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the symptomatology of PD with a degeneration of LC NAergic 
neurons occurring before that of SNc DAergic neurons. Several 
studies revealed the existence of a correlation between the severity 
of DA and noradrenaline (NA) depletions with the severity of PD 
neurological symptoms (Marie et al., 1995; Selikhova et al., 2002). 
While the DAergic system is the main target of the pharmacologi-
cal approaches to PD, corrections of the NA alterations inherent 
to the disease could improve the efficacy of current therapies. In 
this review we focus on the implication of the LC NA system in the 
pathophysiology of PD and on the different therapeutic approaches 
using NAergic agents.

NoradreNergic systems iN the ceNtral Nervous 
system
the NoradreNergic system
Two main NAergic systems can be distinguished: one is composed 
of neurons belonging to the medulla oblongata (A1/C1 nucleus), 
whereas the other is more rostral (A2/C2 nucleus) and is located in 
the pons (Gaspar, 1994). The caudal NAergic system corresponds to 
diffuse groups of cells in the lower brainstem. The rostral NAergic 
system corresponds mainly to the locus coeruleus (LC, A6) located 
in the pons.

Noradrenaline release exerts potent neuromodulatory effects 
on synaptic transmission, changing the membrane potential, excit-
ability of neurons and synaptic plasticity via adrenergic receptors 
(ARs). Two subtypes of ARs have been described: alpha ARs (α1 and 
α2) and beta ARs (β1, β2, and β3). These ARs are found throughout 

iNtroductioN
Parkinson’s disease (PD) is a degenerative disorder of the central 
nervous system that impairs motor skills, cognitive processes, and 
other functions. Motor symptoms are characterized by tremor, 
rigidity, bradykinesia, and postural instability. Among non-motor 
symptoms are autonomic dysfunction, sensory and sleep difficul-
ties, cognitive, and neurobehavioral problems, including dementia 
and depression. For example, depression occurs in approximately 
45% of all PD patients and reduces patient’s quality of life inde-
pendently from motor symptoms (Lemke et al., 2004). These non-
motor symptoms are common in the advanced stages of the disease.

Parkinson’s disease is a non-hereditary disease of unknown 
etiology that usually appears after the age of 50 and affects both 
sexes equally (Jankovic and Talosa, 1988). It is well-known to 
be characterized by a progressive degeneration of dopaminergic 
(DAergic) neurons (70–75%) in the substantia nigra pars compacta 
(SNc), which results in a dopamine (DA) depletion in the striatum 
(Ehringer and Hornykiewicz, 1960). However, it is misleading to 
reduce PD to a malady of the SNc. Indeed, it has been repeatedly 
shown over the last 50 years that noradrenergic (NAergic) cells from 
the locus coeruleus (LC) also degenerate in the disease (Greenfield 
and Bosanquet, 1953; Ehringer and Hornykiewicz, 1960; German 
et al., 1992; Bertrand et al., 1997; Tohgi et al., 1997; Ehringer and 
Hornykiewicz, 1998). The neuronal loss in the LC is greater (83%) 
than in the SNc (78%; Zarow et al., 2003). This is in agreement with 
the Braak’s theory (Braak and Del Tredici, 2008) that proposed a 
progressive caudo-rostral alteration of monoaminergic centers in 
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the brain including the striatum and substantia nigra. Different 
subtypes are coupled to different G proteins. In general, excitatory 
effects are mediated by α1 and β postsynaptic ARs (McCormick and 
Wang, 1991; McCormick et al., 1991; Arcos et al., 2003) and inhibi-
tory effects by α2 presynaptic ARs (Belujon et al., 2007; Benarroch, 
2009; Table 1).

the locus coeruleus
The LC nucleus is present in all mammalian species and represents 
the main source of NA for the central nervous system (Mann, 1983; 
Aston-Jones, 2004). Synaptic inputs from several sources influence 
the activity of LC neurons. The LC NAergic system, via its wide-
spread projections, modulates cortical, subcortical, and brainstem 
circuits. Due to the very small size of the LC, biochemical studies 
are unable to differentiate LC nucleus vs surrounding areas. A lot of 

retrograde and anterograde tract tracing studies over the years, that 
have been well recapitulated by Aston-Jones (2004) and Benarroch 
(2009), have demonstrated the numerous afferent and efferent con-
nections of LC neurons. These reviews document that the orbit-
ofrontal and anterior cingulate cortices provide the main source 
of glutamatergic afferent drive to the LC. LC modulates a variety 
of central functions through the release of NA into several brain 
areas including neocortex, hippocampus, thalamus, subthalamic 
nucleus, and substantia nigra. These projections are only sparse in 
striatum and spinal cord. Figure 1 summarizes the major afferent 
and efferent projections of the LC.

The biochemistry of NA neurons has relevance to PD. Because 
l-Dopa, the metabolic precursor of DA, given to patients to enhance 
DA synthesis, is also a metabolic precursor of NA. In the normal 
condition, tyrosine hydroxylase (TH) catalyzes the conversion of 
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Figure 1 | Afferent (red and purple) and efferent projections of LC neurons 
(blue). LC, locus coeruleus; NA, noradrenaline; Alpha2, Alpha2 receptor; GABA, 
γ-aminobutyrique acid; GABA A, GABA A receptor; 5-HT, serotonin; 5-HT1 and 

5-HT2, serotonin receptor subtype 1 and 2; CRF, corticotropin releasing factor; 
STN, subthalamic nucleus; VTA, ventral tegmental area; SN, substantia nigra; 
NET, noradrenalinergic transporters; Red, excitatory input; Purple, inhibitory input.

Table 1 | Adrenergic receptor characteristics.

receptor subtypes g protein Distribution effects

Alpha 1 Gq Postsynaptic throughout brain (including cortex, thalamus, 

STN, Striatum…)

↑ Excitability

Alpha 2 Gi/o Presynaptic on NAergic and non-NAergic terminals ↓ Spontaneous firing and excitability;

↓ Neurotransmitter release

Beta 1 Gs Postsynaptic in cerebral cortex, mainly expressed in the 

heart and the kidney

Adenylate cyclase activation; diffuse cellular response

Beta 2 Gs/Gi Postsynaptic in cerebellum and cerebral cortex, 

hippocampus, midbrain…, mainly expressed in peripheral 

nervous system

Adenylate cyclase activation, resulting in an increase of 

cAMP; LTP facilitation

Beta 3 Gs Adipose tissue Adenylate cyclase activation; regulation of body weight

STN, subthalamic nucleus; LTP, long-term potentiation; cAMP, cyclic adenosine monophosphate.
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the density of α1 and β1 ARs in synaptosomal and microsomal 
 fractions in the 6-hydroxydopamine (6-OHDA) rat model of PD 
(see below) as well as in the pre-frontal cortex of parkinsonian 
patients. The studies in animal models and PD patients suggest 
that the impairment of LC NAergic function could contribute to 
the motor and non-motor symptoms of PD.

the locus coeruleus NoradreNergic system iN aNimal  
models of Pd
A variety of models have been developed over the years with the 
increase in understanding of PD. Most, if not all, animal models 
have focused on DA depletion because PD symptoms typically 
occur in humans when approximately 70–80% of DA tissue content 
in the striatum has been lost (Bezard et al., 2001; McNamara and 
Durso, 2006). The impairment of the NAergic system, also typical 
of the human disease, has been neglected for several years to the 
point that most rat models of the disease, generated by administra-
tion of the catecholaminergic neurotoxin 6-OHDA, incorporate the 
concomitant protection of NAergic neurons with the NET blocker 
desipramine (see below). The reasons that have led to ignoring 
the role of NAergic neurons in the disease could be related to the 
demonstration that NAergic neurons are not directly responsible 
for the behavioral effects of l-Dopa in animal models. Also, the 
striatum has been the main target of the anti-parkinsonian treat-
ments, a brain region that is poorly innervated by NAergic fibers. 
Nonetheless, NAergic mechanisms may participate in the thera-
peutic outcome of l-Dopa (Fox et al., 2001) and NA may act in 
brain regions that may profoundly impact on the control of motor 
behaviors, including the subthalamic nucleus (Belujon et al., 2007). 
The few data available regarding the various animal models of PD 
support a non-negligible role of NA in the aberrant motor output 
consequent to DA depletion.

Non-human primate models of the disease have been developed 
after the discovery of a specific neurotoxin 1-methyl-4-phenyl-
l,2,3,6-tetrahydropyridine (MPTP) able to induce parkinsonism 
in humans (Langston and Ballard, 1983). MPTP has been shown 
to produce parkinsonian motor deficits in the non-human primate 
that are similar to PD (Langston and Ballard, 1984). This model has 
been essential in the understanding of the pathophysiology of PD 
(Fox and Brotchie, 2010) and the development of new therapeutic 
approaches, such as the lesion or high frequency stimulation of 
the subthalamic nucleus (Bergman et al., 1990; Benazzouz et al., 
1993, 1996). MPTP-treated rhesus monkeys mimicked the DAergic 
cell degeneration in the SNc and profound striatal DA depletion. 
However, the inter-regional pattern of striatal DA loss typically 
encountered in the idiopathic PD, i.e., a significantly greater deple-
tion of DA in the putamen compared to the caudate nucleus, is 
not reproduced in this model (Pifl et al., 1991). It was originally 
reported that MPTP did not cause LC cell death in non-human 
primates. However, it has become clear that MPTP also causes a 
distinct and often severe cell loss in the LC and/or NE depletion in 
terminal fields (Javitch et al., 1984; Mitchell et al., 1985; Di Paolo 
et al., 1986; Forno et al., 1986; Miyoshi et al., 1988; Pifl et al., 1991). 
MPTP-treated monkeys developed typical parkinsonian signs of 
bradykinesia, tremor, and hypokinesia. Behavioral symptoms of 
PD could involve the concomitant loss of DAergic and NAergic 
neurons, rather than DAergic neurons alone.

the amino acid tyrosine to l-Dopa. Both normally produced and 
administered l-Dopa are catalyzed to DA by l-aromatic amino acid 
decarboxylase (AADC). DA beta-hydroxylase (DBH) synthesizes 
NA from DA in the cytosol and either the vesicular monoamine 
transporter (VMAT) moves the NA into vesicles ready for exo-
cytotic release or monoamine oxidase A degrades the NA. Once 
released into the extracellular space, reuptake of NA is performed 
by the plasmalemmal noradrenaline transporter (Rascol et al., 
2001), while extracellular NA also limits its own release through 
the stimulation of auto-inhibitory α2 ARs (Figure 1). Of note, as 
reported in the cortex (Tanda et al., 1997), NET can also transport 
extracellular DA inside NAergic neurons.

The LC NAergic system contributes to long-term synaptic plas-
ticity, pain modulation, energy homeostasis and control of local 
blood flow (McCormick, 1992). LC neurons fire in two distinct 
modes, tonic and phasic (Aston-Jones and Cohen, 2005a,b). Tonic 
activity is characterized by a sustained and highly regular pattern 
of discharge that is highest during wakefulness and decreases dur-
ing slow-wave sleep. This tonic activity plays a central role in the 
sleep–waking cycle anticipating the fluctuations of electroencepha-
lographic activity and promoting a state of vigilance. It is indeed 
well known that the stimulation of central NAergic receptors leads 
to changes in the state of vigilance. There is also a sustained increase 
in tonic discharge rate in response to environmental stimuli that 
elicit behavioral arousal and exploratory behavior. During focused 
attention and accurate task performance, LC neurons reduce their 
tonic firing to a moderate rate and respond phasically to task- 
relevant stimuli. The phasic bursts of LC activity are closely associ-
ated with highly accurate behavioral responses. Thus the LC nucleus 
has a major role in arousal, attention and stress response (Berridge 
and Waterhouse, 2003; Aston-Jones and Cohen, 2005a).

Alteration of the LC NAergic system has been implicated in 
many pathologies such as sleep and arousal disorders, attention 
deficit, hyperactivity disorder, post-traumatic stress disorder and 
psychiatric disorders, including anxiety, depression, schizophre-
nia, and mechanisms of opioid addiction (Benarroch, 2009). It 
constitutes a target for pharmacological treatment of these condi-
tions (Aston-Jones, 2004; Rommelfanger and Weinshenker, 2007; 
Benarroch, 2009).

the locus coeruleus NoradreNergic system iN Pd
Locus coeruleus is often severely affected in neurodegenerative 
diseases (Saper et al., 1991) and a growing number of anatomical 
and biochemical data has stressed this point in PD. In line with 
the drastic decrease in NAergic cell bodies (Chan-Palay and Asan, 
1989), significant depletions (>80%) of NA concentration have 
also been reported in the PD brain (Taquet et al., 1982; Jenner 
et al., 1983; Gaspar et al., 1991). Consistently, Positron emission 
tomography (Dailly et al., 2006) studies have reported that [11C]
RTI-32, an in vivo marker of both DA transporter (DAT) and NET 
binding, was reduced in several regions including those poorly 
innervated by DAergic fibers (Marie et al., 1995; Remy et al., 2005). 
It has also been shown that NAergic synapses change size and 
shape of the pre- and postsynaptic components, polymorphism 
of the synaptic vesicles and marked morphological alterations 
of the mitochondria (Chan-Palay and Asan, 1989; Baloyannis 
et al., 2006). Cash et al. (1984, 1986) have reported an increase in 
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neurons to be overactive with an irregular pattern of discharge 
(Wang et al., 2009), suggesting that their influence is magnified in 
DA-lesioned rats.

Noradrenaline depletion in the rodent by N-(2-chloroethyl)-
N-ethyl-2-bromobenzylamine (DSP-4) is an approach commonly 
used to model human neuropsychiatric disorders in rodents. Even 
though the efficacy of DSP-4 in destroying NA fibers is region- 
and species-dependent (Dailly et al., 2006), convincing evidence 
indicates that DSP-4 is a neurotoxin that lesions NAergic termi-
nals arising selectively from the LC (Fritschy and Grzanna, 1989; 
Grzanna et al., 1989; Fritschy and Grzanna, 1991). Concomitant 
to the data obtained in non-human primates and genetic mice 
models of PD (Pifl et al., 1991; Rommelfanger and Weinshenker, 
2007), we have recently found that NA depletion alone induces 
severe motor deficits similar to those reported after 6-OHDA lesion 
(Delaville et al., 2010). In contrast to a 6-OHDA lesion (Deumens 
et al., 2002), the motor impairments consequent to NA depletion 
were not related to DAergic cell loss. Furthermore, the motor defi-
cits reported in 6-OHDA-lesioned rats were not aggravated by the 
additional depletion of NA (Delaville et al., 2010). Another study 
has reported that denervation of LC NAergic terminals potentiated 
the 6-OHDA-induced partial DAergic neurodegeneration and aki-
nesia only in rats treated with a D2 receptor antagonist, haloperidol 
(Srinivasan and Schmidt, 2003). Only a few studies have specifically 
addressed the non-motor symptoms of PD in animal models. Our 
recent data (Delaville et al., 2010) show that additional NA deple-
tion in 6-OHDA-lesioned rats induced anxiety and fear behavior 
in the elevated plus maze, both being non-motor symptoms of PD. 
Recently, it has been reported that additional NA depletion impaired 
working memory in a manner similar to that observed after bilateral 
inactivation of LC suggesting that the NAergic system of the LC may 
play an important role in acquisition of spatial memory (Khakpour-
Taleghani et al., 2009). Nevertheless, it has been reported that the 
deficits of spatial information processing in PD are solely a conse-
quence of the striatal DAergic dysfunction (De Leonibus et al., 2007).

In conclusion, most animal models have focused on the motor 
symptoms related to the nigrostriatal DAergic system. A thorough 
examination of the data suggests that NAergic neuron dysfunction 
plays a non-negligible role in the motor and non-motor symptoms. 
The link between non-motor symptoms and the impairment of 
NAergic system has been also noted in humans.

iNvolvemeNt of Na iN Pd symPtoms
Although it is relatively common to describe a variety of signifi-
cant biochemical alterations in PD patients, it is more difficult to 
demonstrate for each neurotransmitter a specific role in the patho-
physiology of the disease. This point could be addressed by careful 
post-mortem studies which should correlate a specific biochemical 
pattern observed in a given patient with his detailed clinical history. 
PET imaging studies demonstrate that it is possible to assess in vivo 
the neocortical monoamine terminal loss (including NA), and to 
elucidate its potential role in the complex cognitive and affective 
impairment in PD (Marie et al., 1995). This part of the review is 
focused on the most relevant studies investigating the role of NA 
depletion in specific motor and non-motor symptoms related to 
PD in human patients and associated with the above-mentioned 
animal models (Table 2).

1-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine has been also 
used in mice. MPTP-treated mice with 80% loss of DA do not 
exhibit profound motor impairments (German et al., 1992; Marien 
et al., 2004; Archer and Fredriksson, 2006). The fact that MPTP 
treatment in mice has little to no effect on LC neurons or NA 
tissue content may explain the lack of motor deficits. In support 
of a role of NA in motor symptoms in PD, DBH−/− mice display 
motor impairments associated with a hypodopaminergic state. 
These mice synthesize normal amounts of DA, but, in the absence 
of NA, the release of DA seems to be decreased (Rommelfanger 
and Weinshenker, 2007). This is consistent with data reporting the 
excitatory influence exerted by NA on DAergic neuron function 
(see below interaction between DA and NA). One important note 
is that DBH−/− mice are supplemented with NA agonists and NA 
itself during development as DBH is necessary for development 
(Thomas et al., 1995). Taken together, these data suggest that the 
behavioral symptoms of PD appear to be correlated with a con-
comitant loss of DA and NA.

The reserpinized rat model (Colpaert, 1987) and the VMAT KO 
mice (VMAT−/− mice; Taylor et al., 2009) also support an interaction 
between DAergic and NAergic systems in PD motor symptoms. 
Reserpine blocks the VMAT, leading to a rapid decrease in the 
release of monoamines. The cardinal signs of the disease includ-
ing tremor, rigidity, and hypokinesia are induced by reserpine in 
rats. The order of occurrence and time course of these signs appear 
to resemble the natural history of the human disease (Colpaert, 
1987; Taylor et al., 2009). Surprisingly, drugs that increase post-
synaptic ARs activation or NA availability, but not DA modula-
tion, are effective in reducing parkinsonian signs in reserpinized 
rats (Colpaert, 1987). These observations led to the proposal that 
adrenergic mechanisms in the brain may play an important role 
in modifying motor and non-motor signs. As VMAT is impaired 
in both the reserpinized rats and the VMAT−/− mice models, the 
involvement of serotonin (5-HT) in these mechanisms cannot be 
excluded because VMAT is also involved in the reuptake of serot-
onin. Reserpine treatments and VMAT−/− mice do not only result in 
SNc DAergic and LC NAergic systems depletions, they also induce 
an almost total depletion of DA and NA from the other catecho-
laminergic nuclei as well as 5-HT originating from the raphe nuclei. 
In PD, it is estimated that 40–60% of 5-HT neurons degenerate in 
some cases (Kish, 2003; Kish et al., 2008; Politis et al., 2010).

The 6-OHDA rat is probably the most popular model of PD. 
Different 6-OHDA models of PD have been developed in which 
the toxin has been injected into different parts of the nigrostriatal 
pathway to cause DAergic cell loss in the SNc, resulting in DA 
depletion in the striatum (Deumens et al., 2002). 6-OHDA can be 
injected directly into the SNc, the medial forebrain bundle (MFB) 
or the striatum. The first two modes of injection are used to develop 
severe lesions of DAergic neurons corresponding to an advanced 
stage of the disease, while striatal injection of 6-OHDA is used to 
produce partial DA cell loss corresponding to the early stage of the 
disease (Kirik et al., 1998; Yuan et al., 2005; Breit et al., 2007). Such 
models exhibit some motor disabilities related to sensorimotor deg-
radation though freezing, hypokinesia and tremor are not present. 
In addition, the non-motor symptoms are not evident (Amalric 
et al., 1995; Olsson et al., 1995; Branchi et al., 2008). It is notewor-
thy that 6-OHDA lesion of DAergic neurons causes LC NAergic 
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are consistent with data showing that, in naive rats, NAergic func-
tion regulates the responsiveness to environmental cues and anxiety 
behavior (Lapiz et al., 2001). In humans, it is also thought that the 
enhanced anxiety found in elderly people may be related to the loss 
of DAergic and NAergic innervations (Gareri et al., 2002).

One of the most devastating non-motor symptoms in PD is depres-
sion (Cummings, 1992; Bader and Hell, 1998; Oertel et al., 2001; Schrag 
et al., 2001; Lemke, 2002; Yamamoto, 2004; Remy et al., 2005). The 
incidence of depression is currently high in PD, reaching a prevalence 
of 40% in some studies (Mayeux et al., 1986; Dooneief et al., 1992). The 
reason for the high frequency of depression in PD is poorly understood 
but, even if in some patients a dopamine agonist (pramipexole) can 
improve this symptom (Bxarone et al., 2010), the combined deple-
tion of the three monoaminergic systems may be an explanation. In 
the unilateral rat model of PD, we have found that the DA depletion 
combined with NA depletion induced by DSP-4 and 5-HT depletion 
induced by the tryptophane hydroxylase inhibitor parachloropheny-
lalanine reduced the sucrose consumption and enhanced the time of 
immobility in the Porsolt test (Delaville et al., 2010). Importantly, only 
the combined depletions of all three monoamine systems resulted in 
a depressive-like behavior. It has been reported in humans that the 
binding of [11C]RTI-32 in the LC and in several regions of the limbic 
system including the anterior cingulate cortex, the amygdala, and the 
ventral striatum was inversely correlated with the degree of apathy and 
the intensity of depression in the patients (Remy et al., 2005). [11C]
RTI-32 is a ligand displaying similar affinities to DAT and NET but with 
far lower affinity for the 5-HTergic transporter (Carroll et al., 1995). 
Thus, it seems that the DAergic and NAergic innervations are involved 
in PD depression and might specifically play a role in apathy, which is 
a major feature of depression. A histological study has shown that LC 
neuron morphology is more severely altered in PD with depression 
than in PD without depression (Chan-Palay and Asan, 1989).

It has also been shown that LC cell loss correlates significantly 
with performance on reaction time tasks and continuous perform-
ance tasks that measure attention and vigilance (Stern et al., 1984; 

(a) Motor symptoms
  Parkinson’s disease presents a wider spectrum of motor 

symptoms when both DA and NA deficiency are combined 
(Narabayashi et al., 1991). α2ARs agonism potentiates the anti-
parkinsonian action of l-Dopa treatment (Hill and Brotchie, 
1999). It is also suggested that alpha-adrenergic mechanisms 
and in particular α2ARs, may be involved in reserpine-induced 
tremor and rigidity (Colpaert, 1987). In human, akathisia and 
pseudo-parkinsonian tremor are modulated by a NAergic path-
way that projects from the LC to the limbic system (Wilbur 
et al., 1988); these symptoms are improved by an α2ARs ago-
nist or a βARs antagonist (Wilbur et al., 1988). Several studies 
have also reported the involvement of the LC NA pathway in 
freezing (Mizuno et al., 1994; Sandyk, 1996; Ringendahl and 
Sierla, 1997; Devos et al., 2010), the “on–off” phenomenon 
(Sandyk, 1996), postural instability (Narabayashi et al., 1991), 
and akinesia (Hornykiewicz, 1975; Narabayashi et al., 1991).

(b) Non-motor symptoms
  Improvements in medication to treat the motor symptoms have 

highlighted the non-motor symptoms, which represent one of 
the main concerns of preclinical and clinical studies (Chaudhuri 
and Odin, 2010). The non-motor symptoms may appear many 
years before the onset of the motor complications in PD (Lemke 
et al., 2004). Whilst we focus on potential DAergic sources of 
mental dysfunction in PD, the potential role of NAergic systems 
should be kept in mind as well. Indeed, specific loss of DAergic 
and NAergic innervation of the limbic system is associated with 
cognitive and neurobehavioral problems, including dementia 
(Cash et al., 1987), depression (Cummings, 1992; Remy et al., 
2005), anxiety (Stein et al., 1990; Lauterbach et al., 2003), and 
attention deficits (Riekkinen et al., 1998).

In a rat model of early stage PD, striatal DAergic degeneration 
and NAergic alterations in prefrontal cortex may have caused emo-
tional reactivity and anxiety (Tadaiesky et al., 2008). These  findings 

Table 2 | involvement of the LC in specific motor and non-motor symptoms of PD and their reference studies.

Symptoms references

Motor symptoms Akinesia Hornykiewicz (1975)H, Narabayashi et al. (1991)H, Bezard et al. (1999)M

Freezing Tohgi et al. (1990)H, Mizuno et al., (1994)H, Sandyk (1996)H, Ringendahl and Sierla (1997)H, Devos 

et al. (2010)H

Locomotor activity Narabayashi et al. (1991)H, Nishi et al. (1991)R, Hill and Brotchie (1999)R

“On–off” phenomenon Sandyk (1996)H

Postural instability Narabayashi et al. (1991)H, Grimbergen et al. (2009)H

Tremor Colpaert (1987)R, Wilbur et al. (1988)H, Yamazaki et al. (1979)R

Non-motor symptoms Anxiety Stein et al. (1990)H, Lauterbach et al. (2003)H

Attention and vigilance Stern et al. (1984)H, Mayeux et al. (1987)H, Bédard et al. (1998)H, Riekkinen et al. (1998)H

Dementia Mann and Yates (1983)H, Cash et al. (1987)H, Mayeux et al. (1987)H, Chan-Palay and Asan (1989)H

Depression Mayeux et al. (1986)H, Cummings (1992)H, Dooneief et al. (1992)H, Bader and Hell (1998)H, Kasper 

et al. (2000)H, Oertel et al. (2001)H, Schrag et al. (2001)H, Lemke (2002)H, Selikhova et al. (2002)H, 

Lemke et al. (2004)H, Yamamoto (2004)H, Remy et al. (2005)H

H, human studies; M, Monkey studies; R, Rat studies.
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of NET, which increases extracellular NA, also protects DAergic 
neurons from MPTP damage in mice. The mechanisms underly-
ing the neuroprotective influence of NA are not clearly determined 
(Rommelfanger and Weinshenker, 2007).

theraPeutic aPProaches targetiNg  
the Naergic system
effects of l-threo-doPs oN motor aNd NoN-motor symPtoms
Treatment of PD has focused on supplementing DA levels indi-
rectly through l-Dopa administration or on stimulating directly 
DAergic receptors with DA agonists. Despite the success of these 
therapies, certain features of PD fail to respond to treatment and 
even worsen with DA replacement therapy. Among these inca-
pacitating refractory symptoms are apathy, depression, memory 
loss, akathisia, postural instability, and sudden transient freezing. 
Clinical and experimental evidence suggests that NA deficiency 
may be responsible for some of these PD symptoms (see above).

The DA replacement therapy with l-Dopa probably alters the 
activity of NAergic neurons. Indeed, l-Dopa may enter NAergic 
neurons to be decarboxylated to DA. Nishi et al. (1991) but not 
Hollister et al. (1979), have suggested that central NAergic termi-
nals play a significant role in the increase of locomotor activity 
induced by l-Dopa administration in rats with striatal DA defi-
ciency. Nevertheless, NAergic neurons do not release DA synthe-
sized from l-Dopa as it has been reported that the total destruction 
of 5-HTergic neurons abolished the releasing effect of l-Dopa 
(Tanaka et al., 1999), even in brain regions receiving substan-
tial amount of NAergic fibers (Navailles et al., 2010a,b). On the 
other hand, NAergic neurons could participate in the clearance 
of extracellular DA. Indeed, because NET is able to transport DA, 
NAergic fibers could modify the pattern of l-Dopa-induced DA 
release depending on the relative innervation of brain regions by 
NAergic neurons. Thus, in the striatum, it has been reported that 
desipramine enhanced l-Dopa-induced DA release (Arai et al., 
2008), suggesting that the clearance could be higher in brain 
regions more densely innervated. Finally, one could expect an 
increase in NA tissue content and/or an increase in NA release 
induced by l-Dopa. The finding that the α2AR antagonist idazoxan 
is efficient in reducing the dyskinesia induced by l-Dopa but not 
by the DA agonist apomorphine (Fox et al., 2001) in MPTP-treated 
monkeys supports a change in NAergic neuron function induced 
by l-Dopa.

l-Threo-dihydroxyphenylserine (l-threo-DOPS), an non-nat-
ural NAergic precursor, has been shown to be effective in relieving 
motor and non-motor symptoms of PD (Kuno, 1997). Indeed, in 
the rat, the duration of harmaline induced tremor was significantly 
reduced by intraventricular administration of l-thero-DOPS 
(Yamazaki et al., 1979). In PD patients, Ogawa et al. (1984, 1985) 
have shown that 10 days treatment with l-threo-DOPS substan-
tially improved patient’s freezing episodes, rigidity, and dysar-
thria. Narabayashi et al. (1991) have reported that treatment with 
l-threo-DOPS, in combination with a peripheral AADC inhibitor, 
may have profound effects on freezing phenomena in patients 
with PD (Tohgi et al., 1990; Tohgi et al., 1993). Other aspects 
of akinesia also improved considerably in a majority of these 
patients (Yamamoto et al., 1986), although rigidity and tremor 
were barely affected (Jenner et al., 1983). When l-threo-DOPS 

Mayeux et al., 1987; Bedard et al., 1998; Riekkinen et al., 1998; 
McNamara and Durso, 2006). LC damage results in severe loss of 
cortical and limbic NAergic innervation with a 40–78% decrease 
in NA, its metabolites and related enzymes in PD. These changes 
are more marked in patients with dementia than in those without 
dementia (Cash et al., 1987; Mayeux et al., 1987).

evideNce for the iNteractioN betweeN Na  
aNd da iN Pd
The concomitant loss of NA and DA could therefore promote aber-
rant motor and non-motor symptoms, suggesting that the two sys-
tems could interact in the brain. Only a few studies demonstrate the 
role of DA in NAergic modulation in PD. In addition to the increase 
in firing rate of LC NA neurons (Wang et al., 2009), an increase in 
the density of β ARs in the cerebral cortex, the forebrain, thalamic 
nuclei, the midbrain, the hippocampus, and the cerebellum has 
been reported in 6-OHDA rats with a selective DAergic neuron 
lesion (Johnson et al., 1989). In general, a decrease in DAergic neu-
ron function seems to enhance NAergic system activity.

Although anatomical evidence for innervation of DA containing 
brain regions by NAergic fibers in the rat is scarce, functional stud-
ies suggest the existence of NAergic inputs that facilitate DAergic 
transmission (Jenner et al., 1983). Indeed, Ponzio et al. (1981) dem-
onstrated that NAergic nerve terminals originating from the LC 
may be involved in regulating the functional activity of the DAergic 
nerve terminals both in the cerebral cortex and the striatum. This 
regulation appears to be excitatory in nature and is present early in 
development. These data are confirmed by pharmacological studies 
showing that αlARs antagonism may reduce the sensitivity of the 
mesolimbic DAergic system to pharmacological or environmental 
challenge (Davis et al., 1985; Snoddy and Tessel, 1985; Auclair et al., 
2002). Since most antipsychotic drugs exhibit both D2 receptor 
and α1ARs antagonist properties, they may alleviate psychosis 
not only through blockade of postsynaptic DAergic receptors, but 
also presynaptically on the mesolimbic DAergic system, through 
their α1ARs antagonistic action (Mathe et al., 1996). Conversely, 
stimulation of α2ARs and β1ARs elevates DA extracellular levels 
in the striatum by acting at sites downstream of the DAergic neu-
rons themselves (Chopin et al., 1999; Hudson et al., 1999). More 
specifically, β1ARs and α2ARs regulate the phosphorylation of 
DARPP-32, a phosphoprotein regulated by DAergic transmission, 
in neostriatal neurons. Gi protein activation by α2ARs antagonizes 
Gs/PKA signaling mediated by D1 receptors and α2ARs in striato-
nigral and striatopallidal neurons respectively, thereby enhancing 
D2 receptor/Gi signaling in striatopallidal neurons (Hara et al., 
2010). Reches and Meiner (1992) did not report any change in stri-
atal DA synthesis and release after lesions of the dorsal NA bundle 
(DNEB). It is therefore suggested that any possible effect of the LC 
on DA transmission in the striatum is not mediated by the DNEB.

In parallel, the LC NAergic system is thought to exert a neu-
roprotective influence on SNc DAergic neurons. The first hints 
that NA promotes DAergic neuron survival came from MPTP 
studies in non-human primates and mice (Mavridis et al., 1991; 
Fornai et al., 1996). These studies reported that the damage to 
nigrostriatal DAergic neurons induced by MPTP was potentiated 
by pre-treatment with DSP4. Rommelfanger et al. (2004) subse-
quently showed that either pharmacological or genetic blockade 
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The use of selective NET inhibitors may be critically dependent 
on the status of NA neurons which, as mentioned above, can be 
severely damaged.

There are good theoretical and clinical reasons, including phar-
macological specificity of effects and low incidence of side effects, 
to consider reboxetine, idazoxan, clonidine, or naphtoxazine for 
the treatment of different symptoms in different cases of PD. The 
efficacy of some of these drugs including the selective NET inhibi-
tors would, however, be critically dependent on the status of LC 
NAergic fibers. Finally, the wide spectrum of pathophysiological 
conditions found in the human disease is still not directly addressed 
in animal models. The predictive efficacy of NAergic compounds 
in the treatment of non-motor symptoms in PD may require the 
development of better behavioral tests in animal models.

effects of Naergic ageNts oN l-doPa iNduced dyskiNesia
The side effects associated with long-term l-Dopa treatment today 
constitute an important cause of functional disability. Side effects 
such as abnormal involuntary movements and psychiatric disorders 
remain difficult to manage without causing an increase in parkin-
sonian immobility. Moreover, management of the phenomenon of 
the “off” period is limited by these same side effects. The causes of 
l-Dopa-induced dyskinesia are unclear. It probably involves non-
physiological pulsatile stimulation of DAergic receptors or non-
physiological release of DA (e.g., from 5-HTergic nerve terminals) 
in the striatum (Tanaka et al., 1999; Carta et al., 2007; Navailles 
et al., 2010b). Treatments targeting non-DAergic neurotransmit-
ter systems including glutamate, GABA, NA, acetylcholine, 5-HT, 
adenosine, and cholecystokinin have been studied (Colosimo and 
Craus, 2003). It has been recently proposed that lesion of the LC 
is correlated with the onset of l-Dopa-induced dyskinesia (Fornai 
et al., 2007). In the 6-OHDA rat model, lesioned rats showed a sen-
sitization–desensitization turning response, whereas in 6-OHDA 
rats with an additional NAergic degeneration induced by DSP-4, 
the turning activity was maximal throughout the test. Double-
lesioned rats exhibited a lower percentage of dose failure episodes 
during treatment. NAergic denervation appears to be associated 
with prolonged long-term DAergic sensitization.

This type of response appears to be comparable to that reported 
in the clinical setting with intermittent l-Dopa administration 
where no desensitization occurs once the abnormal response is 
established (Ruckert et al., 1997; Perez et al., 2009a,b). Fulceri et al. 
(2007) also demonstrated that unilateral damage to the NAergic 
system precedes the onset of dyskinesia and worsens the severity of 
l-Dopa-induced contralateral abnormal involuntary movements 
in hemi-parkinsonian rats. Furthermore, increases in locomotor 
activity after l-Dopa administration were markedly suppressed 
in DA and NA deficient groups. This may suggest that additional 
NAergic denervation selectively decreases the motor response to 
l-Dopa treatment (Nishi et al., 1991; Mizuno et al., 1994; Perez 
et al., 2007).

In view of these results, NAergic modulation has been consid-
ered to decrease l-Dopa side effects. In 6-OHDA rats, the α2AR 
antagonist atipamezole and the α2AR agonist dexmedetomidine 
increased and decreased contralateral circling evoked by l-Dopa 
respectively. Atipamezole also prolonged the duration of action 
of l-Dopa. The α1AR antagonist prazosin partially  antagonized 

treatment was stopped, the freezing returned to almost the former 
level, even though the patients continued to receive l-Dopa and 
benserazide. This could be explained by the fact that l-Dopa meas-
urably affects NA content in the cerebrospinal fluid compared to 
l-threo-DOPS treatment (Maruyama et al., 1996). In addition to 
the improvement of motor symptoms, psychological symptoms 
have also been improved by l-threo-DOPS (Suzuki et al., 1984; 
Azuma et al., 1991).

effects of Naergic recePtor modulatioN oN motor aNd 
NoN-motor symPtoms
α2ARs are distributed widely within the basal ganglia, including 
the substantia nigra (Schapira, 2005). Mavridis et al. (1991) have 
suggested that the activation of α1ARs, which results in an increase 
in NAergic tone, facilitates locomotor activity, and inversely, α2ARs 
activation, by decreasing NAergic tone, inhibits locomotor activ-
ity. In PD, hypoactivation of NAergic tone may be involved in the 
manifestation of tremor and rigidity. In the reserpine rat, yohim-
bine, an α2ARs antagonist blocked tremor and improved rigidity 
but not hypokinesia (Colpaert, 1987).

In the 6-OHDA rat and MPTP monkey models of PD, blockade 
of α2ARs by idazoxan improved motor disabilities (Bezard et al., 
1999; Belujon et al., 2007) in a manner comparable to that induced 
by a minimal dose of l-Dopa (Bezard et al., 1999). Although these 
findings provide support for the therapeutic potential of α2ARs in 
the treatment of PD, idazoxan as a monotherapy in PD patients did 
not display anti-parkinsonian actions (Henry et al., 1999; Rascol 
et al., 2001; Colosimo and Craus, 2003). However, co-administra-
tion of idazoxan with l-Dopa can provide an anti-parkinsonian 
action lasting more than twice the duration obtained with l-Dopa 
alone. Interestingly, the α2AR agonist clonidine and βARs blockers 
like propranolol are effective in treating akathisia and tardive dyski-
nesia (Wilbur et al., 1988). However, clonidine is more often used 
to treat attention deficit in PD. Attention accuracy was not affected 
by withdrawal of DAergic drugs in mild or severe PD patients. 
Clonidine retarded accuracy of performance in a difficult atten-
tion test in PD patients (Riekkinen et al., 1998). It seems that the 
NAergic system via α2AR may act differentially on the manifesta-
tion of motor and non-motor symptoms in PD. α2AR antagonism 
would lead to motor amelioration whereas α2ARs agonism would 
have non-motor benefits.

Non-motor symptoms are also improved by the use of selec-
tive α1AR agonists. For example, naphtoxazine may improve per-
formance in some cognitive tests of “frontal functions,” including 
the Stroop and the odd-man-out tests, which have been previ-
ously found to be affected in PD (Bedard et al., 1998). This drug 
reduced the percentage of errors and restored the lateralization 
of N100 during the shifting reaction time task, suggesting that it 
may act on the processes underlying the shifting deficit in these 
patients (Bedard et al., 1998). NAergic compounds could also be 
efficient in depression in PD. Reboxetine, a specific NET inhibi-
tor, significantly improved depression scores (Lemke, 2002). This 
agent did not significantly change parkinsonian motor symptoms 
or dosage of l-Dopa. Reboxetine was effective and well tolerated in 
PD patients receiving 4 weeks of treatment of moderate-to-severe 
depression. Recently, however, the other NET inhibitor atomoxetine 
failed to reduce depression in PD patients (Weintraub et al., 2010). 
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observed over a range of doses from 1 to 10 mg/kg whereas much 
lower doses were used in human studies (approximately 0.25–
1.0 mg/kg). Similarly, the maximal efficacy of fipamezole in reducing 
l-Dopa-induced dyskinesia in humans was low compared to that 
reported in the monkey. It is not clear whether the doses and routes 
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rats that atipamezole had no effect on blood pressure (Haapalinna 
et al., 2003). Further studies are warranted to confirm the potential 
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coNcludiNg remarks
Studies in a variety of models and species indicate that NAergic cell 
loss in the LC could be a conditioning factor for the natural history 
of PD. LC NA exerts an excitatory drive on the nigrostriatal DAergic 
system. The use of therapeutic strategies leading to an increase in 
NA in the brain of PD patients may have a specific place in the treat-
ment of the disease. Pharmacological modulation of the NAergic 
system, specifically with α2-AR antagonists, perhaps by inhibiting 
autoreceptor function, could be important in the treatment of dif-
ferent symptoms of PD and of l-Dopa-induced dyskinesia.
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the effect of l-Dopa and had a strong inhibitory effect on the 
 atipamezole-induced potentiation of the l-Dopa response 
(Haapalinna et al., 2003; Yavich et al., 2003). This suggests that 
atipamezole can modulate motor function indirectly, by stimulating 
the release of NA and directly, by blocking postsynaptic α2ARs in 
neurons other than NAergic ones.

In MPTP-treated monkeys, blockade of α2ARs by idazoxan in 
combination with l-Dopa did not impair the anti-parkinsonian 
response but significantly reduced dyskinesias and delayed their 
onset, so that the “on” state without dyskinesias was prolonged. The 
antidyskinetic effect of idazoxan was maintained when repeatedly 
administered for 10 days and the locomotor response to l-Dopa 
was significantly increased by chronic administration of idazoxan 
(Henry et al., 1999; Grondin et al., 2000; Fox et al., 2001). The 
same antidyskinetic effect has been shown with the α2ARs antago-
nists yohimbine, rauwolscine, and fipamezole (Gomez-Mancilla 
and Bedard, 1993; Henry et al., 1999; Grondin et al., 2000; Savola 
et al., 2003; Fox and Brotchie, 2010). In the case of idazoxan and 
fipamezole, an extension of the duration of action of levodopa was 
also observed. All these antagonists had no effect on their own on 
DA overflow (Yavich et al., 2003). On the other hand, the α2ARs 
agonist clonidine and the βARs antagonist propanolol markedly 
reduced the dyskinetic movements induced by l-Dopa at the cost 
of a return to parkinsonism (Gomez-Mancilla and Bedard, 1993). 
Another study in the MPTP-lesioned primate has shown that ida-
zoxan significantly reduced l-Dopa-induced dyskinesia, suggest-
ing that α2ARs stimulation may be involved in the generation of 
l-Dopa-induced dyskinesia (Fox et al., 2001; Bara-Jimenez et al., 
2004).

In humans, however, neither idazoxan nor fipamezole had any 
effect on duration of on time. These drugs have shown variable 
benefits in clinical trials (Rascol et al., 1994). The poor efficacy could 
be explained by the dose used in the different studies. In the MPTP 
primate model, a significant effect of idazoxan on dyskinesia was 
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