
SYSTEMS NEUROSCIENCE

in widespread pathology of the corticostriatal system (Vonsattel and 
Figlia, 1998). Autopsy of end-stage HD patients reveals substantial 
degeneration and loss of medium spiny neurons, which account 
for more than 90% of the striatal neuronal population (Groves, 
1983). Medium spiny neurons are the sole output system of the 
striatum, and they receive massive glutamate input from cortical 
pyramidal cells, which also undergo substantial degeneration and 
loss. Although damage occurs in other brain regions, corticostriatal 
pathology appears to be the primary cause of the cognitive and 
motor abnormalities that characterize HD (Lawrence et al., 1998).

Various rodent models of HD have been developed with the goal 
of identifying pathogenic mechanisms that can speed the search 
for safe and effective treatments. Different approaches have been 
used to model the HD phenotype. One approach, exemplified by 
the R6 line of mice, involves expression of the N-terminal frag-
ment consisting of either the first exon or the first 171 amino acids 
(Mangiarini et al., 1996; Schilling et al., 1999). The result is expres-
sion of the truncated mutant HTT protein and an early and robust 
motor phenotype. The emergence of this phenotype soon after 
weaning has made the R6/2 model one of the most widely used in 

Introduction
The striatum receives input from all areas of cerebral cortex and 
uses that information to guide behavior. Corticostriatal processing 
plays a critical role in decision making, habit formation, movement 
selection, and reward expectancy (Alvarez and Eichenbaum, 2002; 
Costa et al., 2004; Graybiel, 2008; Israel and Bergman, 2008). In 
fact, cortical neurons are the primary driver of striatal neuronal 
activity. Without cortical input, striatal neurons are silent owing to 
an inwardly rectifying K+ current that keeps neuronal membranes 
hyperpolarized (Wilson and Kawaguchi, 1996). Glutamate released 
from cortical afferents increases striatal excitability, and when this 
input is coordinated across large numbers of afferents, the result-
ing activation of striatal circuits drives downstream processing 
through the rest of the basal ganglia (Wickens and Wilson, 1998). 
Thus, the striatum selects and refines the cortical signals that shape 
behavioral output.
 Huntington’s disease (HD), an autosomal dominant disorder 
caused by expansion of a translated CAG (glutamine) repeat 
in the N-terminal domain of the Huntingtin (HTT) protein 
(Huntington’s Disease Collaborative Research Group, 1993), results 
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the study of HD (Heng et al., 2008). R6/1 mice also show a robust 
phenotype but, because of a smaller polyglutamine expansion, 
onset occurs several weeks later than in R6/2 mice. In these and 
other truncated models, the polyglutamine expansion occurs inde-
pendently of its natural genomic and protein context (Ehrnhoefer 
et al., 2009). An alternative approach is to express the full-length 
human mutant HTT as exemplified by the knock-in (KI) model, 
which has the polyglutamine expansion inserted or “knocked in” to 
the endogenous mouse gene (Shelbourne et al., 1999). In this case, 
the KI model contains a chimeric mouse–human HD gene, and 
thus the natural genomic and protein context of the polyglutamine 
expansion is largely preserved. Relative to the R6 line, KI mice dis-
play a less intense and later onset phenotype (Dorner et al., 2007; 
Menalled et al., 2009). Interestingly, assessments of both truncated 
and full-length mouse models indicate that the phenotype emerges 
well before substantial neuronal loss (Hickey et al., 2008). In fact, 
neuronal loss is not a primary feature of these models, suggesting 
that neuronal dysfunction, rather than loss per se, plays a critical 
role in the HD behavioral phenotype – an idea supported by clinical 
evaluations (Gutekunst et al., 2002; Palop et al., 2006).

To determine if functional deficits in corticostriatal neuronal 
processing is a common feature of HD models, we previously 
assessed the activity of individual striatal and prefrontal cortical 
(PFC) neurons in both R6/2 and KI mice (Miller et  al., 2008b; 
Walker et al., 2008) as they behaved in an open-field arena where 
they could engage in naturally occurring episodes of spontaneous 
behavior. To assess the generality of our findings, we also recorded 
open-field striatal firing patterns in a transgenic HD rat (tgHD rat) 
model (Miller et al., 2010), which expresses a truncated fragment 
of the HD gene (von Hörsten et al., 2003). Overall, corticostriatal 
activity patterns are markedly altered in the HD animals relative 
to wild-type (WT) controls. To extend and update our previous 
findings to other HD models and other brain regions, we present 
here preliminary data indicating altered neuronal activity from 
motor cortex (M1) of R6/2 mice, and striatum of R6/1 mice. We also 
present early evidence from R6/2 striatum that local field potentials 
(LFPs), which represent the peri-synaptic activity of a large number 
of neurons, are altered in HD.

Materials and Methods
Detailed methods can be found in Miller et al. (2008b, 2010), and 
Walker et al. (2008).

Animals
Transgenic R6/1 and R6/2 mice (B6CBA–TgN[HDexon1]62Gpb) 
contain exon 1 of the human HD gene and are based on the 
C57BL/6 and CBA background strains (Mangiarini et al., 1996). 
The R6/2 mouse is characterized by a rapidly progressive phenotype 
with onset at ∼4 weeks and death in ∼16 weeks (Mangiarini et al., 
1996; Carter et al., 1999; Levine et al., 2004). R6/1 mice are similar 
to R6/2s, albeit with a shorter repeat length and a later onset phe-
notype (Mangiarini et al., 1996). Homozygous KI (CAG 140) mice 
express a chimeric mouse/human exon 1 of the HD gene inserted 
into the mouse gene via homologous targeting of W9.5 ES cells from 
a 129sv background strain (Menalled et al., 2003). Homozygous 
tgHD rat have a Sprague-Dawley background and express a trun-
cated HTT cDNA fragment with 51 CAG (polyglutamine) repeats 

under control of the native rat HTT promoter (von Hörsten et al., 
2003). Both the KI mouse and tgHD rat express a late onset HD 
phenotype, relative to R6/1 and R6/2 mice.

All animals, including corresponding WTs for each HD model, 
were housed individually under standard conditions (12-h light/
dark cycle with lights on at 07:30 h) with access to food and water 
ad libitum. All housing and animal-use procedures followed 
NIH guidelines and were approved by the Indiana University 
Institutional Animal Care and Use Committee.

Surgical procedures
All animals were anesthetized as appropriate (see Miller et al., 2008b, 
2010) and mounted in a stereotaxic frame. The scalp was shaved, 
swabbed with betadine, and after lidocaine (20 mg/ml) was injected 
subcutaneously, an incision was made at the midline to expose 
the skull. Trepanations were made over the appropriate brain area 
according to mouse and rat brain atlases (Paxinos and Watson, 
1998; Franklin and Paxinos, 2008). Multi-wire electrode bundles 
were lowered into each region. Additional holes were drilled for 
stainless steel anchor screws. Electrode assemblies were perma-
nently attached to the skull with dental acrylic. Antibiotics were 
applied to the surgical site to prevent infection. Lactated Ringer’s 
solution was administered subcutaneously to counteract dehydra-
tion. All animals were allowed 1 week of post-surgical recovery.

In Vivo electrophysiology
Electrode assemblies were made in-house and consisted of either 
four or eight, 25–50 μm Formvar-insulated stainless steel recording 
wires (California Fine Wire Company, Grover Beach, CA, USA) 
and one, 50 μm uninsulated stainless steel ground wire assembled 
in a custom fabricated hub. Electrode impedance was consistently 
∼1 MΩ. The electrode assembly was small, light-weight, and well-
tolerated by all animals so that they could behave freely.

All experiments were conducted during the light phase of the 
diurnal cycle and were 30 min to 1 h in duration. Animals were 
placed in an open-field arena located in a sound-attenuated and 
electrically shielded recording chamber. Animals explored freely 
during the entire recording session. For recording, the electrode 
assembly was connected to a light-weight flexible harness equipped 
with field-effect transistors that provide unity-gain current ampli-
fication for each of the micro-wires. Extracellular neuronal action 
potentials and LFPs were routed through preamplifiers with 500× 
gain and 154 Hz to 8.8 kHz band-pass filters for spikes, and 1,000× 
gain and 0.7–170 Hz filters for LFPs. All signals were digitized at 
40 kHz and acquired by the Multichannel Acquisition Processor 
system (Plexon, Dallas, TX, USA). Spikes were sorted online prior 
to the recording session. Voltage thresholds ≥2.5 times background 
noise were established, and waveform samples (∼1,000) were col-
lected to define a template via principal component analysis. The 
raw signal for each spike was routed to an oscilloscope and audio 
monitor to facilitate action potential discrimination by matching 
the analog signal with the digitized template. To maximize the prob-
ability that spikes consisted of only one signal (i.e., one neuron 
source), autocorrelation and inter-spike-interval (ISI) analyses 
were used to detect the presence of the absolute refractory period. 
In some cases, Spike 2 software (Cambridge Electronic Design, 
Cambridge, England) was used to confirm signal isolations offline.
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duration), also was calculated. Coincident bursting and coinci-
dence duration were determined for each pair-wise comparison 
in each session.

To assess correlated and synchronous firing (coherent firing) 
between two spike-trains, cross-correlation histograms (CCHs) 
were constructed for each pair-wise comparison (Perkel et al., 1967) 
in each recording session. All CCHs were constructed based on 1 ms 
bins and either a ±1-s (striatum) or ±0.5 s (cortex) time lag from the 
zero bin. The CCHs were smoothed using a Gaussian filter with a 
bin width of three. Significant peaks, which indicate correlated and 
synchronous firing, were identified using a 95% confidence interval 
by assuming the null hypothesis that each spike-train is a Poisson 
process and that firing between neuronal pairs is independent (i.e., 
flat cross-correlogram; Abeles 1982).

Local field potential oscillations were assessed by analyzing power 
spectral densities (Fourier transforms) and spectrograms (frequency 
through time plots) generated in NeuroExplorer. LFP data were col-
lected during discrete behaviors of quiet rest (lack of behavioral acti-
vation; see above), rearing and grooming. Each behavioral episode 
lasted a minimum of 3 s and LFP data were time-locked to the epoch. 
Power spectral densities were constructed by averaging LFP data 
for three different mice (three trials per mouse) for each behavior.

Results
Spike Electrophysiology
Table 1 provides information on all the HD models used in our 
recording experiments (for comprehensive reviews of various HD 
rodent models see Levine et al., 2004; Heng et al., 2008). All our 
electrophysiological data are based on comparisons between HD 
animals and their respective WTs. All mouse models were recorded 
at varying stages of the disease from periods of early phenotype 
expression through later stages. Because of a longer period of phe-
notype expression, both the R6/1 and KI models are especially 
useful for this type of analysis, but in all cases, the electrophysi-
ological changes that were evident early on persisted through later 
stages of disease progression. Thus, data for each model were com-
bined across recording sessions. Assessment of the tgHD rat cohort 
occurred when animals expressed a mild, but stable phenotype.

Table 2 summarizes our spike electrophysiology results. Neurons 
were putatively labeled as either medium spiny in striatum or 
pyramidal in cortex based on well-established waveform and fir-
ing properties (see Miller et  al., 2008b; Walker et  al., 2008, and 
Discussion for details). We assessed the rate and pattern of spike 
activity of individual neurons as well as the correlated activity of 
simultaneously recorded neuronal pairs.

Behavioral analysis
Mouse behaviors for all electrophysiological sessions were recorded 
by videotape and coded by observers who were blind to genotype. 
We coded open-field behavioral activity (e.g., ambulation, groom-
ing, rearing, sniffing), and quiet rest, which was defined as absence 
of these and other overt behaviors. Rat behaviors were recorded 
using an open-field force-plate actometer, which provides a mul-
tivariate behavioral sensing arena (Fowler et al., 2001, 2009; Miller 
et al., 2010).

Histology
Electrode placement in each brain area was verified before analysis. 
Animals were deeply anesthetized and a current pulse (30 μA for 
5 s) was passed through each micro-wire to mark recording sites. 
Animals were transcardially perfused with saline followed by 10% 
potassium ferrocyanide [K

4
Fe(CN)

6
] in 10% formalin to produce 

blue deposits at the site of the recording electrode (“Prussian blue” 
reaction). Brains were removed and cryoprotected in 30% sucrose 
dissolved in 10% formalin. The brains were then frozen, and coronal 
sections (50 μM) were mounted on gelatin subbed slides to confirm 
micro-wire location.

Data analysis
Neuronal data were analyzed by NeuroExplorer (Nex Technologies, 
Littleton, MA, USA) and custom written Matlab scripts (Mathworks, 
Natick, MA, USA). Statistical analyses used GraphPad Prism 5 
(GraphPad Software, San Diego, CA, USA) and SigmaPlot 11 (Systat 
Software, San Jose, CA, USA), and the alpha level of significance 
was p < 0.05. Timestamps of all waveforms obtained from recording 
sessions were included for analysis. Firing rate was calculated by 
dividing the spike-trains into 1 s bins (spikes/s). To assess spike-
train variability, the coefficient of variation of inter-spike-intervals 
(CV ISI) was calculated by dividing the SD of all ISIs in a train by 
the mean ISI of the train. Note that a CV = 1 indicates a Poisson 
and a CV = 0 is a completely regular spike-train. A CV > 1 indicates 
a complex spike-train pattern and often indicates bursting activity.

To quantify burst activity in spike-trains, the Poisson surprise 
algorithm was used (Legendy and Salcman, 1985). We used a mini-
mum burst surprise value of five, which estimates that bursts occur 
∼150 times (p < 0.007) more frequently than would be expected 
in a Poisson spike-train with the same mean firing rate. The sur-
prise value provides an estimate of the statistical significance of 
each burst in the spike-train. Therefore, the surprise value is an 
index of how intense or “surprising” the ISIs of a particular burst 
is compared with other ISIs in the same train. This method is a 
rigorous detector of bursts because it is not sensitive to fluctuations 
in average firing rate and treats each spike-train as an independ-
ent source (Legendy and Salcman, 1985). The method, moreover, 
is well-established for detecting bursts in striatum and cortical 
structures (Aldridge and Gilman, 1991; Homayoun et al., 2005; 
Wichmann and Soares, 2006). We used it to measure various indices 
of bursts (e.g., burst rate, burst duration, ISI in bursts, percent of 
spikes in the train that participate in burst activity, and the burst 
surprise value).

Coincident bursts were defined as the number of bursts from 
two neurons that overlap in time (Lisman, 1997, Miller et al., 2008b, 
2010). The mean time that bursts were coincident (coincidence 

Table 1 | Characteristics of genetic rodent models of HD.

HD model	 Repeat 	 Motor phenotype# onset (death)	 Ages 
	 length*		  recorded#

R6/2	 130	 4 (14) (Mangiarini et al., 1996)	 6–13

R6/1	 115	 12 (32) (Mangiarini et al., 1996)	 8–29

KI	 125	 16 (96) (Menalled et al., 2003)	 10–42

tgHD rat	 51	 40 (96) (von Hörsten et al., 2003)	 40–60

*Indicates approximate repeat length.
#Indicates approximate weeks of age.
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Both the CV ISI and the Poisson surprise methods rely on the 
deviation of the ISI from a Poisson distribution (Robin et al., 2009). 
In fact, as shown in Figure 1, a strong correlation exists between 
CV ISI and the percent of spikes in bursts. Note that bursts cluster 
near the origin in R6/2 mice indicating a reduction in the overall 
level of burst activity relative to WT.

Reductions in coherent firing among neuron pairs
We also assessed the temporal relationship in spiking between 
simultaneously recorded pairs of neurons. For this analysis, we 
constructed cross-correlograms, and in each case, peaks in the 
histogram that exceeded the confidence interval were defined as 
significantly coherent neuronal pairs. Interestingly, as shown in 
Figure 2, the temporal dynamics between coherent spiking dif-
fers between cortical and striatal neurons. For example, cortical 
neuron pairs tend to spike in precise temporal or “synchronized” 
coherence (Sakurai and Takahashi, 2006; Walker et  al., 2008), 
whereas striatal neuron pairs discharge with much broader tem-
poral coherence (Miller et al., 2008b; Ponzi and Wickens, 2010). 

Changes in rate
Neuronal firing rate provides a metric of the overall level of 
neuronal activity. Increased levels of firing were found in stria-
tum of both R6 models, but not KI mice or tgHD rats, relative 
to WTs. In fact, rate was decreased in tgHD rats. Increased fir-
ing rate also was found in PFC of R6/2, but not KI mice, nor 
M1 cortex of R6/2s. It appears, therefore, that the R6 truncated 
mouse models, which show a robust phenotype, are prone to 
neuronal hyper-activity.

Changes in pattern
Spike pattern, reflected in the CV ISI and burst activity, represents 
a more detailed aspect of neuronal processing. The CV ISI is 
commonly used to assess spike-train variability, indicating com-
plex firing patterns of activity (i.e., CV ISI > 1; see Materials and 
Methods). To quantify individual burst parameters, we used the 
Poisson burst surprise method to measure the percent of spikes 
that participate in bursts within each train as well as the burst sur-
prise value (the higher the value the more “surprising” or promi-
nent the burst). All our HD mouse models showed reductions in 
both CV ISI values and various aspects of bursting relative to WT. 
The only exceptions were tgHD striatum and the PFC of KI mice. 
Interestingly, the structure of individual bursts, which includes 
burst duration and ISI within bursts, was not altered in any model 
or brain area, suggesting that HD neurons have the capacity to 
burst, but lack the ability to generate a proper bursting pattern.

Table 2 | Summary of neuronal activity altered in HD models in vivo.

	 Striatum	 Cortex

Firing rate	 ↑ R6/2	 ↑ R6/2 (PFC, M1)

	 ↑ R6/1	 ↔ KI (PFC)

	 ↔ KI	

	 ↓ tgHDrat	

Firing variability (CVISI)	 ↓ R6/2	 ↓ R6/2 (PFC, M1)

	 ↓ R6/1	 ↔ KI (PFC)

	 ↓ KI	

	 ↔ tgHDrat	

Burst firing	 ↓ R6/2	 ↓ R6/2 (PFC, M1)

	 ↓ R6/1	 ↔ KI (PFC)

	 ↓ 140CAG	

	 ↔ tgHDrat	

Coherent firing	 ↓ R6/2	 ↓ R6/2 (PFC, M1)

	 ↓ R6/1	 ↓ KI (PFC)

	 ↓ KI	

	 ↓tgHDrat	

Coincident* bursts	 ↓ R6/2	 ↓ R6/2 (M1)

	 ↓ R6/1	

	 ↓ KI	

	 ↓ tgHDrat	

↑ Significantly increased, ↓ significantly decreased, and ↔ no difference relative 
to WTs.
*Coincident bursts were not measured in PFC of R6/2 or KI.
References: R6/2 and KI striatum (Rebec et al., 2006; Miller et al., 2008b); R6/2 
and KI PFC (Walker et  al., 2008); tgHDrat striatum (Miller et  al., 2010); R6/1 
striatum and R6/2 M1 cortex data are preliminary and unpublished.
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Figure 1 | Metrics of burst firing. Plots illustrate the strong correlation 
between the percentage of spikes in bursts and CV ISI. Note that this 
correlation is true for both WT and R6/2 mice. Thus, CV ISI and % spikes in 
bursts are complimentary indicators of the pattern of burst firing. It is clear, 
however, that data in the R6/2 plot are clustered at the origin, indicating a 
reduction in a prominent burst pattern relative to WT. The solid line indicates 
the mean and the broken lines represent the 95% confidence intervals. The 
broken circle emphasizes the difference in distributions.

Miller et al.	 Electrophysiology of Huntington’s disease models

Frontiers in Systems Neuroscience	 www.frontiersin.org	 May 2011  | Volume 5  |  Article 26  |  4

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


reduced in all brain areas and HD models tested. Moreover, in stria-
tum of R6/2 and KI mice and their respective WTs, a higher percent-
age of coincident bursts occurs in correlated than non-correlated 
neuronal pairs, suggesting that coherent bursting contributes to 
coherent spike activity (Miller et al., 2008b).

Figure 3 shows a sample of spike rasters recorded from indi-
vidual WT and R6/2 mice. Altered firing properties are apparent 
at the single-neuron level (firing rate, bursts) and at the pair-wise 
level (coherent firing, coincident bursts). These activity patterns 
are comparable to what we have reported for striatum and PFC of 
other HD models (Miller et al., 2008b, 2010; Walker et al., 2008).

Striatal LFPs
We have begun to investigate large ensembles of neurons by record-
ing LFPs, which capture the sum of pre- and post-synaptic neuronal 
activity. In striatum, ample evidence indicates that LFPs represent a 
form of local processing, rather than volume conduction from other 
brain regions (Berke et al., 2004; DeCoteau et al., 2007). To date, 
we have recorded LFPs from dorsal striatum of three WT and three 
R6/2 mice during discrete, behaviorally matched epochs (minimum 
of three epochs per animal) in the open-field. During epochs of 
quiet rest, striatal LFP oscillations from WT mice were character-
ized by prominent delta to low theta oscillations (<5–7 Hz); the 
same was true for R6/2 mice, although a second prominent gamma 
band (30–40 Hz) oscillation also appeared (Figure 4). Behavioral 
episodes of rearing, which were strictly defined as upper forelimb 
rears on the side of the open-field for a minimum of 3 s, revealed 
delta oscillations in WT and R6/2 mice, but with an additional 
strong theta band (7–14  Hz) in the R6/2 model. In contrast, 
episodes of grooming showed no difference in LFP oscillations 
between R6/2 and WT.

Discussion
Our results indicate that corticostriatal processing is altered in 
behaving, symptomatic HD rodent models compared to WT con-
trols. This effect is evident in all the models we tested, albeit with 
some differences that may be related to behavioral phenotype or 
genetic background of the HD model. At the single-neuron level, 
for example, firing rate is elevated in strongly symptomatic R6/2 
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Figure 2 | Representative cross-correlograms constructed from a pair of 
WT and R6/2 striatal neurons (left column) and a pair of WT and R6/2 M1 
cortical neurons (right column). The two horizontal lines in each plot indicate 
the 95% confidence intervals. The two WT peaks exceed the upper confidence 
interval, indicating significance. Note the different time scales between 
striatum and cortical cross-correlograms indicating either correlated or 
synchronous firing, respectively. Striatal and M1 neuron pairs show markedly 
reduced coherent spike activity (flat and non-significant peak). We note that we 
have yet to find repetitive peaks and troughs in the cross-correlograms, which 
indicates oscillatory firing activity between neuronal pairs.
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Figure 3 | Dysregulated neuronal firing patterns among populations of neurons. Long-timescale (60 s) spike rasters of four simultaneously recorded striatal 
neurons from WT and R6/2 mice. The horizontal lines above each raster define bursts. Arrows represent representative instances of coincident bursts in the WT 
raster. It is evident that population activity in WT mice is more phasic (more complex) and bursts are often temporally coherent across neurons relative to R6/2 mice.

In all cases, however, we found a marked reduction in tempo-
rally coherent neuronal activity from all brain areas and all HD 
models recorded.

Reductions in coincident bursts among neuron pairs
We explored the temporal relationship in burst firing between neu-
ron pairs by measuring the number of bursts that overlap in time 
(Lisman, 1997). Similar to coherent spikes, coincident bursts were 
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ing, and construction of reliable cross-correlograms (a measure 
of coherent firing between neurons; see Materials and Methods) 
require records of many hundreds of spikes. Without sufficient 
spike data, the fidelity of these metrics is diminished. Second, coher-
ent spike activity in both cortex (Constantinidis et al., 2002; Putrino 
et al., 2010) and striatum (Kimura et al., 2003), as well as striatal 
LFPs (Barnes et  al., 2005), have been shown to be differentially 
driven by task performance, but rodent HD models show robust 
deficiencies in performing skilled behavioral tasks (Brooks and 
Dunnett, 2009). Such tasks, moreover, promote synaptic plasticity, 
which is compromised in cortex (Cummings et al., 2006, 2007) 
and striatum (Milnerwood et al., 2006) of HD models. In contrast, 
natural spontaneous open-field behaviors do not require prolonged 
learning periods and are unlikely to depend on overt changes in 

mice, but not in mildly symptomatic KI mice. Similarly, PFC burst 
firing is altered in R6/2s, but not KIs. In striatum, however, burst 
firing is attenuated in all mouse models. Interestingly, deficits in 
population-level neuronal processing occur in all brain regions. For 
example, analysis of cross-correlograms indicates coherent spiking 
is reduced in all HD models. Coincident bursting (i.e., temporally 
correlated burst activity between simultaneously recorded neurons) 
and oscillations of LFPs also show alterations in HD. Thus, neuronal 
firing patterns and their temporal dynamics are impaired in the 
HD corticostriatal system during spontaneous open-field behavior.

Our assessments focused on open-field behavior for two reasons. 
First, open-field testing is conducive to the long-duration (30 min 
to 1 h) recording sessions typically required for in vivo electrophysi-
ology. For example, analysis of bursting, CV ISI, coincident burst-
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Figure 4 | Dysregulated striatal LFP oscillations in R6/2 mice. [(A), left] 
Power spectral densities of LFPs in striatum during quiet rest. Prominent 
30–40 Hz (gamma) oscillations are present in R6/2 and absent in WT. Solid lines 
represent the mean density and broken lines indicate ±SEM. [(A), right] 
Representative spectrograms (frequency through time) of LFP activity during a 
single epoch of quite rest from a WT and R6/2 mouse. Frequency and power are 

on the y axis; hotter colors represent greater power. The top trace (white) on 
each spectrogram is the corresponding raw LFP record (to scale). [(B), left and 
right] Same as (A), but striatal LFPs recorded during rearing. Note the prominent 
10 Hz (theta) oscillation in R6/2 and its absence in WTs. [(C), left and right] 
Striatal LFPs during epochs of grooming reveal no difference in LFP oscillations 
between the genotypes.
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that occurs over the course of HD, which is driven in part by acti-
vation of extrasynaptic glutamate receptors (Milnerwood et  al., 
2010). Consistent with this view, deficits in glutamate uptake have 
been identified in post-mortem striatal tissue obtained from HD 
patients (Hassel et al., 2008). Dysregulation of glutamate dynam-
ics, therefore, could be a key mechanism underlying our electro-
physiological results in HD models. Striatal neurons also receive 
glutamate input from midline thalamus (Smith and Bolam, 1990), 
which may comprise another source of glutamate dysfunction in 
HD (Carroll et al., 2011).

Interneurons also may play a role. In both cortex and striatum, 
interneurons control the timing and synchrony of spikes generated 
by output neurons (Hestrin and Galarreta, 2005; Tiesinga et al., 
2008). Interestingly, mutant HTT disrupts the mechanism by which 
receptors for GABA, an inhibitory amino acid released by cortical 
and striatal interneurons, are trafficked to synapses (Twelvetrees 
et al., 2010). Thus, loss of GABA-mediated inhibition may inter-
act with deficits in glutamate clearance to disrupt corticostriatal 
processing in HD.

Striatal medium spiny neurons can be identified apart from 
other striatal neuron types (e.g., interneurons) by a combination 
of firing rate and spike waveform shape (Berke et al., 2004; Sharott 
et al., 2009). But because of the altered firing patterns recorded in a 
portion of our HD samples, we took a conservative approach and 
pooled all neurons for analysis. Note, however, that we ensured 
that all waveform shapes were consistent with putative medium 
spiny neurons (Berke et al., 2004; Miller et al., 2008b, 2010). It also 
is relevant that medium spiny neurons comprise >90% of neurons 
in striatum (Groves, 1983), making other neuron types less likely 
to be sampled. Moreover, we recognize that medium spiny neurons 
are not homogeneous. In fact, there is evidence that striato-pallidal 
neurons, which represent the so-called indirect pathway, degener-
ate earlier than the striato-nigral or direct pathway in HD patients 
(Deng et al., 2004; Starr et al., 2008). It is possible, therefore, that 
medium spiny neurons in our HD mice comprise two distinct pop-
ulations. Nevertheless, a sizable number of striatal output neurons 
contribute axon collaterals to both the direct and indirect pathways 
(Levesque and Parent, 2005), making it difficult to speculate on the 
implications of possible differences between striato-pallidal and 
striato-nigral neurons in HD.

Like medium spiny neurons in striatum, cortical neurons can be 
classified by firing rate and waveform into fast-spiking (>10 spikes/s 
with narrow after hypolarizations, AHPs) and regular-spiking 
(<10  spikes/s with wide AHPs) neurons, which are thought to 
correspond to interneurons and pyramidal cells, respectively 
(McCormick et al., 1985; Connors and Gutnick, 1990; Homayoun 
and Moghaddam, 2007). In our PFC investigation (Walker et al., 
2008), to determine if >10 spikes/s represents a separate class of 
neurons, we plotted the average of 50 waveforms and measured 
the AHPs. These data were compared to a random sample of AHPs 
from those classified as regular-spiking cells based on firing rate. 
Less than 10% of the cortical neurons (∼500) recorded in our PFC 
investigation could be identified as fast-spiking neurons. Although 
some of these may be interneurons, our subsequent analysis of 
AHPs revealed no difference from regular-spiking AHPs, suggesting 
that our cortical neurons comprise a homogeneous population of 
presumed pyramidal cells.

synaptic plasticity. Thus, animals were studied in an open-field 
arena, which allowed for analysis of multiple, ongoing patterns of 
neuronal activity.

All HD mouse models showed a progressive behavioral pheno-
type relative to WT controls (Miller et al., 2008b; Walker et al., 2008). 
Although tgHD rats lose fine motor skills and develop prominent 
cognitive deficits at the ages used in our analysis (von Hörsten et al., 
2003; Cao et al., 2006; Nguyen, 2006), we found no overt phenotype 
in the open-field (Miller et al., 2010). In fact, there was no substan-
tial difference in spontaneous behavior (motor activity vs. quiet 
rest) between the genotypes of each HD model. Thus, it is unlikely 
that any differences that emerged in our electrophysiological data 
could be explained simply by differences in behavioral activity in the 
open-field, but instead are likely to reflect neuronal circuit differ-
ences between genotypes (e.g., WT vs. HD). Individual HD models, 
however, showed some electrophysiological differences (see Table 2 
for summary data; for HD phenotype references see Levine et al., 
2004; Heng et al., 2008). These differences could emerge from the 
genetic background (i.e., strain and species) of each model, which 
in turn could influence firing activity of corticostriatal circuits. 
Interestingly, none of the tested models showed a clear trend for 
corticostriatal activity to worsen through HD progression. This 
outcome, however, is not entirely unexpected since the disrup-
tion in neuronal activity is prominent early on, even in the first 
recording session. It is likely, therefore, that corticostriatal activity 
is an early event in HD and persists throughout HD progression. 
Indeed, similar to our in vivo results, ex vivo cortical culture net-
works grown on microelectrode arrays and infected with mutant 
HTT fragments show reduced spontaneous collective burst firing 
(Gambazzi et al., 2010). Thus, the mutant HTT protein dramati-
cally changes spontaneous network activity.

In WT striatum, neuronal activity is relatively slow but highly 
irregular as reflected in a CV ISI > 1 along with prominent episodes 
of spike bursting. In fact, irregular firing is a common feature of 
striatal medium spiny neurons (Wilson, 1993). That attenuation of 
this irregular pattern of activity occurs in most HD models that we 
have studied to date underscores the point that a simple change in 
rate (i.e., hyper-excitability) is not the fingerprint of striatal neu-
ropathology. In fact, the change in pattern coupled with reductions 
in coordinated activity between simultaneously recorded neuronal 
pairs provides strong evidence for widespread dysfunction in corti-
cal and striatal circuits. Our preliminary LFP data, which represents 
circuit rather than single-neuron activity, supports this view.

Circuit dysfunction indicates fundamental problems in neu-
ronal communication, and evidence now suggests that a change 
in the extracellular dynamics of glutamate, an excitatory amino 
acid that shapes the pattern of both cortical and striatal activity, 
plays a critical role in HD (Miller and Bezprozvanny, 2010). In 
striatum, for example, the clearance of extracellular glutamate is 
significantly decreased in R6/2 relative to WT mice (Miller et al., 
2008a). This effect, moreover, is evident early in the progression 
of the HD behavioral phenotype and can be reversed by increased 
expression of GLT1 (Miller et al., 2008a), the astroglial glutamate 
transporter responsible for the uptake of most extracellular gluta-
mate (Danbolt, 2001). Increasing GLT1 expression also amelio-
rates the HD behavioral phenotype (Miller et al., 2008a). Failure 
of glutamate uptake likely contributes to the neurodegeneration 
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Conclusion
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et al., 2004; Gatev et al., 2006; DeCoteau et al., 2007; Boraud et al., 
2008). For example, entrainment of striatal neurons to LFP oscil-
lations occurs at both beta and theta frequencies (Courtemanche 
et  al., 2003; Berke et  al., 2004; DeCoteau et  al., 2007). It also is 
relevant that during periods of quiet rest our WT mice show a 
prominent LFP oscillation in the theta band (Figure 4), a finding 
in line with what has been reported in striatum of resting rats 
(DeCoteau et al., 2007). In fact, data obtained from M1 cortex and 
striatum indicate that the mechanism underlying LFP oscillations is 
similar in rat and mouse (Costa et al., 2006). LFPs are key features 
of behaviorally relevant neuronal processing (Buzsaki, 2006) and 
thus can make an important contribution to understanding the 
neural basis of the HD behavioral phenotype, apart from spike 
pattern analysis. It also appears that LFPs are strongly influenced by 
glutamate (Buzsaki, 2006), making their assessment in HD models 
especially appropriate.

Numerous in vitro studies of HD models report corticostriatal 
synaptic dysfunction (for reviews see Cepeda et al., 2007, 2010; 
Miller and Bezprozvanny, 2010), which may underlie the altered 
activity patterns observed in our HD animals. Although no one 
synaptic problem can be pinpointed, it is clear that striatal medium 
spiny neurons are hyperactive, which is in part due to a progressive 
increase in input resistance, reduction in cell capacitance, exagger-
ated glutamate-dependent responses, and increased intracellular 
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