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1996; Richerson and Wu, 2003), regulates GABA spillover to 
neighboring synapses (Borden, 1996; Overstreet and Westbrook, 
2003), and maintains GABA homeostasis to prevent excessive 
tonic activation of synaptic and extrasynaptic GABA receptors 
(Borden, 1996; Semyanov et al., 2004). In addition, the reversal of 
the GATs function may result in additional GABA release under 
certain pathological and physiological conditions (Allen et al., 
2004; Wu et al., 2007).

GATs cloninG And phArmAcoloGy
To date, four different GATs have been described, GAT-1, GAT-2, 
GAT-3, and the Betain/GABA transporter type 1 (BGT-1). These 
transporters are members of a large family of 12-transmembrane 
spanning Na+/Cl− coupled transporters (for review, see Borden, 
1996). GAT-1 was the first GAT to be cloned (Guastella et al., 1990). 
The GAT-1 protein sequence in rat (Guastella et al., 1990), mouse 
(Liu et al., 1993), and human (Nelson et al., 1990) displays a high 
degree of homology and nearly identical pharmacological proper-
ties (Borden, 1996). The GAT-2 and GAT-3, cloned by Borden et al. 
(1992), display a higher degree of amino acid identity between each 
other (67% identity), and with the fourth GABA transporter, BGT-1 
(68 and 65% identity for GAT-2 and GAT-3, respectively) than with 
GAT-1 (∼52% amino acid identity). The amino acid sequence of 
GAT-3 in human, rat, and mouse is virtually identical with only 
a few substitutions (for review, see Borden, 1996). In contrast to 
other transporters, BGT-1, cloned by Yamauchi et al. (1992), utilizes 
both GABA and betaine as substrates.

GATs exchange GABA for Na+ and Cl−. The GABA-transporting 
function of GATs is particularly dependent on the Na+ gradient 
across the membrane. Although Cl− can significantly enhance the 

inTrodUcTion
GABA is the main neurotransmitter used in the basal ganglia net-
work, and abnormal transmission at specific GABAergic synapses 
underlies some of the pathophysiological features of various basal 
ganglia diseases. A tight regulation of GABA homeostasis is essen-
tial to mediate normal basal ganglia functions. In this manuscript, 
we will provide a brief overview of the main characteristics of the 
different subtypes of GABA transporters in the mammalian CNS, 
and then discuss some of our recent findings and those from other 
laboratories about the localization and functions of GABA trans-
porters (GATs) in the basal ganglia. This review does not intend to 
cover the extensive literature on GATs, but will specifically focus 
on the distribution and regulatory mechanisms by which these 
transporters modulate neuronal activity and synaptic transmission 
in the basal ganglia. Because of the limited amount of data avail-
able, this review does not aim at generating integrative concepts 
about GATs function in the basal ganglia. It is rather focused on 
the presentation of recent findings that have been gathered about 
these transporters in specific basal ganglia nuclei, and their poten-
tial importance for basal ganglia function and dysfunction. For a 
more comprehensive account of our current knowledge of GAT 
function in other brain regions, readers are referred to previous 
reviews (Borden, 1996; Gadea and Lopez-Colome, 2001; Dalby, 
2003; Conti et al., 2004).

GEnErAl FEATUrES oF GABA TrAnSporTErS
GABA is the main inhibitory neurotransmitter in the mammalian 
brain. After release from presynaptic terminals, GABA is rapidly 
removed from the extracellular space by GATs, a regulatory mecha-
nism that terminates inhibitory synaptic transmission (Borden, 
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GATs rEGUlATion oF SynApTic TrAnSmiSSion And plASTiciTy
The effects of GAT-1 modulation on synaptic transmission have 
been most studied in the CNS. A summary of the main effects of 
GAT blockade on GABA release and postsynaptic currents in vari-
ous CNS regions is shown in Table 1. GAT-1 inhibitors increase the 
decay of evoked IPSCs, while not having significant effects on IPSC 
amplitude in many brain regions (Roepstorff and Lambert, 1992; 
Thompson and Gähwiler, 1992; Engel et al., 1998; Overstreet and 
Westbrook, 2003). GAT-1 inhibitors also increase GABA

A
 receptor-

mediated tonic conductances in cerebellar granule cells (Rossi et al., 
2003) as well as in granule cells and pyramidal neurons of the hip-
pocampal dentate gyrus (Nusser and Mody, 2002; Semyanov et al., 
2003; Sipilä et al., 2007). A recent study also demonstrated that 
GAT-1 blockade or genetic deletion of GAT-1 specifically impairs 
long-term potentiation (LTP) induced by theta burst stimulation 
(Gong et al., 2009) in the CA1 region of mouse hippocampus. 
While there is compelling evidence that GAT-1 regulates GABAergic 
transmission in the hippocampus (Thompson and Gähwiler, 1992; 
Isaacson et al., 1993; Draguhn and Heinemann, 1996; Engel et al., 
1998; Nusser and Mody, 2002; Overstreet and Westbrook, 2003; 
Semyanov et al., 2003), cerebral cortex (Keros and Hablitz, 2005; 
Bragina et al., 2008; Gonzalez-Burgos et al., 2009), and cerebellum 
(Rossi et al., 2003), much less is known about the functional role 
of GAT-1 in the basal ganglia (Rossi et al., 2003; Galvan et al., 2005; 
Kinney, 2005; Kirmse et al., 2009). Despite its widespread and abun-
dant expression in many brain regions (see Borden, 1996; Eulenburg 
and Gomeza, 2010 for reviews), the role of GAT-3-mediated regula-
tion of GABAergic transmission remains poorly understood com-
pared with GAT-1 functions in most CNS regions, except for the 
cerebral cortex and some basal ganglia nuclei (Table 1).

GAT-1 And GAT-3 in ThE BASAl GAnGliA
The relative importance of GAT-1 and GAT-3 in the normal and 
pathological functioning of the basal ganglia, and the possibility 
that their regulation could be used to achieve beneficial therapeutic 
responses in basal ganglia disorders remain largely unexplored. In the 
following sections, we describe the current knowledge of the locali-
zation and function of GAT-1 and GAT-3 in various basal ganglia 
nuclei, and critically discuss their potential relevance as targets for 
drug therapies of basal ganglia disorders, such as Parkinson’s disease.

STriATUm
GAT-1 And GAT-3 locAlizATion
Most neurons in the striatum, including medium spiny projec-
tion neurons and several interneuron subtypes are GABAergic 
(Kawaguchi et al., 1990). The maintenance of homeostasis in extra-
cellular levels of GABA and GABAergic transmission is, therefore, 
critical for normal striatal functions. Although the chemical pheno-
type of most striatal GAT-1-positive cells remains to be determined, 
it is clear that a significant proportion of the GABAergic neurons in 
the striatum (including medium spiny neurons and a large propor-
tion of parvalbumin-positive interneurons), express mRNA and 
immunoreactivity for GAT-1 (Augood et al., 1995; Durkin et al., 
1995; Yasumi et al., 1997; Wang and Ong, 1999).

In contrast, the evidence for striatal GAT-3 expression remains 
controversial. Some of the existing in situ hybridization studies 
have reported negative data (Clark et al., 1992; Durkin et al., 1995), 

rate of transport, Cl− alone does not drive GABA uptake in the 
absence of Na+. The proposed stoichiometry for GAT-1, GAT-2, 
and GAT-3 is 2 Na+:1 Cl−:1 GABA (Loo et al., 2000; Sacher et al., 
2002; Karakossian et al., 2005).

GAT-1 can be pharmacologically isolated from GAT-2, GAT-3, 
and BGT-1. Various drugs have been identified as highly specific 
GAT-1 inhibitors (for instance, Cl966, SKF 89976A, NO-711, and 
Tiagabine), while SNAP 5114 is a semiselective blocker of GAT-2 
and GAT-3, with a higher affinity for GAT-3 than GAT-2 (IC50 
∼5 and 20 μM, respectively). However, because GAT-3 is far more 
abundant in neurons and glia than GAT-2, SNAP 5114 is com-
monly used as a GAT-3 blocker in studies of GATs regulation of 
synaptic transmission in the central nervous system. Microdialysis 
experiments in rodent hippocampus and thalamus have shown 
that either local or systemic application of GAT-1 antagonists 
can increase extracellular GABA concentrations by up to 1.5- to 
4-folds the basal levels (Richards and Bowery, 1996; Dalby, 2000). 
Similarly, application of the GAT-2/GAT-3 blocker, SNAP 5114 
(100 μM), increases GABA levels in the thalamus by almost 250%, 
but has no significant effect on hippocampal GABA concentration 
(Dalby, 2000).

GATs locAlizATion in ThE cnS
The cellular localization of GABA transporters has been studied in 
the rat brain using both in situ hybridization for mRNA (Rattray 
and Priestley, 1993; Brecha and Weigmann, 1994; Augood et al., 
1995; Durkin et al., 1995; Jursky and Nelson, 1996; Nishimura 
et al., 1997; Yasumi et al., 1997; Ficková et al., 1999) and immu-
nocytochemistry for transporters protein (Ikegaki et al., 1994; 
Augood et al., 1995; Minelli et al., 1995; Itouji et al., 1996; Ribak 
et al., 1996; Conti et al., 1998). The GAT-1 mRNA is expressed 
throughout the brain, but particularly enriched in the olfactory 
bulb, basal ganglia, interpeduncular nucleus, cerebellum, and 
retina (Augood et al., 1995; Durkin et al., 1995; Yasumi et al., 
1997). Immunohistochemical studies using antibodies raised 
against recombinant proteins have shown that GAT-1 is not only 
expressed in GABAergic neurons, but also in non-GABAergic 
cells and glia in certain brain regions (for review, see Eulenburg 
and Gomeza, 2010), although their function in these neurons 
remains poorly understood.

GAT-2 mRNA is weakly expressed throughout the brain, primar-
ily in arachnoid and ependymal cells, and to a much lesser extent, 
in neurons and astrocytes (Durkin et al., 1995; Conti et al., 1999). 
GAT-3 mRNA and protein are found predominantly in glial cells 
(Radian et al., 1990; Ikegaki et al., 1994; Durkin et al., 1995). The 
strongest GAT-3 expression is found in the glomerular layer of 
the olfactory bulb, the inner nucleus of the retina, the thalamic 
paraventricular nucleus, and the globus pallidus (GP; Clark et al., 
1992; Ikegaki et al., 1994; Durkin et al., 1995; Minelli et al., 1996). 
Some of these studies showed that GAT-3 is nearly absent from 
the neocortex and cerebellar cortex, and very weakly expressed in 
the hippocampus (Clark et al., 1992; Brecha and Weigmann, 1994; 
Ikegaki et al., 1994; Durkin et al., 1995), while others provided 
evidence for significant neocortical expression in rodents (Minelli 
et al., 1996, 2003; Pow et al., 2005). Finally, low to moderate levels 
of BGT-1 are expressed in most brain regions (Durkin et al., 1995; 
Zhou and Ong, 2004).
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role of GAT-3 in the rat striatum (Kirmse et al., 2009). Despite 
the fact that the application of SNAP 5114 alone, a semiselective 
GAT-3 inhibitor, has no effect on striatal GABAergic transmission, 
and does not affect GABA

A
 receptor-mediated tonic currents in 

striatal projection neurons (Kirmse et al., 2009), the coapplica-
tion of SNAP 5114 with the GAT-1 inhibitor NO-711 (10 μM) 
was shown to reduce the frequency of miniature IPSCs (mIPSCs) 
without affecting their amplitude or kinetic in striatal neurons 
(Figures 2A–C). As shown for GAT-1, GAT-3 blockade reduces 
the mean amplitude of eIPSCs through GABA

B
 receptor-mediated 

presynaptic effects in the rat striatum (Kirmse et al., 2009). As 
the functional effects of GAT-3 blockade on GABAergic transmis-
sion may be masked by concomitant GAT-1-mediated effects, it is 
possible that GAT-3-mediated GABA uptake comes into play only 
under specific physiological or pathological conditions that result 
in increases in neuronal activity and GABA release beyond normal 
levels in the striatum (Kirmse et al., 2009). In other brain regions, it 
has been shown that that GAT-1 and GAT-3 are largely segregated 
in pre-terminal neuronal elements and glia, respectively, thus, it 

while others using similar methods or polymerase chain reaction 
(rt-PCR) techniques have demonstrated a significant level of stri-
atal GAT-3 mRNA expression in the rat caudate–putamen (Yasumi 
et al., 1997; Ficková et al., 1999). GAT-3 immunoreactivity was also 
demonstrated in the monkey striatum (Ng et al., 2000). The cel-
lular and chemical phenotypes of GAT-3-positive striatal elements 
remain poorly characterized in both primates and non-primates.

FUncTionAl rolE oF STriATAl GAT-1
Systemic or local application of the selective GAT-1 inhibitor, SKF 
89976A, doubles the extracellular concentration of GABA in the 
rat striatum (Waldmeier et al., 1992). Consistent with this finding, 
GAT-1 blockade induces GABA

A
 receptor-mediated tonic inhibi-

tion of striatal neurons (Kirmse et al., 2008), similar to previous 
reports in the hippocampus (Jensen et al., 2003; Semyanov et al., 
2003; Scimemi et al., 2005) and cerebellar Purkinje cells (Chiu et al., 
2005). Electrophysiologic brain slice recording studies have dem-
onstrated that bath application of the GAT-1 inhibitors NO-711 
prolongs the decay time of IPSCs evoked locally in striatum (Kirmse 
et al., 2008) and decreases the amplitude of eIPSCs produced by 
intrastriatal stimulation. The latter effect is most likely caused by a 
presynaptic mechanism because it was associated with a significant 
increase of the paired-pulse facilitation ratio (PPR; Figures 1A,B). 
Interestingly, coapplication of NO-711 and the GABA

B
-receptor 

antagonist CGP55845 only partly restored the GAT-1 blockade-
mediated effects on the amplitude of eIPSCs but reduced the PPR 
to control levels (Figures 1C–E), suggesting that the effects of 
GAT-1 blockade upon eIPSCs are partially, but not fully medi-
ated by GABA

B
 receptor-dependent mechanisms (Kirmse et al., 

2008). This observation was recently extended to the hippocampus 
(Safiulina and Cherubini, 2009; Lindsly and Fraxier, 2010). Other 
mechanisms, including postsynaptic shunting and GABA

A
-receptor 

desensitization due to a persistent activation of GABA
A
 receptors 

by high ambient GABA concentration in the presence of NO-711 
could also contribute to these effects (Overstreet et al., 2000; Keros 
and Hablitz, 2005; Kirmse et al., 2008).

GATs, acting in reverse direction, also contribute to the action 
potential-independent release of GABA in the rat striatum (Bernath 
and Zigmond, 1989; Del Arco et al., 1998; Schoffelmeer et al., 2000). 
For instance, microdialysis studies have shown that nipecotic acid, 
a non-selective GAT blocker, attenuates the amphetamine-induced 
increase in extracellular concentration of GABA in the striatum of 
freely moving rats, using a calcium-free microdialysis medium (Del 
Arco et al., 1998). Nipecotic acid also attenuates glutamate NMDA 
and dopamine D1-like receptor-mediated [3H]-GABA release from 
striatal slice and cultured striatal neurons in the presence of the 
sodium channel blocker tetrodotoxin (Schoffelmeer et al., 2000). 
These results demonstrate that the release of GABA induced by 
amphetamine or activation of D1-like or NMDA receptors involves 
a GAT mechanism. This reversal of GAT function may play a role 
in the behaviorally activating effects of psychostimulant drugs 
(Schoffelmeer et al., 2000).

FUncTionAl rolE oF STriATAl GAT-3
Although the anatomical evidence for striatal GAT-3 expression 
is controversial compared with GAT-1 (Clark et al., 1992; Ficková 
et al., 1999; Ng et al., 2000), there is functional evidence for an active 

A B

C D E

FiGurE 1 | Tonic activation of presynaptic GABABrs induced by GAT-1 
blockade in rat brain slices. (A) eIPSCs in response to paired-pulse 
stimulation (ISI 250 ms) in control solution and in the presence of the GAT-1 
blocker, NO-711 (10 μm), in slices of P12-14 rats. Traces represent averages of 
20 responses. (B) Quantification of results for NO-711 effects on the mean 
eIPSC amplitude, PPR (PPR50: ISI 50 ms, PPR250: ISI 250 ms), rise time 
(20–80%) and decay (T0.10) of striatal eIPSC. Data from 17 striatal output 
neurons (SONs), except PPR50. (C) Evoked IPSCs in response to paired-pulse 
stimulation (ISI 250 ms) in control solution and in the presence of either 
NO-711 or NO-711 plus the GABAB-receptor antagonist CGP55845 (1 μm). 
Traces represent averages of 20 responses. (D,E) CGP55845 partially restored 
the NO-711-induced reduction in eIPSC amplitude and completely reversed 
the NO-711-induced increase in PPR (ISI 250 ms). ns – not significant, 
*P < 0.05, **P < 0.01, ***P < 0.001. Reprinted from Kirmse et al. (2008) with 
permission from John Wiley and Sons.
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2005). We found that the inhibitory effects of GATs blockade on GPi 
firing are strongly decreased in monkeys rendered Parkinsonians 
by systemic treatment with the dopaminergic neurotoxin 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), while the effects on 
GPe discharge rates remain unaffected (Galvan et al., 2010). In line 
with our monkey data, systemic administration of tiagabine, a GAT-1 
antagonist, increases extracellular levels of GABA by up to threefold 
in the rat GP (Fink-Jensen et al., 1992). Furthermore, bath applica-
tion of tiagabine has several significant effects when used in rat brain 
slice recording experiments: (1) GAT-1 inhibition prolongs the decay 
time of IPSCs evoked by striatal stimulation, without affecting their 
amplitude (Figures 5A,B). Similar observations have been made in 
many brain regions, suggesting that it represents a general GAT-1 
function in the CNS (Roepstorff and Lambert, 1992; Thompson 
and Gähwiler, 1992; Engel et al., 1998; Overstreet and Westbrook, 
2003; for reviews, see Borden, 1996; Richerson and Wu, 2003). (2) 
GAT-1 blockade induces GABA

A
 receptor-mediated tonic currents 

in rat GP neurons (Jin et al., 2011), another general role reminiscent 
of GAT-1-mediated effects in other brain regions (for reviews, see 
Borden, 1996; Richerson and Wu, 2003; Eulenburg and Gomeza, 
2010). (3) The effects of GAT-1 blockade on spontaneous and min-
iature IPSCs in rat GP are controversial. On one hand, application 
of tiagabine prolongs the decay kinetics and reduces the frequency 
of spontaneous and miniature IPSCs, in part through activation of 
presynaptic GABA

B
 autoreceptors (Chen and Yung, 2003). However, 

we found that the frequency and amplitude of spontaneous, but 
not miniature, IPSCs is increased following GAT-1 blockade (Jin 
et al., 2011). The sources of the discrepancy between these different 
sets of data remain to be established. (4) GAT-1 blockade reduces 
the frequency, but not the amplitude of mEPSCs (Figures 5E,G), 
most likely through GABA

B
 receptor-mediated presynaptic inhibi-

tory effects upon glutamatergic transmission (Jin and Smith, 2009). 
Thus, together with data from the striatum, these findings indicate 
that GAT-1 regulates striatal and pallidal activity through modu-
lation of persistent synaptic GABA

A
 receptor-mediated currents 

(IPSCs), extrasynaptic GABA
A
 receptor-mediated tonic currents, 

and presynaptic GABA
B
 receptors in both GABAergic and gluta-

matergic terminals (Galvan et al., 2006).
The behavioral effects of GAT-1 blockade in the GP are poorly 

characterized. Apart from evidence that the unilateral adminis-
tration of tiagabine in the rat GP induces ipsilateral rotations in 
rats (Chen and Yung, 2003), very little is known about the influ-
ence of GATs on behavior. Given the prominent role of altered 
GABAergic transmission in parkinsonism (Galvan and Wichmann, 
2007), it would be particularly interesting to examine the potential 
antiparkinsonian effects of GATs. Taking into consideration the 
physiological effects of GAT-1 blockade on pallidal activity and the 
proposed pathophysiology of basal ganglia networks in parkinson-
ism (DeLong, 1990), one could predict that GAT-1 blockade in GPe 
could induce or exacerbate parkinsonism, due to the increased 
GABAergic transmission along the indirect pathway, while GAT-1 
blockade in GPi could alleviate parkinsonism through increased 
inhibition of the overactive basal ganglia pallidal outflow to the 
thalamus and brainstem (DeLong, 1990). However, because we 
found that the effects of GAT-1 blockers in GPi of Parkinsonian 
monkeys are altered from normal (Galvan et al., 2010), these specu-
lations are, at best, incomplete with the available data.

is possible that these transporters might play complementary and 
synergistic roles towards the regulation of GABAergic transmission 
in the striatum.

GloBUS pAllidUS
GAT-1 And GAT-3 locAlizATion
The rat GP expresses strong mRNA for both GAT-1 and GAT-3 
(Durkin et al., 1995; Yasumi et al., 1997). Consistent with these 
findings, our studies have demonstrated strong GAT-1 and GAT-3 
immunoreactivity in the rat and monkey GP (Galvan et al., 2005, 
2010; Jin et al., 2009, 2011; Figure 3). At the electron microscopic 
level, GAT-1 is largely expressed in small unmyelinated axons in 
the rat GP (Figure 3), and in both unmyelinated axons and glial 
processes in the external and internal segments of the GP (GPe and 
GPi, respectively) in the monkey (Figure 3). The pattern of GAT-3 
immunoreactivity in the rat and monkey pallidum is strikingly 
different from that of GAT-1, being almost exclusively expressed 
in glial cell processes which, in some cases (Figure 3) are closely 
apposed to putative GABAergic terminals forming symmetric syn-
apses or wrapped around axo-dendritic complexes consisting of 
numerous unlabeled terminals and dendrites of pallidal neurons 
(Figure 3). Despite significant alterations in GAT function, there is 
no significant change in the general localization pattern of GAT-1 
and GAT-3 in the GPe and GPi of MPTP-treated Parkinsonian 
monkeys (Figure 3 and below; Galvan et al., 2010).

FUncTionAl rolE oF GAT-1 in ThE GloBUS pAllidUS
In normal monkeys, local intrapallidal administration of the GAT-1 
antagonist (SKF 89976A) significantly increases the ambient GABA 
level in GPe, as measured by microdialysis (Figure 4A), and reduces 
the firing rate of GPe and GPi neurons (Figures 4B1,B2; Galvan et al., 

FiGurE 2 | Functional expression of GAT-2/3 is unmasked by suppression 
of GAT-1 activity in the rat striatum. (A) Sample traces showing mIPSCs in 
the presence of NO-711 (10 μM) and NO-711 plus SNAP 5114 (40 μM) in 
striatal slices of P12–14 rats. (B) Cumulative mIPSCs amplitude distribution 
was not significantly affected by SNAP 5114 (P > 0.9, Kolmogorov–Smirnov 
test). Plot represents data from the cell shown in (A). (C) SNAP 5114 – 
selectively decreased the frequency of mIPSCs. *P < 0.05. Reprinted from 
Kirmse et al. (2009) with permission from John Wiley and Sons.
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evoked IPSCs after striatal stimulation (Figures 5C,D), increases 
the frequency and amplitude of spontaneous IPSCs, and induces 
GABA

A
  receptor-mediated tonic currents in GP neurons (Jin 

et al., 2011). The mechanisms by which GAT-3, but not GAT-1, 
 blockade increases the amplitude of evoked IPSCs are unknown. 
One hypothesis put forward in our recent study (Jin et al., 2011) 
relates to the fact that GAT-3 blockade may result in the activa-
tion of a large pool of striatal GABAergic projections neurons and 

FUncTionAl rolE oF GAT-3 in ThE GloBUS pAllidUS
The strong expression of GAT-3 in the pallidum of monkeys and 
rats suggests that this transporter may play an important role 
in the clearance of extracellular GABA. Supporting this conten-
tion, local in vivo blockade of GAT-3 increases pallidal GABA 
levels (Figure 4A), and inhibits the firing rate of pallidal neu-
rons in monkeys (Figures 4C1,C2). In rat brain slice recording 
studies, GAT-3 blockade increases the decay and amplitude of 

FiGurE 3 | Light and electron micrographs of GAT-1 and GAT-3-
immunoreactive elements in the rat and monkey globus pallidus. 
(A,B) Light micrographs of GAT-1 and GAT-3 labeling in the rat striatum (STR) and 
globus pallidus (GP). (C) GAT-1-immunoreactive axon terminal (Te) and astrocytic 
process (AS) in the rat GP. Note that the labeled terminal forms a symmetric 
synapse (arrowhead) with an unlabeled dendrite. (D) GAT-3-positive astrocytic 
processes in close contact with unlabeled terminals and dendrites in the rat GP. 
(E) Quantification of the percentage of GAT-1- and GAT-3-labeled elements in the 
rat GP. Note that GAT-1 is predominantly found in unmyelinated axons, whereas 
GAT-3 is mainly expressed in glial processes. A total of three rats were used in 
these studies (see Jin et al., 2009, 2011 for details). (F,G) GAT-1 and GAT-3 

immunoreactivity in the monkey putamen (Put) and globus pallidus (external and 
internal segments, GPe, GPi). (H) GAT-1-immunoreactive unmyelinated axons 
(AX) and astrocytic processes (AS) in the monkey GPe. Note that the labeled AS 
is in close contact with an unlabeled terminal (u.TE) that forms an axo-dendritic 
symmetric synapse [arrowhead; (i,J)] GAT-3-positive astrocytes in the monkey 
GPe (i) and GPi (J). Note the close association between the immunoreactive AS 
processes and unlabeled axon terminals forming symmetric synapses 
[arrowheads in (i)]. (K) Quantitative distribution of GAT-1 and GAT-3 across 
different neuronal and glial elements in the monkey GPe and GPi (see Galvan 
et al., 2005, 2010 for more details). Scale bars: (A,B,F,G): 1 mm; 
(C,D,H,i,J): 1 μm.
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GABAergic and glutamatergic transmission in the rat GP (Jin et al., 
2009, 2011). These differential effects are consistent with locali-
zation studies showing that GAT-3 expression in the striatum is 
comparatively light, compared with the very strong glial expression 
in the GP (Figure 3; Clark et al., 1992; Durkin et al., 1995; Yasumi 
et al., 1997; Ng et al., 2000; Galvan et al., 2005; Jin et al., 2009, 2011). 
GAT-1 and GAT-3, thus, represent differential target sites through 
which GABA reuptake may subserve a complementary regulation 
of GABAergic and glutamatergic transmission in the pallidum.

SUBThAlAmic nUclEUS And SUBSTAnTiA niGrA
Despite their distinct glutamatergic phenotype, rat and human 
STN neurons, display intense GAT-1 mRNA expression (Yasumi 
et al., 1997; Augood et al., 1999). There is also evidence from other 

interneurons which, under specific conditions, can depolarize 
other projection neurons, thereby increase GABA release in the 
GP (Bracci and Panzeri, 2006; Ade et al., 2008).

GAT-3 blockade also reduces glutamatergic transmission, most 
likely from the subthalamic nucleus, through presynaptic GABA

B
-

receptor activation (Figures 5F,H). In contrast with the striatum 
where the effects of GAT-3 blockade alone are fully masked by 
GAT-1 (Kirmse et al., 2009), the blockade of GAT-3, alone or in the 
presence of a GAT-1 blocker, produces significant effects on both 
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FiGurE 5 | Effects of GAT-1 and GAT-3 blockade on GABAergic and 
glutamatergic synaptic transmission in the rat GP. (A) Application of SKF 
89976A increases the decay time, but not the amplitude of IPSCs evoked in 
GP neurons after striatal stimulation. (B) Bar graph showing that SKF 89976A 
increases the decay time, but has no effect on the amplitude and base line 
holding currents of eIPSCs expressed as percent of control ± SEM 
(*P < 0.005). (C) Application of SNAP 5114 increases the amplitude and decay 
time of IPSCs evoked in GP neuron by striatal stimulation. (D) Bar graph 
summarizing the effects of SNAP 5114 on eIPSCs amplitude, decay time, and 
holding current expressed as percent of control ± SEM (*P < 0.005). (E,F). 
Sample traces showing mEPSCs recorded in control condition and during SKF 
89976A or SNAP 5114 application. (G,H) The summary bar graphs show that 
SKF 89976A or SNAP 5114 significantly reduce the frequency, but not 
amplitude of mEPSCs. * P < 0.01. For more details see Jin et al. (2009, 2011).

FiGurE 4 | Effects of SKF 89976A and SNAP 5114 on GABA levels in GPe 
and pallidal discharge rate in monkeys. (A) Dialyzate samples were collected 
every 10 min. SKF 89976A or SNAP 5114 were administered during sample 4 
(horizontal bar). Data area means ± SD from three experiments for each 
treatment in a single monkey. Difference from ACSF experiments (Mann–
Whitney UU test): *P < 0.05. (B1) Example of effect of SKF 89976A on 
discharge rate of a GPe cell. (B2) Discharge rate of GPe and GPi cells during 
baseline period and at the point of maximal effect of SKF 89976A. (C1) The 
discharge rate of this GPe cell is inhibited after administration of the GAT-3 
blocker, SNAP 5114. (C2) The discharge rate of GPe and GPi cells during baseline 
period and at the point of maximal effect of SNAP 5114 injection. In (B1,C1), 
horizontal bars indicate duration of drug infusions. Dashed lines represent mean 
discharge rate ± 2 SD. For more details see Galvan et al. (2005).
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GAT-1 and GAT-3 are strongly expressed in the GP, and that their 
blockade significantly impacts the activity of pallidal neurons under 
normal and Parkinsonian conditions, by increasing GABA levels 
and subsequent overactivation of GABA

A
- and GABA

B
-receptors 

(Galvan et al., 2005, 2010; Jin et al., 2009, 2011).
Our recent data from primate experiments demonstrate that 

the impact of GAT-1 and GAT-3 blockade upon neuronal activity 
is reduced in the GPi of Parkinsonian animals compared with the 
normal state, despite the fact that the overall pattern of GAT dis-
tribution does not change (Galvan et al., 2010). The possible use of 
drugs that regulate GAT function to treat patients with Parkinson’s 
disease remains speculative. The essential need of tightly regulated 
GABA homeostasis for normal brain functions reduces the like-
lihood that systemic administration of GAT blockers could be 
done without the risk of significant side effects, although such an 
approach has shown some therapeutic benefits in patients with 
epilepsy and anxiety (Gadea and Lopez-Colome, 2001; Dalby, 2003; 
Sarup et al., 2003; Conti et al., 2004; Schwartz and Nihalani, 2006).

Recent evidence suggests that the interaction of GATs with 
other receptor systems may provide an alternative strategy for the 
development of Parkinson’s disease therapy. For instance, a recent 
study has demonstrated that adenosine inhibits GAT-1-mediated 
GABA uptake in the rat GP (Gonzalez et al., 2006). This finding, 
combined with the fact that A2A-receptor antagonists have sig-
nificant antiparkinsonian effects (Kanda et al., 2000; Chase et al., 
2003), raise the possibility that the antiparkinsonian effects of A2A-
receptor antagonists are partly due to presynaptic modulation of 
GABA release at striatopallidal synapses through disinhibition of 
GAT-1 function. GABA uptake is also modulated by activation of 
cannabinoid CB1 receptors in the rat GP (Venderova et al., 2005), 
providing another mechanism that could be used to regulate the 
overactive GABAergic striatopallidal transmission in Parkinson’s 
disease (Romero et al., 2002; Brotchie, 2003). These mechanisms of 
indirect modulation of GAT activity may represent a more promis-
ing therapeutic strategy in the treatment of Parkinson’s disease than 
use of primary GAT blockers (for review, see Conti et al., 2004).
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brain regions such as cerebral cortex, inferior colliculus, and the 
deep cerebellar nuclei, that the number of GAT-1 mRNA-contain-
ing cells is much larger than that of GABAergic (GAD

67
 mRNA-) 

positive cells (Swan et al., 1994; Yasumi et al., 1997), suggesting that 
GAT-1 expression extends beyond GABAergic neurons in these 
brain regions (Yasumi et al., 1997). The functional significance 
of GATs in non-GABAergic neurons remains unknown (Augood 
et al., 1999). However, it is interesting to note that an ongoing 
gene transfection clinical trial in PD aims at changing the phe-
notype of subthalamic neurons into GABAergic cells in order to 
reduce the overactive glutamatergic outflow from the subthalamic 
nucleus (Lewitt et al., 2011). The expression of GAT-1 into sub-
thalamic terminals may increase the likelihood of success of this 
approach. As in other basal ganglia nuclei, GAT-3 immunoreac-
tivity is expressed in astrocytic processes throughout the monkey 
STN (Ng et al., 2000).

The effects of GAT activity on the neuronal activity in the STN 
are unknown. Because of the preponderance of GABAergic pallidal 
terminals in the STN, and because of the fact that extrasynaptic 
GABA-B receptors appear to play important roles in the modula-
tion of burst firing and the pallidosubthalamic “pacemaker” system 
(Plenz and Kitai, 1999; Bevan et al., 2002), a better understanding of 
the mechanisms by which GATs modulate GABAergic STN activity 
is clearly warranted (for review, see Bevan et al., 2007).

Both GAT-1 and GAT-3 mRNAs are moderately expressed in 
the rat substantia nigra as a whole. Surprisingly, GAT-1 expres-
sion is stronger in dopaminergic pars compacta (SNc) neurons 
than in the GABAergic pars reticulata (SNr) cells (Durkin et al., 
1995; Yasumi et al., 1997), serving as another possible example 
of GAT-1-mediated function in non-GABAergic neurons. GAT-3 
immunoreactivity is also strongly expressed in the monkey SN, 
where it appears to be preferentially associated with astrocytes (Ng 
et al., 2000). GAT-1 inhibition significantly reduces [3H] GABA 
uptake in synaptosomes prepared from the rat SNr (Bahena-Trujillo 
and Arias-Montano, 1999), and significantly increases extracellular 
GABA levels in the rat substantia nigra (Fink-Jensen et al., 1992). 
However, the overall regulatory functions of GATs on synaptic 
transmission in the SN remain unexplored.

GATs And pArKinSon’S diSEASE
The data discussed in this review highlight the fact that GAT-1 and 
GAT-3 represent different target sites through which GABA reup-
take may regulate GABAergic and glutamatergic transmission in the 
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