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through the cortico-basal ganglia–thalamocortical loops in normal 
and pathological conditions. At the end of each section, we high-
light some relevant anatomical and functional issues that should be 
addressed to increase our current knowledge of the complementary 
roles corticostriatal and corticosubthalamic entry systems to the 
basal ganglia play in normal and diseased states.

NeuroNal sources aNd coNductioN velocities of 
corticostriatal versus corticosubthalamic 
projectioNs
sources of the corticostriatal system
Corticostriatal projections typically arise from small to medium 
sized layer III and V pyramidal neurons in functionally diverse cor-
tical areas in monkeys, dogs, cats, and rodents (Kemp and Powell, 
1970; Kitai et al., 1976; Jones et al., 1977; Oka, 1980; Veening et al., 
1980; Royce, 1982; Goldman-Rakic and Selemon, 1986; Tanaka, 
1987; Mcgeorge and Faull, 1989). In rodents, corticostriatal neu-
rons are categorized into two main types: the intratelencephalic 
(IT) and the pyramidal tract (PT) neurons (Jinnai and Matsuda, 
1979; Landry et al., 1984; Wilson, 1987; Cowan and Wilson, 1994; 
Levesque et al., 1996a,b; Levesque and Parent, 1998; Wright et al., 
1999, 2001; Zheng and Wilson, 2002; Reiner et al., 2003; Parent and 
Parent, 2006). The IT neurons, of which axonal projections are 
confined to the ipsilateral and contralateral cortex and striatum, 
are mainly located in layer III and upper layer V of the rat cortex. 
In contrast, PT neurons are located in the lower layer V, and send 
long descending axonal projections to the brainstem and spinal 
cord from which originate thin axon collaterals that innervate 
the striatum (Reiner et al., 2003; Figure 1). A unidirectional pat-
tern of physiological connectivity from IT to PT corticostriatal 
neurons has been demonstrated in cortical slices (Morishima and 
Kawaguchi, 2006).

iNtroductioN
The direct and indirect pathway model of the basal ganglia has 
traditionally been the most authenticated working basal ganglia 
model. According to this model, cortical inputs enter the stria-
tum and proceed to the output nuclei of the basal ganglia [inter-
nal globus pallidus (GPi) and the substantia nigra pars reticulata 
(SNr)] via two distinct pathways, enroute to the thalamus which 
projects back to the cerebral cortex. The “direct pathway” refers 
to the monosynaptic connection from the striatum to GPi/SNr; 
whereas the “indirect pathway” is the polysynaptic pathway where 
the order of connectivity is striatum – external globus pallidus 
(GPe) – subthalamic nucleus (STN) – GPi/SNr (Albin et al., 1989; 
Delong, 1990). Normal basal ganglia functions are achieved when 
there is a balance between the activities of these two pathways. 
Movement disorders of basal ganglia origin, both hypokinetic (e.g., 
Parkinson’s disease) and hyperkinetic (e.g., Huntington’s disease), 
are thought to result from imbalanced activities between the two 
pathways; with the polarity of the imbalance determining the kinet-
ics of the disorder (Albin et al., 1989).

In addition to the corticostriatal inputs, the basal ganglia also 
receive direct cortical information at the level of the STN, which 
further gets relayed to the GPi/SNr, constituting the “hyperdirect 
pathway” (Monakow et al., 1978; Nambu et al., 1996; Figures 1 
and 2). Although the existence of this system has long been rec-
ognized, its detailed anatomical organization, integration within 
the functional circuitry of the basal ganglia and significance in the 
pathophysiology of the basal ganglia network in movement disor-
ders remains highly hypothetical and poorly understood.

In this review, we compare the anatomical and functional organ-
ization of the two main cortical entry systems to the basal ganglia, 
and critically examine their respective roles in the integration 
and processing of motor and non-motor information that flows 
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Although single-axon tracing studies have identified distinct 
populations of corticostriatal projection neurons reminiscent of 
the rodent IT and PT neurons in monkeys (Parent and Parent, 
2006), this dual corticostriatal system is not supported by elec-
trophysiological studies in non-human primates. For instance, 
stimulation of the motor putamen and the PT does not or very 
rarely elicit antidromic activation of single neurons in the primary 
motor cortex (MI) and pre-motor cortices in monkeys (Bauswein 
et al., 1989; Turner and Delong, 2000), suggesting that the PT 
does not give off significant collaterals to the striatum (Figure 1). 
Even in rodents, the functional significance of the dichotomous IT 
and PT corticostriatal neurons system is not clearly understood. 
Anatomical evidence suggests that IT-type neurons preferentially 
innervate direct pathway striato-nigral neurons, whereas PT-type 
neurons mainly target indirect pathway striato-pallidal neurons 
(Lei et al., 2004). However, a recent in vivo electrophysiology 

study could not detect a significant PT-type corticostriatal input 
onto indirect striatofugal neurons. This study rather showed that 
IT-type corticostriatal neurons are the main excitatory drive to 
both direct and indirect striatofugal neurons (Ballion et al., 2008; 
Figure 1).

sources of the corticosubthalamic system
The corticosubthalamic projections originate primarily from cor-
tical layer V neurons in rats and monkeys (Rouzaire-Dubois and 
Scarnati, 1985; Canteras et al., 1990; Nambu et al., 1996). Although 
overwhelming evidence points to an ipsilateral corticosubthalamic 
system (Afsharpour, 1985; Feger et al., 1994), one electrophysi-
ological study performed in unilaterally decorticated rats suggests 
that part of the corticosubthalamic tract may project contralater-
ally (Rouzaire-Dubois and Scarnati, 1985). However, a subsequent 
electrophysiological study in rats showed that contralateral  cortical 

Figure 1 | Comparison of the cortical sources, conduction velocities 
and synaptic targets of corticostriatal versus corticosubthalamic 
projections. Solid lines indicate well established projections. Dotted lines 
indicate projections that need to be confirmed in future studies. Colored 
boxes summarize some of the unanswered questions pertaining to the 

anatomical, synaptic, and functional organization of these two pathways. See 
text for abbreviations. Anatomical structures are not to scale, but depicted 
solely for illustrative purposes and are not necessarily in the same coronal 
plane. Some connections have been purposefully omitted to decrease 
complexity.
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collateralization of single cortical projections to the striatum and 
the STN is unclear, and must be directly assessed using reliable 
anatomical approaches (Figure 1). In that regard, a recent single-
axon tracing study in non-human primates has revealed the exist-
ence of corticosubthalamic projections that descend through the 
cerebral peduncle or the red nucleus, but did not describe any 
cortical neurons innervating both the striatum and STN (Parent 
and Parent, 2006). However, a double retrograde labeling study in 
rats suggested that a subset of individual cortical neurons project 
to both structures (Feger et al., 1994).

Further evidence for a distinct origin of corticostriatal and 
corticosubthalamic projection systems is suggested by the differ-
ent conduction velocities of these axonal projections. In rats, the 
mean conduction velocity of hyperdirect corticosubthalamic axons 
(∼7 m/s) is much faster than that of the IT-type corticostriatal axons 
(∼1.5 m/s), but is slightly slower than the PT-type corticostriatal 
axons (<10 m/s; Cowan and Wilson, 1994; Mahon et al., 2001; Slaght 
et al., 2004; Paz et al., 2005). However, the conduction velocity value 
of the PT-type corticostriatal axons must be interpreted cautiously 
because of diameter differences between the rather thin corticos-
triatal axon collaterals that detach from the large-sized PT main 
descending axon to the brainstem. Another important aspect to 
consider is the fact that the speed of conduction of the corticospinal 
tract (∼11.4 m/s in rats, with the fastest reaching ∼19 m/s; Mediratta 
and Nicoll, 1983) is much faster than either corticosubthalamic or 
corticostriatal axons, thereby suggesting that these projections most 
likely originate from distinct neuronal populations, though this 
remains to be demonstrated (Figure 1). The functional relevance 
of these different rates of conduction toward the transmission and 
integration of information flow through the corticostriatal and 
corticosubthalamic systems is discussed below.

To better understand the origins and potential sites of cross-talk 
between corticostriatal and corticosubthalamic neurons, the fol-
lowing critical issues must be addressed (Figure 1):

stimulation elicits long latency excitatory responses in the STN 
which, most likely, rely on oligosynaptic circuits rather than the 
fast monosynaptic corticosubthalamic connections that mediate 
ipsilateral effects (Fujimoto and Kita, 1993). Preliminary data sug-
gest that axon collaterals of the corticospinal tract innervate the 
STN in cats (Iwahori, 1978; Giuffrida et al., 1985). However, this 
issue must be thoroughly investigated in rats and monkeys using 
sensitive anatomical and electrophysiological methods. Although 
part of the corticosubthalamic tract projecting to the motor terri-
tory of the STN could, indeed, be axon collaterals of the descending 
corticospinal and corticobulbar tracts, it is not clear if non-motor 
projections to the STN originate from axon collaterals of cortical 
efferents to other cortical or subcortical targets, or from a specific 
subset of corticosubthalamic neurons (Figure 1). In light of recent 
data suggesting that some of the therapeutic benefits, or side effects, 
of STN deep brain stimulation could be attributed to antidromic 
activation of motor (Li et al., 2007) versus non-motor corticosub-
thalamic systems (Drouot et al., 2004; Temel et al., 2006; Li et al., 
2007; Gradinaru et al., 2009), respectively, a detailed knowledge of 
the exact sources and degree of collateralization of corticosubtha-
lamic axons is essential to a deeper understanding of the mecha-
nisms and anatomical substrates through which STN DBS mediates 
its wanted and unwanted effects (Figure 2).

do the corticostriatal aNd corticosubthalamic systems 
origiNate from siNgle cortical NeuroNs?
In monkeys, striatal stimulation results in monosynaptic short 
latency spike discharge (10–15 m/s) in the STN (Ohye et al., 1976). 
Considering that there is no clear evidence for the existence of a 
striatosubthalamic projection system; some of these short latency 
responses could possibly be mediated by axons collaterals of sin-
gle cortical neurons innervating both the striatum and STN. Such 
short latency responses could also be attributed to activation of 
fibers of passage leading to the STN. Nevertheless, the extent of 

Figure 2 | Highly simplified overview of the classical model of the basal 
ganglia circuitry. Red lines indicate excitatory projections. Black lines indicate 
inhibitory projections. Some brainstem connections have been omitted for the 

sake of simplicity. Colored boxes highlight some key issues to be addressed 
about the anatomy and function of the corticostriatal and corticosubthalamic 
systems. See text for abbreviations.
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membrane of STN neurons, some of those being in the main body 
or peri-synaptic to asymmetric glutamatergic synapses (Clarke 
and Bolam, 1998; Kuwajima et al., 2004). However, there is no 
detailed study of the expression level of any glutamate receptor 
subtypes at corticosubthalamic synapses compared with other 
glutamatergic efferents to the STN (i.e., vesicular glutamate 
transporter 2 – positive terminals from the thalamus and pedun-
culopontine nucleus). Thus, to better understand the synaptic 
mechanisms by which the microcircuitry and relative expression 
of specific receptor subtypes contribute to the functional effects 
of corticostriatal versus corticosubthalamic afferents upon their 
target neurons, a detailed quantitative assessment of the mor-
phological and neurochemical features of these synapses must be 
achieved (Figure 2). Some of the key information to be gathered 
include:

(1) A detailed quantitative analysis of the prevalence and distri-
bution of cortical inputs onto the dendrites of single STN 
neurons.

(2) A detailed comparison of the relative abundance of spe-
cific glutamate receptor subtypes or subunits at indivi-
dual corticostriatal versus corticosubthalamic synapses 
(Figure 3).

(3) Electrophysiological assessment of the strength, properties 
and long term plasticity of corticosubthalamic synapses.

(1) Determine the exact sources and innervation patterns of cor-
ticosubthalamic projections to motor and non-motor regions 
of the STN.

(2) Determine the proportion of motor corticosubthalamic axons 
that are collaterals of the corticospinal and corticobulbar tracts 
in primates.

(3) Determine the degree of collateralization of single corticofugal 
axons to the striatum and the STN.

(4) Determine the extent of cross-talk between corticostriatal and 
corticosubthalamic neurons at the cortical level.

syNaptic microcircuitry of corticostriatal versus 
corticosubthalamic systems
Cortical inputs to the striatum are relatively dense and preferentially 
target medium spiny neurons (MSNs). In rats, each MSN receives 
approximately 5000 cortical inputs (Kincaid et al., 1998), that form 
asymmetric synapses almost exclusively on spine heads (∼90%; Kemp 
and Powell, 1971; Xu et al., 1989; Raju et al., 2006, 2008). It is clear that 
the corticostriatal system represents, by far, the most massive source 
of synaptic inputs to striatal projection neurons (Ingham et al., 1998; 
Raju et al., 2008). In contrast, the corticosubthalamic projection is 
much less profuse, and gives rise to a rather sparse population of 
terminals that form asymmetric synapses only with the distal den-
drites of STN neurons (Bevan et al., 1995; Mathai et al., 2010). The 
main source of synaptic inputs to STN neurons is from the GPe, 
which provides a massive GABAergic innervation that spreads across 
the whole somatodendritic domain of single STN neurons (Smith 
et al., 1990, 1998). Despite its relative scarcity and distal location, 
corticosubthalamic afferents are considered as a major driving force 
of STN neurons, and a key source of inputs through which motor 
cortical information reaches basal ganglia output neurons (Nambu 
et al., 2002; Magill et al., 2004). Complex synaptic mechanisms and 
membrane properties of STN neurons have been suggested to explain 
how sparse, distally located cortical inputs could mediate powerful 
excitatory effects upon STN neurons despite the massive and tonically 
active inhibitory influences from the GPe (Bevan et al., 2002, 2007).

In addition to the prevalence and distribution of cortical inputs, the 
abundance, subsynaptic localization, pharmacological properties, and 
plasticity of postsynaptic glutamate receptors associated with these 
afferents are other factors that could contribute to the strength of 
corticostriatal and corticosubthalamic inputs (Figure 2). Striatal pro-
jection neurons express a wide variety of AMPA and NMDA receptor 
subunits and multiple subtypes of metabotropic glutamate receptors 
(mGluRs). At the electron microscopic level, these receptor proteins 
are profusely expressed along the plasma membrane of dendritic 
spines and dendritic shafts where most cortical inputs are located, 
though most mGluRs and a significant contingent of AMPA and 
NMDA receptor subunits are also heavily localized extrasynaptically 
(Paquet and Smith, 2003; Fujiyama et al., 2004; Galvan et al., 2006). 
Although the functional role of these receptors in corticostriatal trans-
mission and long term plasticity has been demonstrated (Calabresi 
et al., 2007; Wickens, 2009), the relative abundance of specific receptor 
subunits at individual cortical synapses remains unknown.

Subthalamic nucleus neurons are also enriched with iono-
tropic NMDA and AMPA receptor subunits as well as with group 
I mGluRs (i.e., mGluR1 and mGluR5), located along the plasma 

Figure 3 | Functional domains of the STN. Coronal view of the primate 
STN to illustrate the topographical organization of cortical afferents to various 
functional regions of the nucleus defined by their reciprocal connections with 
the globus pallidus and motor cortical areas. Solid lines indicate well 
established corticosubthalamic projections from motor and pre-motor 
cortices. Dotted lines indicate putative projections that need further 
confirmation. Abbreviations: cing, cingulate.
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is not known (Figure 1), but recent diffusion-weighed magnetic 
resonance imaging studies suggest connections between high order 
associative cortical regions and the STN in humans (Aron et al., 
2007). In addition, data from our laboratory indicate that the rela-
tive density of cortical terminals in non-motor regions of the mon-
key STN is as high as that in the motor STN, thereby suggesting 
significant associative and limbic cortical inputs to the non-human 
primate STN (Mathai et al., 2010).

do siNgle stN NeuroNs iNtegrate fuNctioNally segregated 
iNformatioN flowiNg aloNg the corticosubthalamic system?
Despite the apparent anatomical segregation of motor, associative 
and limbic cortical inputs to the STN, the small size of the nucleus 
combined with the large extent of the dendritic tree of single STN 
neurons, open up the possibility for synaptic convergence of dif-
ferent cortical inputs onto single STN neurons, most particularly 
those located at the junction between different functional territories 
(Takada et al., 2001). STN neurons, indeed, harbor long dendrites, 
which, in primates, can extend as far as 600 μm from their parent 
cell bodies (Yelnik and Percheron, 1979; Figure 1). It is notewor-
thy that the extent of the dendritic domain of an individual STN 
neuron can cover about half, one-fifth, and one-ninth of the STN 
in the cat, monkey, and human, respectively (Yelnik and Percheron, 
1979), thereby indicating that the functional segregation of the STN 
may increase in an ascending fashion as we compare cats, monkeys, 
and humans. In rats, some of the corticosubthalamic projections 
from functionally distinct cortical regions converge onto single 
STN neurons (Kolomiets et al., 2001), suggesting that the cortico-
subthalamic system is, indeed, more functionally convergent than 
the functionally segregated corticostriatal system, at least in rodents 
(Kolomiets et al., 2001). In line with this concept, it is worth noting 
that inputs from functionally segregated regions of the GP converge 
upon single STN neurons in rats (Bevan et al., 1997; Figure 1). In 
contrast, albeit extensive, the dendritic tree of striatal MSNs is much 
more restricted (200–260 μm in diameter in primates) and confined 
to the close vicinity of parent cell bodies (Graveland et al., 1985). 
Whether these anatomical differences in the dendritic arborization 
of striatal MSNs versus subthalamic neurons account for a higher 
level of convergence of functionally segregated cortical influences 
upon single STN than striatal neurons remains to be conclusively 
established, especially in primates (Figure 1).

Another anatomical feature that governs the extent of conver-
gence or divergence of inputs upon their synaptic targets is their 
respective pattern of axonal arborization inside the target structure. 
Using single cell filling studies, these features have been studied for 
the corticostriatal system, but much remains to be done for the 
corticosubthalamic connections. In the monkey striatum, corti-
cal axons split into about two to five branches upon entering the 
structure, and later arborize scarcely, but widely (Parent and Parent, 
2006), thereby suggesting that each corticostriatal axon could target 
a large pool of striatal dendrites along its long tortuous course, 
but form a restricted number of synapses upon each of them. In 
rodents, PT-type neurons form focal clusters of fine processes and 
terminals, whereas the axonal projections of IT-type neurons arbo-
rize uniformly in the striatum (Wilson, 1987; Cowan and Wilson, 
1994; Wright et al., 1999, 2001). As far as the corticosubthalamic 

fuNctioNal segregatioN of corticostriatal versus 
corticosubthalamic pathways
corticostriatal iNputs are fuNctioNally segregated
Multiple cortical areas project to the striatum in a highly topo-
graphic manner creating functionally segregated maps (Alexander 
et al., 1986). The post-commissural dorsolateral putamen pri-
marily receives sensorimotor cortical afferents, most of the pre- 
commissural putamen and caudate nucleus receive afferents from 
associative cortical regions, whereas the limbic and paralimbic cor-
tices, the amygdala and the hippocampus innervate the nucleus 
accumbens, the ventral caudate, and ventral putamen (Parent and 
Hazrati, 1995). Although the functional territories in the striatum 
are largely segregated, somatosensory and motor cortical informa-
tion representing the same body parts converge onto overlapping 
regions in the putamen (Flaherty and Graybiel, 1991, 1993). There is 
no evidence for a similar overlap of somatosensory and motor corti-
cal information in the STN. In fact, there are conflicting data regard-
ing the existence of somatosensory, visual or auditory inputs to the 
STN from primary sensory cortices (Afsharpour, 1985; Canteras 
et al., 1988; Kolomiets et al., 2001), but it is worth noting that some 
sensory modalities can still reach the STN via other routes, such 
as the tectosubthalamic tract recently described in rodents (Coizet 
et al., 2009). Complex patterns of overlapping and interdigitation of 
corticostriatal projections from interconnected associative cortical 
areas have also been described in the caudate nucleus and ventral 
striatum of non-human primates (Yeterian and Van Hoesen, 1978; 
Selemon and Goldman-Rakic, 1985; Parthasarathy et al., 1992), 
but very little is known about the relative overlap or segregation 
of associative cortical inputs to the STN.

is the corticosubthalamic system fuNctioNally segregated?
Despite the limited knowledge about the organization of non-
motor corticosubthalamic projections compared with the detailed 
analyzes of the corticostriatal systems, the STN is also topographi-
cally divided into functional territories, mainly based on its con-
nections with specific functionally segregated regions of the globus 
pallidus (Figure 3). The dorsolateral and dorsomedial STN pri-
marily processes motor-related information, the ventrolateral STN 
is the main target of associative-related pallidal inputs, while the 
ventromedial tip of the STN is primarily connected with lim-
bic pallidal regions including the ventral pallidum (Parent, 1990; 
Shink et al., 1996; Karachi et al., 2005; Smith, 2011). In primates, 
cortical inputs from the primary MI innervate the dorsolateral 
STN, while the supplementary motor area (SMA), pre-motor 
cortex (PM), and cingulate motor cortex (CM) send projections 
to the dorsomedial STN (Nambu et al., 1996, 1997; Takada et al., 
2001; Figure 3).

However, there is only scarce anatomical evidence of direct 
cortical projections from associative and limbic cortices to the 
monkey STN (Monakow et al., 1978). In rodents, lesion studies 
(Eagle et al., 2008) have suggested that functional connections 
between the medial prefrontal cortex and the STN are necessary 
to perform tasks that involve cognitive and reward processing (Dias 
et al., 1996; Chudasama et al., 2003; Baunez and Gubellini, 2010; 
Eagle and Baunez, 2010). As of date, the topography and extent 
of innervation of non-motor cortical inputs to the primate STN 
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Francois et al., 2000; Smith and Kieval, 2000; Cragg et al., 2004; 
Smith and Villalba, 2008; Rommelfanger and Wichmann, 2010). 
Although there is evidence for physiological dopamine-mediated 
effects in the STN, functional interactions between the dopamine 
nigrosubthalamic system and corticosubthalamic afferents remain 
to be established (Figure 2). On the other hand, it is worth noting 
that the excitatory responses of SNr basal ganglia output neurons 
in response to cortical stimulation are augmented in 6-hydroxy-
dopamine-treated parkinsonian rats compared to control animals 
(Belluscio et al., 2007). Whether this abnormal increased response 
of SNr neurons relies on changes in the dopamine-mediated regu-
lation of the corticosubthalamic system in parkinsonism, remains 
to be established. Preliminary data from our laboratory have dem-
onstrated a significant reduction in the density of vesicular glu-
tamate transporter 1 – positive corticosubthalamic terminals in 
MPTP-treated parkinsonian monkeys (Mathai et al., 2010), thereby 
suggesting possible loss of cortical inputs to the STN in the par-
kinsonian state, as shown in the striatum (see above; Figure 2).

To further understand and compare the role played by dopamine 
in the regulation of the corticosubthalamic versus corticostriatal 
systems, the following points must be clarified (Figure 2):

(1) Does STN dopamine denervation induce changes in the num-
ber, microcircuitry and activity of corticosubthalamic inputs 
in parkinsonian condition?

(2) How do dopamine- and dopamine receptor-related drugs 
affect the strength and plastic properties of corticosubthalamic 
inputs?

(3) How do changes in dopaminergic innervation affect sensori-
motor properties of STN neurons in response to cortical affe-
rents in the parkinsonian state?

(4) Does STN dopamine denervation induce downstream regula-
tory changes in the expression, trafficking, and functional acti-
vity of dopamine and glutamate receptors that could influence 
corticosubthalamic transmission in parkinsonian condition?

fuNctioNal iNteractioNs betweeN the 
corticostriatal aNd corticosubthalamic systems 
to regulate the selectioN of basal gaNglia motor 
programs iN Normal aNd pathological coNditioNs
Ultimately, the significance of data discussed in this review relies 
on a better understanding of the functional interactions between 
information flowing along the corticostriatal and corticosubtha-
lamic systems to mediate basal ganglia functions and dysfunctions 
in normal and diseased states. In that regard, a functional “center– 
surround model” of selection of motor programs in the basal gan-
glia has been proposed based on the temporal activation patterns 
of the hyperdirect corticosubthalamic pathway, and the direct cor-
ticostriatopallidal system (Mink, 1996; Nambu et al., 2000, 2002). 
According to this model, the cortical information flowing along 
the hyperdirect pathway is faster, and transmitted in a more diffuse 
manner than information flowing along the corticostriatal system 
to the GPi, thereby providing a general excitation over a large pool 
of basal ganglia output neurons not related to the selected motor 
act (i.e., the “surround neurons”). In contrast, a corollary signal 
transmitted along the direct corticostriatofugal pathway is much 
more focused and conveyed to a restricted pool of GPi neurons (i.e., 

pathway is concerned, very little is known about the extent and 
pattern of arborization of single cortical axons in the STN (Parent 
and Parent, 2006).

Thus, in order to assess and compare the degree of convergence 
between functionally segregated corticostriatal versus corticosub-
thalamic projections, the following issues must be addressed:

(1) Determine the sources and pattern of organization of direct 
sensory inputs to the monkey STN.

(2) Assess the degree of convergence of motor and somatosensory 
inputs related to the same body parts into the monkey STN.

(3) Analyze in detail the topographical organization of non-motor 
cortical inputs to the STN, especially in the monkey.

(4) Characterize the course and pattern of arborization of single 
motor and non-motor corticosubthalamic axons.

(5) Assess the anatomo-functional convergence of functionally 
distinct cortical inputs on single STN neurons.

dopamiNergic regulatioN of glutamatergic 
corticostriatal versus corticosubthalamic 
systems – implicatioNs for parkiNsoN’s disease 
pathophysiology
The role of striatal dopamine has been explored in great detail 
and summarized in comprehensive reviews published over recent 
decades (Arbuthnott et al., 2000; Nicola et al., 2000; Reynolds and 
Wickens, 2002; Surmeier et al., 2007, 2009; Kreitzer and Malenka, 
2008; Wickens, 2009). In the following account, we will only high-
light a few points indicating the importance of dopamine in the 
regulation of corticostriatal activity so that it can be compared with 
our current knowledge of the potential effects of dopamine upon 
the corticosubthalamic system. In the classical models of the basal 
ganglia, dopamine regulates the balance between the activation 
of the direct and indirect striatofugal pathways (Wichmann and 
Delong, 1996). Striatal dopamine also plays a key role in mediat-
ing long term plasticity of glutamatergic corticostriatal synapses 
(Cragg, 2003; Picconi et al., 2003; Calabresi et al., 2007; Kreitzer and 
Malenka, 2008; Pawlak and Kerr, 2008). The loss of striatal dopa-
mine in Parkinson’s disease leads to a major pruning of dendritic 
spines on striatal projection neurons (Ingham et al., 1989; Stephens 
et al., 2005; Zaja-Milatovic et al., 2005; Smith and Villalba, 2008; 
Villalba et al., 2009; Villalba and Smith, 2010), corresponding with 
a loss of corticostriatal terminals and a severe dysregulation and 
imbalance of activity between the direct and indirect striatofugal 
pathways (Delong, 1990; Pang et al., 2001; Liang et al., 2008), and 
a dramatic change in the long term plastic properties of corticos-
triatal synapses (Calabresi et al., 2007; Figures 1 and 2). There is 
also evidence that dopamine regulates the functional specificity of 
striatal projection neurons in response to cortical afferents, and 
that degeneration of the nigrostriatal dopaminergic system in PD 
underlies some of the pathophysiological patterns of activity striatal 
and other basal ganglia neurons display in parkinsonian condition 
(Calabresi et al., 1993, 2000; Florio et al., 1993; Onn and Grace, 
1999; Onn et al., 2000; Strafella et al., 2005; Figure 2).

Albeit sparser than in the striatum, the STN also receives a 
dopaminergic innervation from collaterals of the nigrostriatal 
pathway, and STN neurons express various dopamine receptor 
subtypes (Lavoie et al., 1989; Hedreen, 1999; Augood et al., 2000; 
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