncation of the power-law, as in the present data (see below). All 
graph analyses were performed using Matlab 7.8.0 (MathWorks, Inc) 
using a combination of freely available tools4,5,6 and custom code.

statIstIcal analyses
We performed two types of analyses: one focused on mean differences, 
and the other on individual differences. To test whether there were 
any mean differences in network parameters as a function of parcel-

ER-normalization and the rewiring method as RW-normalization. 
These abbreviations will be appended as subscripts when referring 
to the normalized measures γ, λ, and σ to denote the normalization 
method used in their computation.

By definition, RW-normalization requires generation and meas-
urement of surrogate graphs, increasing computation burden rela-
tive to ER-normalization. The time difference between the two can 
be an important consideration when studying large networks over 
multiple costs. Accordingly, in the current study, we computed nor-
malized measures for costs of 10, 20, 30, and 40%. In the case of the 
RW-normalization, 20 random graphs were analyzed per subject 
per cost at each parcellation scale. Consequently, the normalized 
parameters γ, λ, and σ were only evaluated at these four costs.

To examine the degree distribution of the networks, we plotted 
nodal degree against nodal rank in log–log coordinates to diag-
nose scale-freeness. Typically, an approximately linear rank-degree 
plot is interpreted as evidence of power-law scaling in the degree 
 distribution, although it does not provide conclusive evidence for 
such properties (Liu et al., 2005; Clauset et al., 2009). A power-law or 
scale-free degree distribution suggests that while most nodes possess 
a low degree, the probability of finding very highly connected nodes 
(termed network hubs) is higher than expected in a commensurate 
random network. We used rank-degree plots to avoid the artifacts 

FIguRe 1 | Overview of image processing steps used in generating 
graph-based representations of whole-brain connectivity network. Far left: 
seven distinct parcellation templates were generated, which divided the brain 
into (from top to bottom) 84, 91, 230, 438, 890, 1314, or 4230 regions-of-
interest. Middle-left: the templates were applied to each subject’s fMRI 
volumes and the mean time series of each region were extracted and 
decomposed into four frequency intervals using a wavelet transform. 
Middle-right: spontaneous oscillations subtended by the wavelet frequency 
interval 0.04–0.08 Hz were further corrected for physiological noise signals and 

temporal correlations between each possible pair of regional corrected time 
series were calculated to generate a functional connectivity matrix for each 
template for each participant. These matrices were then thresholded and 
binarized across a range of connection costs (examples shown are for 10, 20, 
30, and 40% costs). Far right: The thresholded, binarized adajacency matrices 
were used to generate graph-based representations of network connectivity, 
such that each region was represented as a node and each supra-threshold 
correlation as a connecting edge. These graphs were used as a basis for 
calculating graph metrics.

4http://sites.google.com/a/brain-connectivity-toolbox.net/bct/
5http://www.boost.org/doc/libs/1_41_0/libs/graph/doc/index.html
6http://www.atmos.washington.edu/∼wmtsa/
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higher) were <0.3. This suggests that using more fine-grained 
templates can reduce the dependence of functional connectiv-
ity estimates on ROI size. In addition, Figure 3 indicates that 
inter-individual variance in the association between ROI size 
and connectivity estimates is reduced at higher spatial resolu-
tions, which may serve to increase power in statistical analyses 
of graph measures.

ParcellatIon scale and graPh MetrIcs
The effects of parcellation scale on network connectedness
To examine how parcellation scale affected network connectedness 
we calculated the size of the largest connected component, as a 
proportion of N, for each subject at each parcellation scale across 
the cost range 5–40%. (This analysis was not possible for parc4320, 
as only four costs were examined at this scale.) The results are 
presented in Figure 4 (left). A value of 1 on the y-axis indicates 
that the largest connected component includes all nodes – the net-
work is connected. As can be seen, increasing spatial resolution was 
associated with greater connectedness. In particular, the parc890 
and parc1314 networks were, on average, connected even when the 
networks were sparse (i.e., cost <10%). In contrast, lower resolution 
templates only achieved connectedness at higher costs.

lation scale, we ran separate repeated measures analyses of  variance 
at each cost examined, using parcellation scale as the independent 
variable. This analysis was intended to determine whether mean dif-
ferences between parcellation scales were of sufficient magnitude to 
be considered statistically significant. As the analysis was intended 
to highlight parcellation scales where there may be differences, we 
adopted an exploratory threshold of α = 0.05, uncorrected.

While different parcellation scales may show mean differences in 
absolute parameter estimates, they may still preserve the pattern of 
relative differences between individuals. Such relative differences are 
generally those of primary interest in correlational or case–control 
experiments. Thus, to quantify whether relative differences were pre-
served across scales, we computed the correlation between each pair of 
scales for each measure at costs of 10, 20, 30, and 40%. Spearman rank 
correlations were used to account for non-normality of the data.

results
ParcellatIon scale and functIonal connectIvIty estIMates
Table 2 presents measures of average connectivity, and variability 
in connectivity, as a function of parcellation scale. There was a 
general trend for average functional connectivity, as measured by 
the median correlation in each individual’s connectivity matrix, to 
decrease with increasing spatial resolution of the template; from the 
lowest to the highest resolution, there was an approximate decrease 
of 38% in the mean correlation value. Measures of between-subject 
variability in mean connectivity, and within-subject variability in 
connectivity estimates, remained relatively consistent across par-
cellation scales. Figure 2 presents the sample averaged correlation 
histograms at each parcellation scale. The shapes of each distribu-
tion are highly similar, but their mean value is shifted toward zero 
with increasing spatial resolution.

To examine how changes in ROI size associated with each 
parcellation scale were related to regional functional connectivity 
estimates, we used the following procedure. At each parcellation 
scale, for each subject, we calculated the mean correlation value 
of each brain region. We then correlated these regional mean 
correlation values with the volume of each region to obtain a 
correlation value for each participant at each scale reflecting the 
association between average regional connectivity and ROI size. 
Figure 3 presents a boxplot of these subject-specific correlation 
values at each parcellation scale. On average, across all scales, the 
correlation between ROI size and mean regional connectivity was 
low (median <0.3), although for some subjects it exceeded 0.5 
when coarser templates (i.e., aal84 and parc91) were used. All 
correlations for more fine-grained templates (i.e., parc890 and 

Table 2 | Changes in average in functional connectivity, and variability of connectivity estimates, as a function of parcellation scale.

 aal84 parc91 parc230 parc438 parc890 parc1314 parc4320

Mean functional connectivity 0.56 0.56 0.50 0.45 0.43 0.41 0.35

Between-subject variability 0.09 0.09 0.09 0.08 0.08 0.08 0.08

Within-subject variability 0.17 0.17 0.18 0.19 0.19 0.19 0.21

The mean functional connectivity estimates were obtained by computing the average wavelet correlation coefficient for each subject’s unthresholded connectivity 
matrix, and then taking the sample average of these mean values. Between-subject variability was computed by taking the sample standard deviation of the mean 
correlation value of each subject’s matrix. Within-subject variability was computed by calculating the standard deviation of correlation values in each subject’s matrix, 
and then taking the sample mean of these standard deviation values.
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FIguRe 2 | Functional connectivity histograms obtained at each 
parcellation scale. Each line corresponds to the sample average histogram of 
correlation values contained in each participant’s unthresholded functional 
connectivity matrix.
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FIguRe 3 | Boxplots of subject-specific correlations between mean 
regional functional connectivity and regional volumes at each 
parcellation scale. Boxes represent the inter-quartile range, heavy horizontal 
lines the median. Whiskers represent the 5th and 95th percentiles. Circles 
represent values beyond these percentiles.

To further quantify the degree of similarity between parcellation 
scales with respect to network connectedness, we calculated the 
cost at which each subject’s network became connected for each 
parcellation scale. We then computed the correlation between these 
values for each pair of parcellation scales. This correlation matrix is 
presented in Figure 4 (right). Correlations were generally positive, 
and were highest for scales with similar resolution. For example, 
the correlation between parc1314 and parc890 was higher than 
that for parc1314 and aal84.

the effects of ParcellatIon scale on network 
sMall-worldness
Figure 5 plots the sample mean C

net
 and L

net 
for all parcellations 

up to parc1314 across costs 5–40%. Figure 6 plots the sample 
means for C

net,
 L

net
, λ, and γ for all parcellations at costs of 10, 20, 

30, and 40%. Figure 7 shows the same for σ. Significant mean 
differences as a function of parcellation scale were apparent for 
nearly all costs examined. In general, there was trend for net-
works defined at higher resolutions to be associated with lower 
L

net
. The dependence of C

net
 on parcellation scale varied as a 

function of cost; higher resolution networks showed increased 
clustering at costs lower than ∼25%, but this trend reversed 
for higher costs. This effect likely reflects the aforementioned 
parcellation-dependent effects on network fragmentation: at 
lower costs, coarse resolution networks were more fragmented, 
 lowering estimates of C

net
.

The effects of parcellation scale on normalized measures varied 
depending on which normalization was used. In general, as parcella-
tion resolution increased λ

ER
 estimates increased and λ

RW
 decreased. 

The only exception to this trend was λ
ER

 at 10% cost, where aal84 
and parc91 showed the highest path length. Again, this effect likely 
reflects increased fragmentation in the observed networks at sparser 
thresholds. Estimates of γ

RW
 were consistently higher in high-resolu-

tion templates, whereas γ
ER

 differences also showed a dependence on 
cost: at 10%, coarser resolutions showed lower values, whereas this 
effect reversed at higher costs. Similar trends were observed for σ, 
such that higher resolutions were associated with lower σ

RW
 values 

across all costs examined, whereas σ
ER

 differences were contingent 
on cost in a manner that paralleled the pattern observed for γ

ER
.

The pair-wise correlations between different parcellation 
scales for C

net, 
L

net
, λ

RW
, γ

RW
, σ

ER,
 and σ

RW
, are quantified at costs 

of 10, 20, 30, and 40% in Figure 8. (Matrices for λ
ER

 and γ
ER

 
are not shown because they were computed by normalizing 
λ and γ with a constant value across all individuals, making 

FIguRe 4 | Mean values and individual differences in network connectedness as a function of parcellation scale. Left: Sample mean size of largest connected 
network component for each parcellation scale across all costs examined (*p < 0.05). Right: correlation matrix of inter-scale associations for the cost at which each 
individual’s network became connected.
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lower at sparser costs, particularly for clustering, likely reflecting 
increased fragmentation of these lower resolution networks. 
RW-normalization of C

net, 
and L

net 
largely preserved individual 

differences and led to higher inter-scale correlations. The pattern 
of inter-scale correlations for σ varied depending on whether it 

individual differences in these parameters identical to the non-
normalized measures.) In general, most measures were highly 
positively correlated across scales, suggesting preservation of 
individual differences. Inter-correlations between the two coars-
est templates – aal84 and parc91 – and all other scales were 

FIguRe 5 | Mean values of global network path length (left) and clustering coefficient (right) at each cost. *p < 0.05.

FIguRe 6 | Mean values of global network path length (top left), λeR (top middle), λRW (top right), clustering (bottom left), γeR (bottom middle) and γRW 
(bottom right) at costs of 10, 20, 30, and 40% for each parcellation scale. *p < 0.05.
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FIguRe 7 | Mean small-worldness (σ) values computing using eR- or RW-normalization (left and right respectively) for each parcellation scale at costs of 
10, 20, 30, and 40%. *p < 0.05.

was computed using ER- or RW-normalization: all scales were 
highly positively correlated (all r > 0.70) for RW-normalization, 
but only pairs of scales similar in size showed high correlations 
for ER-normalization.

The effects of parcellation scale on network degree distributions
Figure 9 plots the sample mean degree distributions for each parcel-
lation scale at costs of 10, 20, 30, and 40%. The non-linearity of the 
curves indicates the networks were not scale-free, but rather were 
characterized by an exponentially truncated power-law function. 
For all subjects, across all parcellation scales and all costs examined, 
an exponentially truncated power-law provided a better fit to the 
data than a power-law or exponential model, as determined using 
the AIC.

The exponentially truncated power-law model fit to the data 
was defined as y cd ei i

d ki= − −α 1 /  (Achard et al., 2006). The model was 
linearized by taking the logarithm of both sides and the parameters 
α, k, and c were fitted using least squares. The three model param-
eters can be interpreted as follows: α − 1 is the scaling exponent, 
k is the degree of the exponential cutoff (i.e., truncation point) 
above which the power-law becomes dominated by exponential 
scaling, and c is a normalization constant. The cutoff degree k mod-
els potential biological constraints on network size (e.g., head size) 
that preclude the formation of very rare, but highly connected 
hub nodes predicted by a pure power-law model. When plotting 
the nodal distribution function on doubly logarithmic axes, the 
scaling exponent, α − 1, represents the slope of the distribution 
over the power-law regime. However, if the cutoff degree is low, 
the exponential always bears some influence on the power-law, 
and thus the scaling exponent becomes a poor estimator of slope. 
This effect was observed in the present study, and so the power-law 
exponent should be interpreted cautiously.

As shown in Figure 10, parcellations with higher spatial reso-
lution were associated with lower values for both α − 1 and k. In 
particular, a marked discrepancy was evident in the fitted cutoff 
degree between parc4320 and all other scales. This  discrepancy 

indicates the existence of highly connected hub nodes is less 
probable as the parcellation scale is made finer. This is also con-
sistent with the finding that the network tends toward a more 
random topology as the scale is made finer, where nodal degrees 
are binomially distributed (i.e., evenly dispersed about a mean 
nodal degree). One interpretational caveat is that the networks 
differed in size, and so the descriptors of the degree distribution 
may not be directly comparable. The best way of normalizing 
such values for differences in network size remains an unresolved 
issue.

Figure 11 plots the inter-scale pair-wise correlations for α − 1 
and k. The inter-correlations were all positive and generally high, 
particularly between parcellations with spatial resolution equal to 
or greater than parc230. This suggests that, despite there being 
mean differences in these parameters across scales, inter-individual 
differences are relatively conserved.

The effects of parcellation scale on regional network metrics
Quantitative comparisons of how regional properties vary as a 
function of parcellation scale are difficult, as there is no one-to-
one correspondence between ROI definitions across templates. 
To get an impression of how parcellation scale affected regional 
properties, we mapped nodal path length and clustering at each 
parcellation scale for networks defined at 10% cost (Figure 12). 
The results were broadly consistent across scales. Regions show-
ing the lowest path length were primarily localized to posterior 
medial parietal and visual cortices, as well as lateral superior 
parietal, temporal and frontal regions. Regions showing the 
highest clustering were located in somatomotor cortices, pri-
mary visual areas, and lateral temporal and prefrontal regions. 
Naturally, higher resolutions afforded greater localizing power, 
and in some cases what seem to be larger regions of homogene-
ous values split into distinct clusters. For example, the precen-
tral gyrus was one of the regions showing lowest path length at 
the aal84 scale, but higher resolutions indicated that this effect 
was mainly driven by a more focal cluster localized to superior 
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dIscussIon
The application of graph analytic techniques to fMRI data has 
provided researchers with a rich set of tools for characterizing brain 
network connectivity. An important step when conducting these 
analyses involves parcellating the brain into distinct regions, which 

 portions of this gyrus. Thus, not surprisingly, higher resolutions 
afforded greater power for localizing focal effects. The results 
were very consistent across scales greater than parc890 however, 
suggesting there may be diminishing returns associated with fur-
ther increases in resolution.

FIguRe 8 | Inter-scale correlations in global network properties at costs of 10, 20, 30, and 40%. (A) Clustering; (B) γRW; (C) path length; (D) λRW; (e) σER; and (F) σRW.
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ogy, such as whether the network is small-world or scale-free, are 
robust to the parcellation strategy adopted, there is considerable 
variation in the exact values defining key parameters of network 
organization. In addition, while individual differences are generally 
preserved across parcellation scales, the method used to generate 
normalized measures such as γ, λ, and σ can have a major effect. 

serve as network nodes in graph construction. A variety of different 
parcellation strategies have been employed in the literature, but 
the effect of differences in such schemes on the findings has been 
unclear. In this study, we examined the effects of parcellation scale 
on some of the most commonly used graph analytic measures. 
We found that while simple inferences regarding network topol-

FIguRe 9 | Log–log nodal rank-degree plots for each parcellation scale at costs of 10, 20, 30, and 40%.

FIguRe 10 | Mean values of the power-law exponent (slope, left) and exponential cutoff (right) of the degree distributions at each parcellation scale for 
costs of 10, 20, 30 and 40%. *p < 0.05.

FIguRe 11 | Inter-scale correlations in degree distribution power-law exponents (top row) and exponential cut-off values (bottom row) for costs of 10, 20, 
30, and 40% (left to right columns).
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time series correlations, which represent a ratio of  temporal cov-
ariance to variance. However, one attractive property of higher 
resolution templates was that they showed negligible correlations 
between regional variations in volume and functional connectiv-
ity. For coarser templates, although the median correlation was 
small-to-moderate ∼0.28, there was considerable inter-individual 
variability in the degree to which nodal size was correlated with 
regional connectivity; in some cases the correlations approached 
0.60. This variability can add noise to analyses of group or indi-
vidual differences, and reduce power to detect significant effects. 
In contrast, higher resolution templates were associated with both 
lower median correlations, and much lower inter-individual vari-
ability in correlation values, suggesting that inter-regional vari-
ations in size are less of a confound at these scales (particularly 
parc890 and above). These findings suggest that higher resolu-
tion templates may provide a desirable alternative to commonly 
used low-resolution anatomical parcellations, such as the AAL 
or ANIMAL templates, but these considerations need to be bal-
anced with the increased error associated with estimation of inter-
regional temporal correlations.

Inter-scale differences in global network measures
As with previous investigations (Wang et al., 2009a; Zalesky et al., 
2010), we found that gross topological inferences about brain net-
works, such as whether they are small-world or scale-free, are robust 
to the specific parcellation scheme employed. However, we observed 
significant effects of parcellation scale on the absolute values of 
all graph metrics across most of the costs studied, suggesting that 
varying network spatial resolutions are associated with sizeable 
changes in the specific values of key network parameters such as 
path length, clustering and related measures. This result is consist-
ent with a similar analysis of anatomical networks generated using 
diffusion-weighted imaging (Zalesky et al., 2010). Together, these 
findings suggest that comparisons of specific values obtained by 
different investigators using distinct parcellation schemes should 
be done cautiously.

In general, coarser networks were associated with higher path 
length. They were also associated with reduced clustering at sparse 
costs, but this trend reversed for costs >25%, likely reflecting parcel-
lation-dependent effects on network connectedness. In a fragmented 
network, disconnected nodes have C

i
 = 0, which lowers the global C

net
 

estimate. Coarser templates were associated with greater fragmenta-
tion at low costs, suggesting this may have affected C

net
 values.

The effects of parcellation scale on network small-worldness, 
as indexed by σ, depended on the normalization used to com-
pute the measure. ER-normalization showed a cost-dependent 
trend paralleling that observed for clustering: coarser resolutions 
were associated with smaller σ

ER
 at costs <20%, but larger σ

ER
 at 

higher costs. Again, this likely reflects the effects of increased net-
work fragmentation at sparse costs for coarse scales, which would 
serve to increase path length and decrease clustering, producing 
a net reduction in small-worldness. In contrast, there was a con-
sistent trend for higher resolutions to be associated with lower 
small-worldness when σ

 
was calculated using RW-normalization. 

This discrepancy may reflect the fact that RW-normalization 
matches the observed networks for degree distribution whereas 
ER-normalization is comparable to matching only for size and 

FIguRe 12 | Medial and lateral cortical surface renderings illustrating 
regional variations in sample mean path length (left) and clustering 
(right) at each parcellation scale. Path length values have been inverted so 
that lower values are represented by “hotter” colors.

These findings highlight the need to consider the impact that vari-
ations in parcellation strategies may have on the reproducibility of 
findings in graph analytic studies.

The influence of parcellation scale on functional connectivity
Our findings indicate that higher resolutions were associated with 
lower mean correlation values. The shape of the correlation distri-
bution was remarkably similar across scales, but each increment 
in spatial precision shifted the mean of the distribution closer 
to zero. This may reflect greater noise associated with measure-
ments taken from smaller ROIs, which reduces the likelihood of 
finding strong correlations with other regions. Indeed, second-
ary analyses indicated that while there was a ∼7% decrease in 
median covariance between regional time series when moving 
from the coarsest (aal84) to finest (parc4320) resolution, there was 
a corresponding ∼38% increase in median variance of regional 
time series. This increased temporal variability reflects noisier 
measurements at higher resolutions and will reduce any  pair-wise 
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tion scale and measurement signal-to-noise. Based on our findings, 
variations between measures obtained using parc890 and greater 
were relatively small compared to those obtained using coarser 
templates and may provide a reasonable spatial scale for explora-
tion of network properties. Another attractive property of higher 
resolution templates was that they became connected at much 
lower costs, meaning that analyses of these networks will be less 
susceptible to the computational problems caused by isolated or 
disconnected nodes. Greater connectedness with increasing N may 
be a general property of most complex networks. Random graphs 
with mean degree (k) > ln(N) are almost surely connected (Albert 
and Barabasi, 2002), a threshold that is reached at much sparser 
costs in large networks. While brain networks are not equivalent to 
random graphs, a similar relationship between N and connected-
ness likely exists, as suggested by our data (see Figure 4).

The effects of parcellation scale on individual differences
Our analysis of mean differences suggested that parcellation scale 
exerted a considerable effect on the absolute values of key network 
parameters. However, most investigations are less concerned with 
estimating the absolute value of a given parameter than with assess-
ing the effects of individual differences in these parameters. For 
example, researchers may want to test whether a certain network 
property correlates with some behavioral index (van den Heuvel 
et al., 2009), or differs between some patient and control group 
(Liu et al., 2008). Thus, if individual differences across parcellation 
scales are preserved, then mean differences between them become 
less important.

To examine how parcellation scale related to individual differ-
ences in these measures, we quantified the associations between 
each pair of scales for each measure at costs of 10, 20, 30, and 40%. 
Our findings indicated that these inter-scale associations varied 
depending on the specific network property and cost being stud-
ied. Estimates of path length were positively correlated between all 
scales and across all costs, although the correlations were greater for 
more densely connected networks. The explanation for this is intui-
tive: as more connections are added to the network, the topologies 
begin to resemble each other until cost = 100%, where they yield 
identical values across individuals. Inter-correlations between scales 
parc230 and higher were all >0.75, the correlations being >0.90 
for scales greater than parc890. The two coarsest scales, aal84 and 
parc92, were highly correlated with each other, but showed lower 
correlations with the other scales, suggesting the results obtained at 
resolutions <200 regions may be less consistent with those obtained 
at higher resolutions. Raw clustering values were less correlated 
than path length, although inter-correlations between scales higher 
than parc890 remained high (i.e., >0.90). This likely reflects the 
aforementioned differences in network fragmentation. The cor-
relations increased at higher costs suggesting that the topologies 
converge as more connections are added to the network. Inter-
correlations for small-worldness were again dependent on the 
normalization method, with correlations generally being higher 
following RW-normalization. A corollary of these findings is that 
RW-normalization may lead to more reproducible findings.

Together, these data indicate that individual differences are largely 
preserved for scales greater than ∼200 regions, and are particularly 
reproducible between scales around and exceeding 1000 regions. An 

mean degree. Thus, the RW approach normalizes the observed 
parameters by surrogate measures generated from networks bet-
ter matched for connectivity properties. With the ER model, the 
probability of a path existing between a pair of nodes is always 
non-zero. In contrast, with RW-normalization, it is possible for 
no paths to exist between a pair of nodes for a particular rewiring, 
thus yielding an infinite path length. To avoid dealing with such 
infinite values, either the harmonic mean is used, the computation 
of path lengths is restricted to the largest connected component, or 
infinite path lengths are replaced with the maximum finite length. 
Neither of these three alternatives are consistent with the analytic 
expression for path length derived for the ER model. Therefore, 
ER- and RW-normalization differ in the way path length is defined, 
in addition to whether or not the degree distribution is matched 
to the observed network.

In contrast to our finding, previous studies examining parcella-
tion scale-dependent effects have reported a trend for greater small-
worldness at increasing resolutions, using both rs-fMRI (Hayasaka 
and Laurienti, 2010) and diffusion-imaging (Zalesky et al., 2010). 
Methodological inconsistencies may account for these findings. 
In their study of anatomical networks, Zalesky et al. (2010) exam-
ined relatively sparse networks unmatched for connection cost or 
connectedness across parcellation scales, making their results dif-
ficult to directly compare with ours. Hayasaka and Laurienti (2010) 
matched networks based on the lower bound for path length rather 
than connection cost. This lower bound was computed based on 
the scaling relationship observed for ER-graphs [L

ER
 = ln(N)/ln(d)], 

to avoid assuming a linear relationship between the number of 
edges and number of nodes in the network. The difficulty with this 
approach is that there is no guarantee that brain networks will scale 
similarly to random graphs, which display intrinsically different 
topological properties. We opted to use cost-based thresholding 
as it is the most straightforward and widely used method in the 
literature. However, the best method for thresholding graphs when 
comparing network parameters is an unresolved issue and requires 
further investigation.

The trend in our data towards lower values of σ at higher resolu-
tions suggests a tendency towards a more random topology. This 
trend, combined with the generally lower functional connectiv-
ity values and increased temporal variance at these scales suggests 
higher resolutions may be more susceptible to noise. This conten-
tion is also supported by comparing degree distribution parameters 
across parcellation scales, as the parc4320 template was associated 
with a lower probability of finding highly connected hubs; that is, 
connections were distributed more evenly amongst the network 
nodes, as is characteristic of random graphs.

In traditional, voxel-wise analyses the data are commonly spa-
tially smoothed to increase the signal-to-noise ratio. Smoothing 
is not a recommended option for graph analytic studies of fMRI 
data, as it will introduce spuriously high correlations between an 
index node and its immediate neighbors. Consequently, adopting 
too high a spatial resolution may be associated with a dispropor-
tionate loss in signal-to-noise. Adopting an ROI size that matches 
the size of the signal one wishes to detect may provide the best 
trade-off between spatial resolution and signal-to-noise ratio in 
graph analytic studies of fMRI data, although further work would 
be necessary to identify the precise relationship between parcella-
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in network measures generated using different parcellations at the 
same scale are very small, being <3% on average (Zalesky et al., 2010), 
suggesting our findings are generalizable to other parcellations at 
similar resolutions. In our data, this was also evident in the similar 
values obtained for all network measures calculated using the aal84 
and parc91 templates. Despite the former being defined anatomi-
cally and the latter using our random-seeding approach, and slight 
differences in the number of nodes they comprise, they showed very 
similar values for all network properties studied. Together, these 
findings indicate that our results are insensitive to the specific par-
cellation strategy used at a given parcellation scale.

Across the range of parcellation scales examined, we found con-
sistent evidence that functional brain networks are characterized by 
an exponentially truncated, so-called broad-scale degree distribu-
tion (Amaral et al., 2000), rather than a scale-free topology. While 
several authors have reported similar findings (Achard et al., 2006; 
Hagmann et al., 2007), scale-free properties have also been observed, 
particularly when networks are analyzed at voxel-wise resolution 
(Eguiluz et al., 2005; van den Heuvel et al., 2008). Hayasaka and 
Laurienti (2010) found evidence for an exponentially truncated 
degree distribution in their voxel-based analysis of rs-fMRI net-
works, suggesting this resolution will not always reveal scale-free 
properties. However, the degree distribution of their voxel-based 
network was more scale-free than that of networks studied at lower 
resolutions. They ascribed this trend to under-representation of 
low degree nodes at lower resolutions. Whether these low-degree 
nodes represent a biologically valid characteristic of functional 
brain networks, or simply reflect a limitation on signal-to-noise 
at this resolution, remains open to further investigation.

One criticism of using a priori templates for network node defi-
nition, as used in the current study, is that they may reduce one’s 
sensitivity to identifying highly connected, yet spatially focal (e.g., 
voxel-sized) hubs. This is because the topological dominance of 
such hubs may be obscured when they are grouped as part of a 
larger region with other voxels (Fraiman et al., 2009; Hayasaka and 
Laurienti, 2010), reducing sensitivity to identify power-law scaling. 
The typical ROI volume for the higher resolution templates used in 
this study was much smaller than the average volume of a typical 
cytoarchitectonic region, widely regarded as the primary parcella-
tion unit of the cortex, but we still found no evidence for scale-free 
properties. Highly connected hubs and scale-free topologies may 
emerge at the resolution of cortical columns, which may be better 
approximated by voxel-wise approaches (van den Heuvel et al., 
2008; Hayasaka and Laurienti, 2010). However, at these resolutions, 
limitations on the signal-to-noise of current fMRI techniques must 
be considered, as discussed above. Both broad-scale and scale-free 
properties have been observed in voxel-based imaging (van den 
Heuvel et al., 2008; Hayasaka and Laurienti, 2010) and microscopic 
functional neuronal networks (Yu et al., 2008; Bonifazi et al., 2009), 
suggesting further work is required to understand the conditions 
under which scale-free topologies emerge.

A final point worth noting is that rs-fMRI networks, by virtue of 
being generated from inter-regional correlations in BOLD signal fluc-
tuations, represent a somewhat abstract basis for network definition. 
While correlated with underlying anatomical connectivity, additional 
functional connections are often present, likely reflecting the exist-
ence of polysynaptic interactions (Vincent et al., 2007; Honey et al., 

implication of the higher inter-correlations between scales higher 
than parc890 is that there may be little gain in increasing network 
resolution much beyond 1000 regions. That is, the values obtained 
at these higher scales will be highly correlated, but the time taken 
to compute them will be considerably longer.

Methodological considerations
Many different pre-processing steps are implemented to generate 
network measures in rs-fMRI analyses, each of which can affect 
the findings. One under-studied variation regards the choice of 
temporal filter to isolate the frequency band of interest. We used 
wavelets because they are well-suited to non-stationary processes 
such as BOLD signal fluctuations (Bullmore et al., 2004), whereas 
other authors have used Fourier-based approaches (Salvador et al., 
2005a; Liu et al., 2008). We examined the consistency between 
the approaches by computing intra-subject correlations between 
frequency-specific functional connectivity values obtained by 
our approach and those obtained after using a Butterworth filter 
(cut-offs: 0.04–0.08 Hz). Across subjects and parcellation scales, 
the median correlation value was 0.95, and all correlations were 
>0.90, suggesting good agreement between the two approaches. 
Nonetheless, more detailed comparison of the effects of various 
temporal filtering approaches may be warranted in the future.

Other methodological variations that may affect the findings 
include methods for correcting regional time series for physiologi-
cal fluctuations, particularly as regards the so-called global cor-
rection procedure (see Birn et al., 2006; Fox et al., 2009; Murphy 
et al., 2009; Weissenbacher et al., 2009). An investigation of these 
methods was beyond the scope of this paper, but may be related 
to differences between ours and previous findings (Hayasaka and 
Laurienti, 2010).

We constrained all parcellation scales to fit within the grey mat-
ter mask defined by the AAL template as it promoted comparability 
between the different parcellation schemes used in this study. However, 
the AAL mask is relatively diffuse and often includes portions of white 
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