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1980). The damage to the DA neurons in the SNpc is evidenced by 
long-term losses in several prototypical markers of dopaminergic 
neurons, including a loss of DA uptake sites, decreased tyrosine 
hydroxylase (TH) activity and severely reduced DA tissue levels in 
the CPu (Kogan et al., 1976; Hotchkiss and Gibb, 1980; Ricaurte 
et al., 1980; Seiden and Ricaurte, 1987).

The exact mechanism(s) that mediate the enhanced and rela-
tively selective neurotoxicity of nigrostriatal neurons in response 
to repeated METH treatment are not entirely understood. Several 
studies have identified oxidative stress as a contributing factor in 
METH-induced neurotoxicity (Yamamoto and Zhu, 1998; Lavoie 
and Hastings, 1999; Yamamoto and Bankson, 2005; Krasnova and 
Cadet, 2009). One of the most common markers of oxidative stress 
is the lipid peroxidation product malondialdehyde (MDA; Aldini 
et al., 2007). METH can increase the oxidation of DA, resulting in the 
formation of reactive DA quinones and superoxide radicals within 
the terminals of dopaminergic neurons (Lavoie and Hastings, 1999; 
Krasnova and Cadet, 2009). These reactive oxygen species (ROS) 
can attack polyunsaturated fatty acids, which are enriched in neu-
ronal membranes, resulting in the generation of MDA (Brown and 
Yamamoto, 2003; Brown et al., 2005; Del Rio et al., 2005; Krasnova 

IntroductIon
Methamphetamine (METH) is a widely abused psychostimu-
lant whose use has dire social and medical consequences. Over 
60 million people world-wide report abusing amphetamine-type 
stimulants, especially METH (Maxwell, 2005). In the United States, 
METH use is endemic in the Western states, while the epidemic 
of METH use and abuse is growing notably in the Midwestern 
and Southern states (Substance Abuse and Mental Health Services 
Administration, Office of Applied Studies, 2010). The short-term 
effects of METH use include euphoria, increased locomotor activity, 
and hyperthermia, whereas long-term use can lead to dependence, 
addiction, paranoia, and psychosis. Repeated high doses of METH 
can lead to neurotoxic insults within the basal ganglia of both 
rodents and humans, which may underlie some of the symptoms 
of long-term abuse (Hotchkiss and Gibb, 1980; Volkow et al., 2001; 
Johnson-Davis et al., 2002). In particular, treatment with multiple 
high doses of METH results in damage to dopamine (DA) neu-
rons of the substantia nigra pars compacta (SNpc), which project 
heavily to the caudate putamen (CPu), while the DA neurons in 
the adjacent ventral tegmental area (VTA), which project to the 
nucleus accumbens (NAc) are less severely affected (Ricaurte et al., 
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MaterIals and Methods
anIMals
Male Sprague-Dawley rats (Harlan Laboratories, Indianapolis, 
IN, USA), weighing 250–350 g were used in all experiments. Rats 
were housed in groups of four in plastic cages in a temperature-
controlled room. Rats were on a 14:10 h light/dark cycle and had 
free access to food and water. All animal care and experimental 
manipulations were approved by the Institutional Animal Care 
and Use Committee of Mercer University School of Medicine and 
were in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals.

PharMacologIcal Procedures
(±) Methamphetamine hydrochloride was obtained from the 
National Institute on Drug Abuse (Bethesda, MD, USA). The 
drug doses were calculated as the free base, diluted in saline, and 
administered subcutaneously. On the day of the experiment, the rats 
were weighed, housed in plastic tub cages (eight rats per cage), and 
transferred to the laboratory. Animals received a total of four injec-
tions of either METH (10 mg/kg, s.c.) or saline with a 2 h-interval 
between each injection. This dosing regimen has been shown to 
result in significant depletion of DA in the nigrostriatal system 
(Hotchkiss and Gibb, 1980; Johnson-Davis et al., 2002).

tIssue sectIonIng
One week after exposure to multiple doses of METH, rats were 
sacrificed by exposure to CO

2
, followed by decapitation. The brains 

were rapidly harvested, quick frozen in isopentane on dry ice and 
stored at −80°C. The brains were then cut into 12-μm sections on 
a cryostat (Minotome Plus, Triangle Biomedical Sciences, Durham, 
NC, USA). Coronal sections were taken through the anterior cin-
gulate cortex (ACC)/prelimbic cortex (PRL; +4.2 mm anterior to 
bregma), CPu/NAc/primary motor cortex (M1; +1.7 mm anterior 
to bregma), hippocampus (−2.92 mm posterior to bregma), and 
SN/VTA (−4.92 mm posterior to bregma; Figure 1). Sections were 
thaw-mounted onto Superfrost Plus slides (VWR, Radnor, PA, USA) 
and stored at −20°C until their use in immunocytochemical assays.

th IMMunocytocheMIstry
A modified peroxidase anti-peroxidase method was used to detect 
changes in TH-ir in the CPu and NAc (Sternberger, 1979; Johnson-
Davis et al., 2002). Slides were thawed, washed in 0.1 M phosphate-
buffered saline (PBS) and post-fixed in 4% paraformaldehyde/0.9% 
NaCl for 10 min. Slides were rinsed three times for 5 min in PBS 
and the sections circled with a PAP pen. Non-specific binding was 
blocked with 10% normal horse serum/0.3% Triton-X for 2 h at 
room temperature. The blocking solution was then removed, and 
the sections were incubated overnight in humid chambers at 4°C 
with a monoclonal mouse-anti TH antibody (1:300; Immunostar, 
Hudson, WI, USA) diluted in 0.3% Triton-X/PBS. The next day, 
the slides were rinsed three times for 5 min in PBS, and incubated 
for 1.5 h at room temperature with anti-mouse (H + L) peroxi-
dase generated in horse (1:150; Vector Laboratories, Burlingame, 
CA, USA) diluted in PBS/0.3% Triton-X. The slides were rinsed 
three times in PBS, and incubated with 0.1% DAB/0.005% H

2
O

2
 in 

PBS for 4–8 min. The slides were rinsed briefly in deionized H
2
O, 

dehydrated in a series of alcohols, and coverslipped out of xylene.

and Cadet, 2009; Lieberman and Marks, 2009). Accordingly, 
enhanced levels of MDA or MDA-like reactivity have been found 
in the brains of METH addicts and METH-treated experimental 
animals (Acikgoz et al., 1998; Yamamoto and Zhu, 1998; Kim et al., 
1999; Kita et al., 2000; Gluck et al., 2001; Fitzmaurice et al., 2006). 
However, recent data raises the possibility that MDA is not just the 
result of oxidative stress and cellular damage, but can act on its own 
to induce neuronal toxicity (Jinsmaa et al., 2009; Long et al., 2009).

For example, MDA is a reactive electrophile that can modify 
amino groups in proteins, rendering enzymes non-functional (Del 
Rio et al., 2005; Aldini et al., 2007). MDA inhibits mitochondrial 
electron transport proteins, which may lead to ROS generation 
and mitochondrial dysfunction in neurons (Long et al., 2009). 
Furthermore, it has been shown that MDA can increase levels of 
toxic intermediates of DA catabolism (Jinsmaa et al., 2009) and 
repeated treatment with METH can increase MDA and other reac-
tive aldehydes in the DA-rich nigrostriatal pathway (Yamamoto and 
Zhu, 1998; Gluck et al., 2001; Fitzmaurice et al., 2006; Horner et al., 
2010). However, recent data show that in human abusers of METH, 
reactive aldehyde levels are also increased in the frontal cortex, a 
region that has relatively fewer DA afferents from the SNpc and 
contains lower tissue levels of DA than the CPu (Emson et al., 1977; 
Scatton et al., 1983; Johnson-Davis et al., 2002; Fitzmaurice et al., 
2006). Together, these data suggest that METH can induce signifi-
cant oxidative damage regardless of the regional density of DA or 
origin of DA input. Furthermore, it is possible that the formation 
of MDA-protein adducts could lead to DA-related cellular damage, 
as well as non-DA-related damage to neurons via direct interactions 
of MDA with essential proteins and amino acids.

The purpose of the current study was to examine and com-
pare the effect of multiple high doses of METH on the genera-
tion of MDA-adducted protein in the DA-rich nigrostriatal and 
mesoaccumbal systems. We also examined the generation of 
MDA-adducted proteins by multiple METH treatment in the hip-
pocampus and cortex, two areas that are less intensely innervated 
by DA afferents than the CPu and NAc. While previous studies 
have examined MDA reactivity following METH administration in 
experimental animals and in human METH addicts, many of these 
studies used the thiobarbituric acid reactive substances (TBARS) 
assay to detect changes in MDA levels (Acikgoz et al., 1998; Jayanthi 
et al., 1998; Kim et al., 1999; Kita et al., 2000; Gluck et al., 2001; 
Fitzmaurice et al., 2006). While a standard approach for MDA 
measurement in body fluids and tissues, the TBARS assay is not 
specific for MDA and detects free, non-adducted MDA, including 
MDA that has been released from its adducts with biomolecules 
as well as unreacted, diffusible MDA that may not impair cellular 
function (Moore and Roberts, 1998). The current study employed 
immunocytochemistry with specificity for MDA-adducted pro-
teins, which allowed us to detect MDA-induced neuronal dam-
age, while maintaining anatomical and cellular resolution. We 
also examined levels of TH immunoreactivity (TH-ir) in the CPu 
and the NAc, in order to confirm that repeated METH treatment 
resulted in a severe depletion of DA in the nigrostriatal pathway as 
compared to the mesoaccumbal pathway. Finally, we determined 
whether the levels of MDA-adducted protein induced by multiple 
METH treatment correlated significantly with the severity of TH 
depletion in the CPu, as compared to the NAc.

Horner et al. Methamphetamine-induced protein modification by aldehydes

Frontiers in Systems Neuroscience www.frontiersin.org May 2011 | Volume 5 | Article 27 | 2

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


signal intensity was determined using the average gray values of 
signals of known optical density from a photographic step tablet 
(Eastman Kodak Company, Rochester, NY, USA). The intensity 
of the light was adjusted such that the values measured from the 
slides of TH-ir brain sections fell within the linear portion of 
the system’s response. Lighting and camera conditions remained 
constant during the process of capturing and collection of den-
sity measurements. Mean gray values were measured in the left 
hemisphere for the whole CPu, which was designated as the area 
below the corpus callosum and above the anterior commissure, 
ending approximately at the ventral tip of the lateral ventricle (see 
Figure 1B, blue highlighted area). The whole NAc was designated 
as the area just dorsal to the anterior commissure, ending at the 
ventral tip of the lateral ventricle (in order to capture the entire 
core) and dorsal to the medial forebrain bundle/ventral pallidum 
on the ventral border (see Figure 1B, pink highlighted area). In 
order to correct for background labeling, the mean gray value of 
the white matter was subtracted from the mean gray value of the 
CPu or NAc, for each animal in the study.

For the analysis of MDA immunoreactivity (MDA-ir), sections 
were captured from a VistaVision microscope (VWR, Radnor, PA, 
USA) with a video camera (CCD Moticam 2300, Motic, Richmond, 
BC, Canada), using a 10× objective. Immunoreactivity was meas-
ured in the left hemisphere of each brain in the following pixel 
areas: 300 × 500 for PRL, 200 × 200 for ACC, 500 × 300 for M1, 
400 × 400 for medial and lateral CPu, 200 × 300 for nucleus 
accumbens core, 150 × 300 for nucleus accumbens shell, 300 × 100 
for CA1, 400 × 100 for CA3 and dentate gyrus (DG), a 500 × 150 
oval for SNpc and substantia nigra pars reticulata (SNpr), and 
a circle with a diameter of 152 pixels for the VTA (Figure 1). 
The areas analyzed for semi-quantification were held constant 
for all experiments and was based on modified procedures from 
(Simpson et al., 1995; Choe et al., 2002; Horner et al., 2006). The 
number of MDA-labeled particles that exceeded the threshold den-
sity in each region of interest was determined using the particle 
analysis option in Image J. The pixel range for particle size was 
determined before analysis by outlining positively labeled cells 
from several randomly selected sections and determining the aver-
age size of the labeled cells in terms of pixel area. The lower limit 
for a “labeled cell” on the particle analysis setting was then set to 
the smallest number of pixels measured for any cell, whereas the 
upper limit was set at the maximal particle size on the particle 
analysis option on Image J. The threshold density was adjusted 
such that background staining was eliminated and the number 
of immunoreactive pixels per the selected area in each region of 
interest was measured above this threshold.

statIstIcal analysIs
The effect of multiple METH treatment on TH-ir and MDA-ir was 
analyzed using a two-tailed unpaired t-test for each region of inter-
est. Differences in MDA-ir between the sub-regions of cortex or 
hippocampus following multiple METH treatment were analyzed 
using a one-way analysis of variance followed by Tukey’s multi-
ple comparisons post hoc test. Correlation between the number 
of MDA-ir particles and TH-ir mean gray values for the CPu and 
NAc were calculated according to the Pearson method. The alpha 
level for all analyses was set at 0.05.

Mda IMMunocytocheMIstry
Sections through PRL/ACC, CPu/NAc/M1, hippocampus, and 
SN/VTA were examined for changes in MDA-adducted proteins. 
Briefly, slides were washed three times in PBS, and fixed in 4% 
paraformaldehyde/0.9% NaCl for 10 min. The sections were then 
outlined with a PAP pen, followed by three washes in PBS and 
blocked with 10% normal horse serum in 0.3% Triton-X for 2 h at 
room temperature. The blocking solution was then removed, and 
the sections were incubated with a polyclonal rabbit anti-MDA 
antibody (1:200; Abcam, Cambridge, MA, USA), overnight at 4°C 
in humidified chambers. The sections were then washed with PBS, 
and incubated for 2 h at room temperature with a biotinylated goat 
anti-rabbit IgG antiserum (1:200; Vector Laboratories) diluted in 
5% horse serum/PBS. Slides were then washed three times in PBS, 
incubated 1 h at room temperature in ABC solution (Elite ABC Kit, 
Vector Laboratories) and washed three more times in PBS. Bound 
antibody was detected by incubating the sections in a 3,3′-diami-
nobenzidine/Ni+ solution (Vector Laboratories) for 4–8 min. Slides 
were washed with deionized H

2
O, dehydrated in a series of alcohols 

and coverslipped out of xylene.

IMage analysIs
Slides from TH immunocytochemistry were analyzed using Image 
J (National Institutes of Health; http://rsb.info.nih.gov/ij), as previ-
ously described (Johnson-Davis et al., 2002) and the images cap-
tured with a video camera (CCD IEEE-1394, Scion Corporation, 
Frederick, MD, USA). Basic densitometric analysis yielded average 
density (gray) values over the region of interest. Before the meas-
urement of sections, the linearity of the video camera to increasing 

Figure 1 | Schematic diagram of the rostral to caudal sections of rat 
brain used for analysis of malondialdehyde immunoreactivity (MDA-ir) 
and tyrosine hydroxylase immunoreactivity (TH-ir). Measurements given 
are relative to bregma. The regions used for analysis of MDA-ir are highlighted 
in gray and consist of the PRL and ACC (+4.2 mm; A); NAc, CPu, and M1 
(+1.7 mm; B); hippocampus (−2.92 mm; C); SN and VTA (−4.92 mm; D). PRL, 
prelimbic cortex; ACC, anterior cingulate cortex; NAcC, nucleus accumbens 
core; NAcS, nucleus accumbens shell; CPu, caudate putamen; M1, primary 
motor cortex; DG, dentate gyrus; SNpc, substantia nigra pars compacta; SNpr, 
substantia nigra pars reticulata; VTA, ventral tegmental area. The areas used 
for analysis of TH-ir are highlighted in blue (CPu) and pink (NAc).
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effects of MultIPle hIgh doses of Meth on Mda-Ir In the sn 
and Vta
Exposure to multiple, high doses of METH resulted in an increase in 
MDA-ir particles in the SNpc, but did not alter the amount of MDA-ir 
staining in the SNpr (Figure 4A). Exposure to multiple METH 
treatment also increased MDA-ir particles in the VTA (Figure 4A). 
Semi-quantitative analysis revealed that multiple METH treatment 
significantly increased MDA-ir in the SNpc (t = 6.62, p < 0.0001), 
but not the SNpr (t = 0.65, p = 0.949). Multiple METH treatment 
also significantly increased the number of MDA-ir particles in the 
VTA (t = 5.00, p = 0.0002; Figure 4B). Additional analysis revealed 
that multiple METH treatment resulted in a greater increase in 
MDA-ir in the SNpc as compared to the VTA (t = 11.17, p < 0.0001).

effects of MultIPle hIgh doses of Meth on Mda-Ir In the cortex
Exposure to multiple, high doses of METH resulted in an increase 
in MDA-ir particles all regions of cortex examined (Figure 5A). 
Semi-quantitative analysis revealed that multiple METH treatment 
significantly increased MDA-ir in the PRL (t = 5.29, p = 0.0003), 
ACC (t = 7.20, p < 0.0001), and M1 (t = 8.41, p < 0.0001; Figure 
5B). Additional analysis revealed that the level of MDA-ir was 

results
effects of MultIPle hIgh doses of Meth on Mda-Ir In the cPu 
and nac
Exposure to multiple, high doses of METH resulted in an increase 
in MDA-ir particles in both the lateral and medial regions of CPu 
(Figure 2A). Semi-quantitative analysis revealed that multiple 
METH treatment significantly increased MDA-ir in the lateral 
(t = 5.03, p = 0.0001) and medial (t = 5.04, p = 0.0001) CPu 
(Figure 2B). There was not a significant difference in the level 
of MDA-ir between the lateral and medial regions of CPu in 
METH-treated animals (t = 1.39, p = 0.172). Exposure to mul-
tiple METH treatment also increased MDA-ir particles in the 
core and shell of NAc (Figure 3A). Semi-quantitative analysis 
showed that multiple METH treatment significantly increased 
MDA-ir in the core (t = 5.68, p < 0.0001) and shell (t = 4.68, 
p = 0.0004) of NAc (Figure 3B). There was not a significant dif-
ference between the level of MDA-ir induced by multiple METH 
treatment for the core vs. shell sub-regions of NAc (t = 2.04, 
p = 0.06). However, multiple METH treatment induced signifi-
cantly higher levels of MDA-ir in the CPu as compared to the 
NAc (t = 5.35, p < 0.0001).

Figure 2 | Photomicrographs of MDA immunoreactivity (MDA-ir) in 
the lateral and medial CPu (A), 1 week after saline or multiple MeTH 
treatment (4 × 10 mg/kg, s.c.). Scale bar represents 100 μM. Data are 
presented as the percentage of MDA-ir particles in saline-treated control 

animals (±SEM, n = 7–14 animals/group). Semi-quantitative analysis showed 
that treatment with multiple doses of METH significantly increased MDA-ir 
in both the lateral and medial CPu (B). *p < 0.05 as compared to saline-
treated animals.
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the decrease in TH-ir induced by multiple METH treatment was 
significantly greater in the CPu, as compared to the NAc (t = 6.25, 
p < 0.0001), with TH-ir being reduced to approximately 60 and 
20% of control, respectively. In order to examine whether a rela-
tionship might exist between the degree of MDA-protein adducts 
induced by multiple METH treatment and the depletion of TH, we 
determined whether a correlation existed between the number of 
MDA-ir particles and the average gray values for TH-ir. In the CPu, 
a significant negative correlation existed between the number of 
MDA-ir particles (medial plus lateral regions) and the average gray 
values for TH-ir (r = −0.82, p < 0.0001; Figure 7D). In the whole 
NAc, there was not a significant correlation between the number 
of MDA-ir particles (core plus shell regions) and the average gray 
values for TH-ir (r = −0.40, p = 0.10; Figure 7E). There was not 
a significant correlation between the number of MDA-ir particles 
and the average gray values for TH-ir when the core (r = −0.40, 
p = 0.15) and shell (r = −0.47, p = 0.09) were each analyzed sepa-
rately (data not shown).

dIscussIon
The purpose of the present study was to examine the effects of 
multiple high doses of METH on the modification of proteins by 
MDA in the nigrostriatal and mesoaccumbal systems, as well as 

 significantly greater in the ACC sub-region of cortex as compared 
to the PRL (p < 0.01) and M1 (p < 0.001) cortical sub-regions fol-
lowing multiple METH treatment.

effects of MultIPle hIgh doses of Meth on Mda-Ir In the 
hIPPocaMPus
Exposure to multiple, high doses of METH resulted in an increase 
in MDA-ir particles in all regions of hippocampus examined 
(Figure 6A). Semi-quantitative analysis revealed that multiple 
METH treatment significantly increased MDA-ir in CA1 (t = 5.00, 
p = 0.0001), CA3 (t = 6.46, p < 0.0001), and DG (t = 4.01, p = 0.002; 
Figure 6B). Additional analysis revealed that the level of MDA-ir 
was significantly greater in the CA3 sub-region of hippocampus as 
compared to the CA1 (p < 0.001) and DG (p < 0.001) hippocampal 
sub-regions following multiple METH treatment.

effects of MultIPle hIgh doses of Meth on th-Ir In the cPu  
and nac
Treatment with multiple, high doses of METH decreased the 
amount of TH-ir in the CPu, as well as the NAc (Figures 7A,B). 
Densitometric analysis revealed that exposure to multiple doses of 
METH significantly reduced staining for TH in the CPu (t = 6.02, 
p < 0.0001) and NAc (t = 2.98, p = 0.009; Figure 7C). However, 

Figure 3 | Photomicrographs of MDA-ir in the core and shell of the NAc (A), 1 week after saline or multiple MeTH treatment (4 × 10 mg/kg, s.c.). Scale bar 
represents 100 μM. Data are presented as the percentage of MDA-ir particles in saline-treated control animals (±SEM, n = 7–14 animals/group). Semi-quantitative analysis 
showed that treatment with multiple doses of METH significantly increased MDA-ir in both the core and shell of the NAc (B). *p < 0.05 as compared to saline-treated animals.
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METH. Furthermore, our data show that MDA-protein adducts 
can occur in areas that receive less dense DA input, as well as in 
areas that are DA-dense and sensitive to the neurotoxic effects of 
METH treatment.

Our study focused on the accumulation of MDA-adducted pro-
teins after exposure to a neurotoxic regimen of METH treatment 
as an indication of biomolecular damage by MDA that may impair 
cellular function. While we have yet to characterize the specific 
targets of MDA, it is important, nevertheless, to speculate about 
the potential mechanisms by which MDA production may con-
tribute to METH-induced neurotoxicity, as these hypotheses will 
guide future research on METH-induced MDA neuronal dam-
age. As mentioned above, MDA can induce cellular damage via 
DA-related mechanisms, or through the inhibition of mitochon-
drial function (Jinsmaa et al., 2009; Long et al., 2009). It is possible 
that in regions where there is a dense concentration of DA, such as 
the nigrostriatal pathway, DA-related mechanisms of MDA-induced 
damage may predominate and contribute to the destruction of 

in cortex and hippocampus. We have shown that repeated METH 
administration results in increases in MDA-modified proteins in 
several regions of brain that persisted for 1 week after treatment, 
raising the possibility that long-term METH-induced neuronal 
damage could arise, in part, from the MDA-induced inactivation 
of essential protein functions. MDA-ir was significantly increased 
in the SNpc and CPu after multiple METH administration, which 
is in line with the toxic effects of multiple METH treatment on the 
dopaminergic neurons in this pathway. Multiple METH adminis-
tration also significantly increased MDA-ir in the VTA and NAc, 
which was unexpected, as the dopaminergic neurons of the mesoac-
cumbal pathway are less severely affected by this treatment regimen. 
Furthermore, multiple METH treatment MDA-ir was significantly 
increased in the cortex and hippocampus, two regions that con-
tain relatively lower levels of DA, indicating that MDA can induce 
significant protein adduction independent of the DA system. The 
data from the current study illustrate that there is widespread 
adduction of proteins by MDA following repeated treatment with 

Figure 4 | Photomicrographs of MDA-ir in the SNpc, SNpr, and VTA 
(A) 1 week after saline or multiple MeTH treatment (4 × 10 mg/kg, s.c.). 
Scale bar represents 100 μM. Data are presented as the percentage of 
MDA-ir particles in saline-treated control animals (±SEM, n = 7–14 animals/
group). Semi-quantitative analysis showed that treatment with multiple 

doses of METH significantly increased MDA-ir in the SNpc and VTA, but not 
in the SNpr (B). Multiple METH treatment also resulted in significantly 
greater MDA-ir in the SNpc, as compared to the VTA. *p < 0.05 as compared 
to saline-treated animals. +p < 0.05 as compared to the VTA in METH-
treated animals.
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these neurons. DA is metabolized by monoamine oxidase (MAO) 
to produce 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is 
then oxidized by aldehyde dehydrogenase-2 (ALDH-2) to produce 
3,4-dihydroxyphenylacetic acid (DOPAC; Marchitti et al., 2007). 
Metabolism of DA by MAO and ALDH-2 prevents its cytoplasmic 
accumulation and its conversion to a neurotoxic quinone that con-
duces the eventual destruction of dopaminergic neurons (Lavoie 
and Hastings, 1999; Yamamoto and Bankson, 2005; Marchitti et al., 
2007; Krasnova and Cadet, 2009). However, recent data indicates 
that MDA can lead to accumulation of DOPAL via irreversible 
inhibition of ALDH-2 activity (Jinsmaa et al., 2009). DOPAL is 
an aldehyde that is chemically reactive with proteins and has been 
shown to be several times more toxic to dopaminergic neurons 
than the DA-derived quinone (Rooke et al., 2000; Burke et al., 2003, 
2004; Jinsmaa et al., 2009). In addition, the infusion of DOPAL into 

the SNpc or VTA results in higher levels of toxicity in the SNpc as 
compared to the VTA (Burke et al., 2003). Interestingly, the VTA 
has been shown to express higher levels of factors involved in cell 
survival and protection than the SNpc, suggesting that the SNpc 
may be more vulnerable to toxic insults than the VTA (Grimm 
et al., 2004). Thus, repeated exposure to METH may result in MDA-
mediated increases in DOPAL in both the SNpc and VTA, but the 
increase in DOPAL may have less of a toxic impact in the VTA, 
whereas the neurons of the SNpc may be more severely affected.

Interestingly, very little MDA-ir was found in the SNpr after mul-
tiple METH treatment, as compared to all other regions examined. 
The lack of MDA-ir induced by multiple METH treatment could be 
due to the fact that the SNpr is comprised of γ-aminobutyric acid 
(GABA)-containing neurons and also contains relatively low levels 
of DA (Gerfen and Bolam, 2010). However, somatodendritic release 

Figure 5 | Photomicrographs of MDA-ir in the PrL, ACC, and M1 
(A), 1 week after saline or multiple MeTH treatment (4 × 10 mg/kg, s.c). 
Scale bar represents 100 μM. Data are presented as the percentage of MDA-ir 
particles in saline-treated control animals (±SEM, n = 7–14 animals/group). 
Semi-quantitative analysis showed that treatment with multiple doses of METH 

significantly increased MDA-ir in all three regions of cortex examined 
(B). Multiple METH treatment also resulted in significantly greater MDA-ir in the 
ACC sub-region of cortex, as compared to the PRL and M1 cortical sub-regions. 
*p < 0.05 as compared to saline-treated animals; +p < 0.05 as compared to the 
PRL and M1 sub-regions of cortex in METH-treated animals.
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 nigrostriatal system could simply be the result of relatively higher 
levels MDA-adducted proteins within this region. Interestingly, 
our data also show that there is a significant negative correlation 
between the loss of TH-ir and the increase in MDA-adducted pro-
teins in the CPu, indicating a relationship exists between increased 
MDA accumulation and depletion of TH in the nigrostriatal sys-
tem. This inverse relationship between MDA-ir and TH-ir was not 
observed in the NAc. It is possible that in the nigrostriatal system, 
where TH levels decrease as levels of MDA-modified proteins 
increase, MDA-mediated inhibition of ALDH-2 and accumulation 
of DOPAL (which is structurally similar to DA) may lead to feed-
back inhibit on the production of TH, due to cellular sensing of high 
DA-like compound levels (Burke et al., 2003). On the other hand, 
in the mesoaccumbal system, where TH levels do not appear to be 
related to levels of MDA-modified proteins, ALDH enzymes may be 
able to effectively eliminate DOPAL and avoid feedback inhibition 
of TH synthesis. Indeed, other ALDH isoforms, such as ALDH-1, 
can compensate for DOPAL oxidation in the event of ALDH-2 
blockade (Manzer et al., 2003; Marchitti et al., 2007; Jinsmaa et al., 

of DA into the SNpr from the dopaminergic neurons of the adjacent 
SNpc has been well-documented (Korf et al., 1976; Chéramy et al., 
1981; Robertson et al., 1991; Heeringa and Abercrombie, 1995; 
Windels and Kiyatkin, 2006) and METH has been shown to increase 
extracellular levels of DA in the substantia nigra (Bustamante et al., 
2002). Thus, DA levels may increase in the SNpr during METH 
treatment, setting the stage for DA-related increases in MDA-ir 
within this region, aside from any non-DA-related increases in 
MDA-ir that might also occur. At this point, however, it is not 
clear what factors might contribute to the relative resistance of the 
SNpr to the development METH-induced MDA-protein adducts 
following multiple METH treatment. Additional studies are needed 
in order to address the potential mechanisms that might underlie 
the resistance of the SNpr to the development of METH-induced 
MDA-protein adducts.

It is important to note, however, that our data indicate that 
repeated METH treatment results in significantly greater levels 
of MDA-ir in the nigrostriatal system vs. the mesoaccumbal sys-
tem, raising the possibility that the enhanced neurotoxicity of the 

Figure 6 | Photomicrographs of MDA-ir in CA1, CA3, and Dg (A) 1 week 
after saline or multiple MeTH treatment (4 × 10 mg/kg, s.c.). Scale bar 
represents 100 μM. Data are presented as the percentage of MDA-ir particles in 
saline-treated control animals (±SEM, n = 7–14 animals/group). Semi-quantitative 
analysis showed that treatment with multiple doses of METH significantly 

increased MDA-ir in all regions of hippocampus examined (B). Multiple METH 
treatment also resulted in significantly greater MDA-ir in the CA3 sub-region of 
hippocampus, as compared to the CA1 and DG hippocampal sub-regions. 
*p < 0.05 as compared to saline-treated animals; +p < 0.05 as compared to the 
CA1 and DG sub-regions of hippocampus in METH-treated animals.
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Figure 7 | Photomicrographs of TH-ir in the CPu (A) and NAc (B), 1 week 
after multiple MeTH treatment (4 × 10 mg/kg, s.c.) and quantitative analysis 
of the effects of multiple MeTH treatment on TH-ir in the whole CPu and 
whole NAc (C). Values are average gray values (arbitrary units, ±SEM, n = 7–14 
animals/group). Treatment with multiple doses of METH significantly decreased 

TH-ir in the CPu and NAc, with a significantly greater reduction in TH-ir observed 
in the CPu vs. NAc of METH-treated animals. There was a significant negative 
correlation between the total number of MDA-ir particles and the average gray 
values for TH-ir in the CPu (D), but not NAc (e). *p < 0.05 vs. respective 
saline-treated animals; +p < 0.05 vs. TH-ir in the CPu of METH-treated animals.

2009). It is possible that in the mesoaccumbal system, inhibition 
of ALDH-2 by MDA may be ameliorated by ALDH-1-mediated 
oxidation of DOPAL to DOPAC. However, it is important to point 
out that ALDH-1 is expressed to a higher degree in the SNpc as 
compared to the VTA (McCaffery and Drager, 1994; Jinsmaa et al., 
2009). Clearly, additional studies are needed to further examine 
the relative contribution of ALDH isoforms to the clearance of 
MDA-mediated increases in DOPAL within the SNpc and VTA.

Multiple METH treatment also increased the levels of MDA-
modified proteins in the prefrontal cortex, as MDA-ir was increased 
in both the PRL and ACC. The frontal cortex contains relatively 
lower levels of DA than the CPu, but exposure to multiple high 
doses of METH has been shown to result in depletion of DA lev-
els and TH hydroxylase activity in the frontal cortex (Hotchkiss 
and Gibb, 1980; Ricaurte et al., 1980). Therefore, it is possible that 
increased levels of MDA in the frontal cortex contribute to the loss 
of DA levels and markers in this region, through the accumulation 

of toxic DA metabolites as a result of the inhibition of  ALDH-2, 
as described above. However, the increases in MDA-adducted 
proteins observed in the sub-regions of prefrontal cortex after 
multiple METH treatment were similar in magnitude to what was 
observed in the CPu (data not shown), despite the relative dif-
ferences in DA levels between these two regions, suggesting that 
MDA-protein modifications may occur in non-DA neurons, leading 
to widespread neuronal damage. In support of this observation is 
the finding that multiple METH treatment can induce apoptosis in 
non-DA neurons in the cortex (Pu et al., 1996; Cadet et al., 2003). 
Thus, following multiple METH treatment, MDA may also lead to 
damage of non-DA neurons in the cortex via direct adduction of 
proteins and nucleic acids or disruption of mitochondrial func-
tion. This non-DA-related mechanism of cellular damage could 
be responsible for a relatively larger portion of METH-induced 
neuronal damage than the DA-mediated mechanism of neuronal 
damage, given the lower levels of DA input in the cortex. Future 
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