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In this paper, we pursue recent observations that, through selective dendritic filtering,
single neurons respond to specific sequences of presynaptic inputs. We try to provide
a principled and mechanistic account of this selectivity by applying a recent free-energy
principle to a dendrite that is immersed in its neuropil or environment. We assume that
neurons self-organize to minimize a variational free-energy bound on the self-information
or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of
dendritic spines that are expressed on a dendritic branch. This pruning occurs when post-
synaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with
respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic
signals that conform to its expectations, specified by a generative model implicit in its intra-
cellular kinetics. Not only does this provide a principled account of how neurons organize
and selectively sample the myriad of potential presynaptic inputs they are exposed to, but
it also connects the optimization of elemental neuronal (dendritic) processing to generic
(surprise or evidence-based) schemes in statistics and machine learning, such as Bayesian
model selection and automatic relevance determination.

Keywords: single neuron, dendrite, dendritic computation, Bayesian inference, free energy, non-linear dynamical

system, multi-scale, synaptic reconfiguration

INTRODUCTION
The topic of this special issue, cortico-cortical communication, is
usually studied empirically by modeling neurophysiologic data at
the appropriate spatial and temporal scale (Friston, 2009). Mod-
els of communication or effective connectivity among brain areas
are specified in terms of neural dynamics that subtend observed
responses. For example, neural mass models of neuronal sources
have been used to account for magneto- and electroencephalog-
raphy (M/EEG) data (Kiebel et al., 2009a). These sort of modeling
techniques have been likened to a “mathematical microscope”
which effectively increase the spatiotemporal resolution of empiri-
cal measurements by using neurobiologically plausible constraints
on how data were generated (Friston and Dolan, 2010). However,
the models currently used in this fashion generally reduce the
dynamics of a brain area or cortical source to a few neuronal
variables and ignore details at a cellular or ensemble level.

To understand the basis of neuronal communication, it may
be useful to understand what single neurons encode (Herz et al.,
2006). Although the gap between a single neuron and a corti-
cal region spans multiple scales, understanding the functional
anatomy of a single neuron is crucial for understanding communi-
cation among neuronal ensembles and cortical regions: The single
neuron is the basic building block of composite structures (like
macrocolumns, microcircuits, or cortical regions) and, as such,
shapes their functionality and emergent properties. In addition,
the single neuron is probably the most clearly defined functional
brain unit (in terms of its inputs and outputs). It is not unreason-
able to assume that the computational properties of single neurons
can be inferred using current techniques such as two-photon laser
microscopy and sophisticated modeling approaches (London and

Hausser, 2005; Mel, 2008; Spruston, 2008). In short, understanding
the computational principles of this essential building block may
generate novel insights and constraints on the computations that
emerge in the brain at larger scales. In turn, this may help us form
hypotheses about what neuronal systems encode, communicate,
and decode.

In this work, we take a somewhat unusual approach to derive a
functional model of a single neuron: instead of using a bottom-up
approach, where a model is adjusted until it explains empirical
data, we use a top-down approach by assuming a neuron is a
Bayes-optimal computing device and therefore conforms to the
free-energy principle (Friston, 2010). The ensuing dynamics of
an optimal neuron should then reproduce the cardinal behaviors
of real neurons, see also Torben-Nielsen and Stiefel (2009). Our
ultimate goal is to map the variables of the Bayes-optimal neuron
to experimental measurements. The existence of such a mapping
would establish a computationally principled model of real neu-
rons that may be useful in machine learning to solve real-world
tasks.

The basis of our approach is that neurons minimize their vari-
ational free energy (Feynman, 1972; Hinton and van Camp, 1993;
Friston, 2005, 2008; Friston et al., 2006). This is motivated by
findings in computational neuroscience that biological systems
can be understood and modeled by assuming that they minimize
their free energy; see also Destexhe and Huguenard (2000). Varia-
tional free energy is not a thermodynamic quantity but comes from
information and probability theory, where it underlies variational
Bayesian methods in statistics and machine learning. By assuming
that the single neuron (or its components), minimizes variational
free energy (henceforth free energy), we can use the notion of
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optimization to specify Bayes-optimal neuronal dynamics: in other
words, one can use differential equations that perform a gradient
descent on free energy as predictions of single neuron dynam-
ics. Free-energy minimization can be cast as Bayesian inference,
because minimizing free-energy corresponds to maximizing the
evidence for a model, given some data (see Table 1 and Hinton
and van Camp, 1993; Friston, 2008; Daunizeau et al., 2009).

Free energy rests on a generative model of the sensory input a
system is likely to encounter. This generative model is entailed by
form and structure of the system (here a single neuron) and speci-
fies its function in terms of the inputs it should sample. Free-energy
minimization can be used to model systems that decode inputs
and actively select those inputs that are expected under its model
(Kiebel et al., 2008). Note that the Bayesian perspective confers

Table 1 | Key quantities in the free-energy formulation of dendritic sampling and reorganization.

Variable Description

m ∈ M Generative model: in the free-energy formulation, a system is taken to be a model of the environment in

which it is immersed. m ∈ M corresponds to the form of a model (e.g., Eq. 1) entailed by a system.

(S, T ) Number of segments (or presynaptic axons that can be sampled) and the number of synaptic connections.

s̃(t) = [s, s′, s′′, . . .]T
s ∈ R

T ×1

Sensory (synaptic) signals: generalized sensory signals or samples comprise the sensory states, their veloc-

ity, acceleration, and temporal derivatives to high order. In other words, they correspond to the trajectory

of a system’s inputs; here, the synaptic inputs to a dendrite.

x̃(t) = [x , x ′, x ′′, . . .]T
x ∈ R

s×1

Hidden states: generalized hidden states are part of the generative model and model the generation of

sensory input. Here, there is a hidden state for each dendritic segment that causes its synaptic input.

ṽ (t) = [v , v ′, v ′′, . . .]T
v ∈ R

1×1

Hidden cause: generalized hidden causes are part of the generative model and model perturbations to the

hidden states. Here, there is one hidden cause for that controls the speed (and direction) of their sequential

dynamics.

W ∈ R
T × S Parameters of the generative model: here, these constitute a matrix, mapping from the hidden states

to synaptic inputs (see Eq. 1 and Figure 3, right panel). In other words, they determine the pattern of

connectivity from presynaptic axons to postsynaptic specializations.

Π(s) = diag(exp(γ)),

Π(x )

Precision matrices: (inverse covariance matrices) for random fluctuations on sensory (synaptic) signals and

hidden states (ωs , ωx ).

p(γ|m) = N(η(γ), Π(γ)−1) Prior density over the synaptic log-precision or gain, where Π(γ) is the prior precision.

− ln p(s̃|m) Surprise: this is a scalar function of sensory signals and reports the improbability of sampling some sig-

nals, under a generative model of how those signals were caused. It is sometimes called surprisal or

self-information. In statistics, it is known as the negative log-evidence for the model.

H (S|m) = limT →∞ − 1
T

T∫
0

dt ln p(s̃(t)|m) Entropy: sensory entropy is, under ergodic assumptions, proportional to the long-term time average of

surprise.

q
(
x̃ , ṽ , γ

) = N (μ, C) ≈ p
(
x̃ , ṽ , γ|s̃, m

)
Recognition density: this density approximates the conditional or posterior density over hidden causes of

sensory (synaptic) input. Under the Laplace assumption, it is specified by its conditional expectation and

covariance.

μ = (μ̃(x), μ̃(v ), μ(γ)) Mean of the recognition density. These conditional expectations of hidden causes are encoded by the

internal states of the dendrite and furnish predictions of sensory (synaptic) input.

G (
s̃, x̃ , ṽ , γ

) = − ln p
(
s̃, x̃ , ṽ , γ|m)

p
(
s̃, x̃ , ṽ , γ|m) = p

(
s̃, x̃ , ṽ |γ, m

)
p (γ|m)

Gibbs energy: this is the surprise about the joint occurrence of sensory samples and their causes. This

quantity is defined by the generative model (e.g., Eq. 1) and a prior density.

F (
s̃, μ

) = G (
s̃, μ

) + 1
2 ln

∣∣Gμμ

∣∣
≥ − ln p

(
s̃|m) Variational free energy: this is a scalar function of sensory samples and the (sufficient statistics of the)

recognition density. By construction, it upper-bounds surprise. It is called free energy because it is a Gibbs

energy minus the entropy of the recognition density. Under a Gaussian (Laplace) assumption about the

form of the recognition density, free-energy reduces to this simple function of Gibbs energy.

D =

⎡
⎢⎢⎢⎢⎣

0 I

0
. . .

. . .

⎤
⎥⎥⎥⎥⎦ Matrix derivative operator that acts upon generalized states to return their generalized motion, such that

Dμ̃ = [μ′, μ′′, μ′′, . . .]

ε̃(s) = s̃ − g̃(μ̃)

ε̃(x) = Dμ̃(x) − f̃ (μ̃)

ε(γ) = μ(γ) − η(γ)

Prediction error for generalized sensory signals, hidden states, and log-precision; see Eq. 4. Here, (f̃ , g̃) are

generalized versions of the equations of motion and sensory mapping in the generative model (e.g., Eq. 1).
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attributes like expectations and prior beliefs on any system that
conforms to the free-energy principle; irrespective of whether it is
mindful (e.g., a brain) or not (e.g., a neuron). Using free-energy
minimization, we have shown previously that many phenomena
in perception, action, and learning can be explained qualitatively
in terms of Bayesian inference (Friston et al., 2009; Kiebel et al.,
2009b). Here, we apply the same idea to the dendrite of a single
neuron. To do this, we have to answer the key question: what is a
dendrite’s generative model? In other words, what synaptic input
does a dendrite expect to see?

Differences in the morphology and connections among neu-
rons suggest that different neurons implement different functions
and consequently “expect” different sequences of synaptic inputs
(Vetter et al., 2001; Torben-Nielsen and Stiefel, 2009). Recently
(Branco et al., 2010) provided evidence for sequence-processing
in pyramidal cells. By using in vitro two-photon laser microscopy,
glutamate uncaging, and patch clamping, these authors showed
that dendritic branches respond selectively to specific sequences
of postsynaptic potentials (PSPs). Branco et al. (2010) found PSP
sequences that move inward (toward the soma) generate higher
responses than “outward” sequences (Figure 1C): Sequences were
generated by activating spines along a dendritic branch with an
interval of ca. 2 ms (Figures 1A,B). They assessed the sensitiv-
ity to different sequences using the potential generated at the
soma by calcium dynamics within the dendritic branch. In addi-
tion, they found that the difference in responses to inward and
outward sequences is velocity-dependent: in other words, there
is an optimal sequence velocity that maximizes the difference
between the responses to inward and outward simulation (see
Figures 1C,D). These two findings point to intracellular mecha-
nisms in the dendritic branches of pyramidal cells, whose function

is to differentiate between specific sequences of presynaptic input
(Destexhe, 2010). Branco et al. (2010) used multi-compartment
modeling to explain their findings and proposed a simple and
compelling account based on NMDA receptors and an impedance
gradient along the dendrite. Here, we revisit the underlying cellular
mechanisms from a functional perspective: namely, the imperative
for self-organizing systems to minimize free energy.

In brief, this paper is about trying to understand how den-
drites self-organize to establish functionally specific synaptic
connections, when immersed in their neuronal environment.
Specifically, we try to account for how postsynaptic specializa-
tions (i.e., spines) on dendritic branches come to sample partic-
ular sequences of presynaptic inputs (conveyed by axons). Using
variational free-energy minimization, we hope to show that the
emergent process of eliminating and redeploying postsynaptic spe-
cializations in real neuronal systems (Katz and Shatz,1996; Lendvai
et al., 2000) is formally identical to the model selection and opti-
mization schemes used in statistics and machine learning. In what
follows, we describe the theoretical ideas and substantiate them
with neuronal simulations.

FREE ENERGY AND THE SINGLE NEURON
Our basic premise is that any self-organizing system will selectively
sample its world to minimize the free energy of those samples. This
(variational) free energy is an information theory quantity that is
an upper bound on surprise or self-information. The average sur-
prise is called entropy; see Table 1. This means that biological
systems resist an increase in their entropy, and a natural tendency
to disorder. Crucially, surprise is also the negative log-evidence
that measures the “goodness” of a model in statistics. By applying
exactly the same principle a single dendrite, we will show that it can

FIGURE 1 | Findings reported by Branco et al. (2010): Single dendrites are

sensitive to the direction and velocity of synaptic input patterns. (A)

Layer 2/3 pyramidal cell filled with Alexa 594 dye; the yellow box indicates the
selected dendrite. (B) Uncaging spots (yellow) along the selected dendrite.

(C) Somatic responses to IN (red) and OUT (blue) directions at 2.3 mm/ms.
(D) Relationship between peak voltage and input velocity (values normalized
to the maximum response in the IN direction for each cell, n = 15). Error bars
indicate SEM. Reproduced from Branco et al. (2010) with permission.
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explain the optimization of synaptic connections and the emer-
gence of functional selectivity, in terms of neuronal responses to
presynaptic inputs. This synaptic selection is based upon synaptic
gain control, which is itself prescribed by free-energy minimiza-
tion: When a synapse’s gain falls below a threshold it is eliminated,
leading to a pruning of redundant synapses and a selective sam-
pling of presynaptic inputs that conforms to the internal archi-
tecture of a dendrite (Katz and Shatz, 1996; Lendvai et al., 2000).
We suggest that this optimization scheme provides an interest-
ing perspective on self-organization at the (microscopic) cellular
scale. By regarding a single neuron, or indeed a single dendrite, as
a biological system that minimizes surprise or free energy, we can,
in principle, explain its behavior over multiple time-scales that
span fast electrochemical dynamics, through intermediate fluctu-
ations in synaptic efficacy, to slow changes in the formation, and
regression of synaptic connections.

This paper comprises three sections. In the first, we describe
the underlying theory and derive the self-organizing dynamics of a
Bayes-optimal dendrite. The second section presents simulations,
in which we demonstrate the reorganization of connections under
free-energy minimization and record the changes in free energy
over the different connectivity configurations that emerge. We also
examine the functional selectivity of the model’s responses, after
optimal reconfiguration of its connections, to show the sequen-
tial or directional selectivity observed empirically. In the third
section, we interpret our findings and comment in more detail on
the dendritic infrastructures and intracellular dynamics implied
by the theoretical treatment. We conclude with a discussion of
the implications of this model for dendritic processing and some
predictions that could be tested empirically.

MATERIALS AND METHODS
In this section, we present a theoretical treatment of dendritic
anatomy and dynamics. Following previous modeling initiatives,

we consider a dendrite as a spatially ordered sequence of seg-
ments (see, e.g., Dayan and Abbott, 2005, p. 217ff). Each segment
expresses a number of synapses (postsynaptic specializations) that
receive action potentials from presynaptic axons. Each synapse is
connected to a specific presynaptic axon (or terminal) and registers
the arrival of an action potential with a PSP. Our aim is to explain
the following: If a dendrite can disambiguate between inward and
outward sequences (Branco et al., 2010), how does the dendrite
organize its synaptic connections to attain this directional selec-
tivity? In this section, we will derive a model that reorganizes its
synaptic connections in response to synaptic input sequences using
just the free-energy principle.

We start with the assumption that the dendrite is a Bayes-
optimal observer of its presynaptic milieu. This means that we
regard the dendrite as a model of its inputs and associate its
physical attributes (e.g., intracellular ion concentrations and post-
synaptic gains) with the parameters of that model. In what follows,
we describe this model, its optimization and consider emergent
behavior, such as directional selectivity.

To illustrate the approach, we modeled a dendrite with five seg-
ments, each of which expresses four synapses: see Figure 2. This
means the dendrite has to deploy T = 20 synapses to sample five
distinct presynaptic inputs in a way that minimizes its free energy
or surprise. The internal dynamics of the dendrite are assumed
to provide predictions for a particular sequence of synchronous
inputs at each dendritic segment. In other words, each connection
within a segment “expects” to see the same input, where the order
of inputs over segments is specified by a sequence of intracellular
predictions: see Figure 3.

To minimize free energy and specify the Bayes-optimal update
equations for changes in dendritic variables, we require a gener-
ative model of sequential inputs over segments. To do this, we
use a model based on Lotka–Volterra dynamics that generates a
sequence, starting at the tip of the dendrite and moving toward

FIGURE 2 | Synaptic connectivity of a dendritic branch and

induced intracellular dynamics. (A) Synaptic connectivity of a branch
and its associated spatiotemporal voltage depolarization before
synaptic reorganization. In this model, pools of presynaptic neurons fire
at specific times, thereby establishing a hidden sequence of action
potentials. The dendritic branch consists of a series of segments,
where each segment contains a number of synapses (here: five
segments with four synapses each). Each of the 20 synapses connects

to a specific presynaptic axon. When the presynaptic neurons emit
their firing sequence, the synaptic connections determine the
depolarization dynamics observed in each segment (bottom).
Connections in green indicate that a synapse samples the appropriate
presynaptic axon, so that the dendritic branch sees a sequence.
Connections in red indicate synaptic sampling that does not detect a
sequence. (B) After synaptic reconfiguration: All synapses support the
sampling of a presynaptic firing sequence.
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FIGURE 3 | Generative model of dendritic branch dynamics. (Left) This
shows the hidden states generating presynaptic input to each of five
segments. These Lotka–Volterra (winnerless competition) dynamics are
generated by Eq. 1 in the main text. The inhibitory connectivity matrix A

depends on the state v which determines the speed of the sequence.
(Middle) The Lotka–Volterra dynamics are induced by the specific inhibitory
connections among the five segments. In matrix A, we use the exponential

of v to render the speed positive; this could be encoded by something like
calcium ion concentration. (Right) The synaptic connectivity matrix W

determines which presynaptic axons a specific synapses is connected to.
An element Wij in black indicates that there is a connection from presynaptic
axon j to synapse i. Each synapse is connected to exactly one presynaptic
axon; i.e., each row of matrix W must contain a single one and zeros
elsewhere.

the distal end. In other words, the dendrite models its synaptic
input S(t ) = [S1,. . .,ST]T as being caused by a saltatory sequence
of changes in (hidden) states x(t ) = [x1,. . .,xs]T representing the
presynaptic activity to which each segment is exposed. The speed at
which the sequence is expressed is controlled by a hidden variable
v(t ) according to the following equations

s = g (x , v) + ωs

ẋ = f (x , v) + ωx

g (x , v) = Wx

f (x , v) = A(v)σ(x) − 1
8 x + 1s

σ(x) = 1

1 − e−x

ωs ∼ N(0, Σ(s)) : Σ(s) = diag(exp(−γi))

ωx ∼ N(0, Σ(x))

(1)

These equations model winnerless competition among the
hidden states to produce sequential dynamics (called a stable het-
eroclinic channel; Rabinovich et al., 2006). Here, ωs(t ) ∈ R

T and
ωx (t ) ∈ R

S correspond to random fluctuations on synaptic input
and the hidden states respectively. These fluctuations have covari-
ances (Σ(s),Σ(x)) or precisions (Π(s),Π(x)) (inverse covariances),

where the precision of the i-th synaptic input is determined by
its log-precision or gain: γi . Log-precisions are a convenient way
to express variances because they simplify the update equations
presented below.

The mapping from hidden states (presynaptic axons) to synap-
tic input is parameterized by a connectivity matrix W ∈ R

T×S with
elements Wij ∈ R{0, 1} that determine whether there is a synap-
tic connection between the j-th presynaptic axon and the i-th
segment (Figure 3). It is this pattern of connections that deter-
mines the form of the model. The matrix A ∈ R

S × S determines
the sequential dynamics. For example, to generate a sequence for
S = 4 segments, one would use:

A (v) =

⎛
⎜⎜⎝

0 −ev 0 ev

ev 0 −ev 0
0 ev 0 −ev

−ev 0 ev 0

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ (2)

In Eq. 2, the first matrix models exhibition and inhibition
between neighboring segments and determines the sequence. We
use the exponential of the hidden cause to ensure the speed ev

is positive. The second matrix encodes non-specific inhibition
among segments.
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Given this model of how synaptic inputs are generated, we
can now associate the internal states of the dendrite with the
model’s parameters or variables. In other words, we assume that
the intracellular dynamics of the dendrite are trying to predict
the input that it receives, based on the generative model in Eq. 1:
see Figure 2B and Figure 3 (left panel). This means that we can cast
dendritic changes as minimizing the free-energy associated with
any given synaptic inputs. This provides Bayes-optimal update
equations (i.e., non-linear differential equations) for each internal
state. These equations describe how the internal states of a dendrite
change when receiving input over time. A related application using
winnerless competition in the context of sequence recognition can
be found in Kiebel et al. (2009b). In the following, we will briefly
describe the resulting update equations. Details of their derivation
and implementation can be found in Friston et al. (2008). The key
quantities involved in this scheme are described in Table 1.

FREE-ENERGY MINIMIZATION
Minimizing the free-energy based on the generative model (Eq. 1)
involves changing the internal variables of the dendrite so that
they minimize free energy. Free energy is a function of the internal
variables because they constitute Bayes-optimal predictions of the
hidden states and synaptic input. In the present context, there are
four sets of variables that can change (μ̃(x), μ̃(v), μ(γ), η(γ));
these correspond to conditional expectations or predictions about
hidden states and causes; predictions about synaptic log-precision
or gain and predictions about existence of a synaptic input per se
(see Table 1). As we will see below, optimizing these variables
with respect to free energy is necessarily mediated at three dis-
tinct time-scales pertaining to (i) fast intracellular dynamics (e.g.,
depolarization and consequent changes in intracellular concen-
trations such as calcium): (ii) synaptic dynamics that change
the efficacy or precision of synaptic connections and (iii) an
intermittent selection and regeneration of postsynaptic special-
izations. Crucially, all three minimize free energy and can be
expressed as a series of differential equations or update rules, as
follows:

˙̃μ(x) = − ∂

∂μ̃(x)
F(s̃, μ|m) + Dμ̃(x)

˙̃μ(v) = − ∂

∂μ̃(v)
F(s̃, μ|m) + Dμ̃(v) (3a)

μ̇′(γ) = μ′(γ)

μ̇′(γ) = − ∂

∂μ(γ)
F(s̃, μ|m) − πμ′(γ) (3b)

η(γ) = arg min
η∈m

∫
F(s̃, μ|m)dt (3c)

We now consider each of these updates in turn.

FAST INTRACELLULAR DYNAMICS (Eq. 3a)
Equation 3a represents the fastest time-scale and describes the
predictions of hidden states associated with each dendritic seg-
ment and the hidden cause controlling the speed of the synaptic
sequence. Later, we will associate these with depolarization and
intracellular concentrations within the dendrite. The dynamics of

this internal states correspond to a generalized gradient descent
on free energy: F(s̃, μ|m) ∈ R, such that when free energy is
minimized they become Bayes-optimal estimates of the hidden
variables. This is the basis of Variational Bayes or ensemble learn-
ing and is used widely in statistics to fit or invert generative
models, see Hinton and van Camp (1993), Friston (2008), Fris-
ton et al. (2008) for details. For those readers with a time-series
background, Eq. 3a has the form of a generalized Kalman–Bucy fil-
ter and is indeed called Generalized Filtering (Friston et al., 2010).
The reason it is generalized is that it operates on generalized states
μ̃ = [μ, μ′, μ′′, . . .]T , where D is a matrix derivative operator,
such that Dμ̃ = [μ′, μ′′, μ′′, . . .]T . See Table 1 and Friston et al.
(2010).

It can be seen that the solution to Eq. 3a [when the motion
of the prediction is equal to the predicted motion ˙̃μ(x) = Dμ̃(x)]
minimizes free energy, because the change in free energy with
respect to the generalized states is zero. At this point, the internal
states minimize free energy or maximize Bayesian model evidence
and become Bayes-optimal estimates of the hidden variables.

Gaussian assumptions about the random fluctuations in the
generative model (Eq. 1) allow us to write down the form
of the free energy and therefore predict the exact behavior of
the dendrite. Omitting constants, the free energy according to
Eq. 1 is:

F = G(μ̃) + 1
2 ln |Gμ̃μ̃|

G = 1
2 ε̃(s)T Π̃(s)ε̃(s) + 1

2 ε̃(x)T Π̃(x)ε̃(x) + 1
2 ε(γ)T Π(γ)ε(γ)

− 1
2 ln |Π̃(v)Π̃(x)Π(γ)|

ε̃(s) = s̃ − g̃ (μ̃)

ε̃(x) = Dμ̃(x) − f̃ (μ̃)

ε(γ) = μ(γ) − η(γ)

(4)

In these expressions, a subscript denotes differentiation. The
expression for G may appear complicated but the first three terms
are simply the sum of squares of precision-weighted prediction
errors. The last three equalities are prediction errors for the sensory
states, hidden states, and log-precisions. The synaptic precisions;∏(s)

ii = exp(μ(γ)
i ) depend on the optimized log-precisions or

gains, where (η(γ), Π(γ)) are the prior expectation and precision
on these log-precisions. In other words, the dendrite embodies the
prior belief that γ ∼ N(η(γ), Σ(γ)).

Given Eq. 4, we can now specify the dynamics of its internal
states according to Eq. 3a:

˙̃μ(x) = Dμ̃(x) + g̃ T
x̄ Π̃(s)ε̃(s) + (f̃ T

x̄ − DT )Π̃(x)ε̃(x)

˙̃μ(v) = Dμ̃(v) + f̃ T
v̄ Π̃(x)ε̃(x)

(5)

These equations describe the segment-specific dynamics μ̃(x)

and dendrite-wide dynamics μ̃(v) that we associate with local
depolarization, within each segment and intracellular (e.g., cal-
cium ion concentrations) throughout the dendrite (see Discus-

sion). The precision Π
(s)
ii = exp(μ

(γ)

i ) can be regarded as the
gain of a synaptic connection, because it modulates the effect of
presynaptic input on internal states. This leads to the next level of
optimization; namely, changes in synaptic gain or plasticity.
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SYNAPTIC DYNAMICS (Eq. 3b)
Equation 3b prescribes the dynamics of the log-precision parame-
ter that we associate with synaptic efficacy or gain. Mathematically,
one can see that the solution to Eq. 3b minimizes free energy, when
both the change in efficacy and its motion are zero. This motion
can be thought of as a synaptic tag μ′(γ) at each connection that
accumulates the prediction error on inputs. Under the model in
Eq. 1, Eq. 3b becomes

μ̇(γ) = μ′(γ)

μ̇′(γ) = 1
2 dim(Π̃(s)) − 1

2 ε̃(s)T Π̃(s)ε̃(s) − Π(γ)ε(γ) − πμ′(γ)
(6)

This has a simple and plausible interpretation: the log-precision
or gain has a tendency to increase but is counterbalanced by the
precision-weighted sum of the squared error (e.g., potential differ-
ence) due to the inputs. When the noise is higher than predicted,
the level of the synaptic tag will fall and synaptic efficacy will fol-
low. The final two terms mediate a decay of the synaptic tag that
depends on its prior expectation η(γ), see Eq. 4, where π is the
(large) precision on prior beliefs that connections change slowly,
see Friston et al. (2010). In the simulations, we actually update
the efficacy by solving Eq. 6 after it has been exposed to a short
periods of inputs (128 time-bins). Finally, we turn to the last level
of optimization, in which the form of the model (deployment of
connections) is updated.

SYNAPTIC SELECTION (Eq. 3c)
Equation 3c can be regarded as a form of Bayesian model selec-
tion, when the dendrite reconfigures its model in structural terms;
that is, by redeploying synaptic connections through changing
the matrix W. This is implemented using the free energy or log-
evidence for competing models. For each connection, two models
are considered: a model m0 with a synapse that has a low prior

log-precision η
(γ)
0 = −2 and a model m1 in which the connection

has a high prior η
(γ)
1 = 4. If the evidence for the model with a high

prior (gain) is greater, then the synapse is retained. Intuitively, this
procedure makes sense as model m1 with high prior will be bet-
ter than model m0, if the internal states of the dendrite predicted
the input (the dendrite sampled what it expected). Otherwise, if
synaptic input is unpredictable (and model m0 is better than m1)
the synapse is removed (regresses) and is redeployed randomly
to sample another input. The corresponding odds ratio or Bayes
factor for this model comparison is

p(s̃|m1)

p(s̃|m0)
=

∫
p(γi |s̃, m0)

p(γi |m0)

p(γi |m1)
dγi

p (γi |mk) = N(η
(γ)

k , Σ(γ))

(7)

Where s̃ corresponds to the all the presynaptic input seen
between model updates. The details of this equality are not impor-
tant here and can be found in Friston and Penny (2011). The key
thing is that it is a function of the conditional density of the log-
precision of the i-th connection p(γi |s̃, m0). The ensuing relative
probabilities of models with and without a high-precision con-
nection have the simple (sigmoid) form shown in Figure 4. The
threshold appears at unity because it is half-way between the high

FIGURE 4 | Synaptic selection function. This sigmoidal function measures
the relative probability of two models with and without a high-precision
synapse. The i-th synaptic connection is retained when μ

(γ)

i > 1 ; i.e., there
is more evidence that the synapse has high precision. If μ

(γ)

i � 1, the
synaptic connection is removed and a new, randomly chosen, presynaptic
target is chosen. See also Eq. 7.

(four) and low (minus two) prior expectations we allow the neuron
to consider. In the present context, this means that a connection is

retained when μ
(γ)

i > 1.
In summary, after the conditional log-precisions are optimized

they are used to determine whether the synapse should be retained
or replaced. This decision is formally identical to a model selec-
tion procedure and can be regarded as a greedy search on models
m ⊃ W with different patterns of connections. In practice, we
update the model after every four bursts (128 time points) of
input.

SIMULATIONS AND RESULTS
Synaptic inputs were generated using the Lotka–Volterra system
in Figure 3 and presented to the dendrite using simulated noise
with a log-precision of two. Each simulated 128 time-bin time-
series was presented over (64 × 4) repeated trials. The internal
states of the dendrite evolved according to Eq. 3a and provide
(Bayes-optimal) conditional expectations about the hidden states
and cause of sampled inputs. We started with an initially random
deployment of connections and changed them every four trials
(after which the conditional estimates of log-precision had con-
verged, see Eq. 3b). As described above, connections were only
retained if the conditional log-precision was greater than one (see
Figure 4). Otherwise, it was replaced at random with a connection
to the same or another input. This slow model optimization or
reorganization (Eq. 3c) was repeated over 64 cycles.

Figure 5 shows the results of the ensuing optimization of the
connections, based upon free-energy minimization, at the three
temporal scales (Eq 3). Since the optimization scheme converged
after 30 iterations we only show the first 32 iterations. The middle
panel shows that the negative free-energy increased as a function of
pruning over cycles of reorganization. Note that this is a stochastic
search, because the relocation of each connection was chosen at
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FIGURE 5 | Reconfiguration of the synaptic connections for a dendritic

branch with five segments and four synapses per segment. After 32
iterations, the scheme converged on the optimal solution. (Left panel): Correct
(black) versus incorrect (white) synaptic gains (precisions) learned over
iterations. (Middle panel): Temporal evolution of the objective function, the

negative free energy. In most iterations, the free-energy decreases but there
are sporadic setbacks: e.g., after the sixth iteration. This is due to the
stochastic search, i.e., the random sampling of presynaptic axons. (Right
panel): Snapshots of the connectivity matrix W (see Materials and Methods)
after iterations 1, 10, 20, and 32.

random. However, it is greedy because connections are retained
if they provide a better model at that point in the search. Over
time, the dendrite comes to sample presynaptic inputs in exactly
the way that it expects to sample them. This means that each
segment samples the same presynaptic axons (Figure 2B) and all
five segments sample presynaptic inputs in a particular temporal
sequence (a sequence prescribed by intracellular dynamics that
rest on the generative model in Eq. 1). As the pattern of connec-
tions is optimized, the conditional log-precisions (or the gain) of
the synaptic connections increases; as shown in the left panel of
Figure 5. Usually, but not inevitably, once a synapse has found its
place, in relation to others, it retains a relatively high log-precision,
and is immune from further regression. Note that the fourth seg-
ment (synapses 13–16) converged quickly on a particular axon.
After this, other segments start to stabilize, as confident predictions
about their inputs enable the dendrite to implicitly discriminate
between a good synapse (that samples what is expected) and a
bad synapse (that does not). The sequence grows slowly until all
20 synapses have found a pattern that samples the five inputs in
the order anticipated. This simulation is typical of the many that
we have run. Note further, there is no unique pattern of connec-
tions; the sequence could “start” at any segment because (in this
example) there was no prior constraint in the generative model
that the first input would be sampled at any particular segment.
Examples of synaptic connections are shown in the right panel
of Figure 5 as “connectivity matrices” in the lower row for the
1st, 10th, 20th, and 32nd cycles. We see here a progressive orga-
nization from an initially random deployment to an ordered and
coherent sequence that is internally consistent with the generative
model.

Figure 6 shows the conditional predictions of synaptic input
and hidden states before (upper row) and after (lower row) the
synaptic pattern has been established. The right panels show the
location of the connections in terms of expected log-precisions.
The left panels show the predictions (solid lines) and prediction
errors (red dotted lines) of synaptic inputs. Note that when the
dendrite can predict its inputs (lower left) the prediction error
(input noise) has a log-precision of about two (which is what we

used when simulating the inputs). The predictions are based upon
the conditional expectations of hidden states describing the Lotka–
Volterra dynamics shown in the middle panels. Here, the solid lines
correspond to the conditional expectations. After optimization,
the predicted hidden states become quickly entrained by the input
to show the stable sequential orbit or dynamics prescribed by the
dendrite’s generative model. This orbit or attractor has a sin-
gle control parameter v (Eqs 1 and 2) that the dendrite is also
predicting and implicitly estimating (see below). Notice that this
synchronous entrainment never emerges before reconfiguration
(upper panels) and the sequence of expected hidden states is not
the sequence expected a priori; deviations from this sequence are
necessary to explain the seemingly unpredictable input. Note that
there is still a winnerless competition and sequential itinerancy
to the conditional (internal) dynamics, because there are strong
priors on its form. However, the expected sequence has not been
realized at this stage of synaptic reconfiguration.

It is worth noting that although relatively simple, this greedy
search has solved a quite remarkable problem: It has identified
a viable arrangement of connections in a handful of iterations,
from an enormous number 520 of potential configurations. Once
the pattern of connection weights has converged the dendrite has
effectively acquired selectivity for the particular spatiotemporal
pattern of inputs it originally expected. This is demonstrated in
the next section.

FUNCTIONAL SPECIALIZATION
In the simulations above, the prior on the synaptic noise had a
low log-precision (minus two). The log-precision of the hidden
states and cause was assumed to be 16; i.e., the precision of the
hidden states was very high relative to synaptic precision. After the
synaptic reorganization converged, we reduced the log-precision
on the hidden states and causes to eight, to test the ability of the
branch to correctly infer its inputs, even when less confident about
its internal dynamics. In this context, the hidden cause reports the
presence of a sequence. This is because when the hidden cause
takes small values, the implicit speed of flow through the sequence
becomes very small and, effectively, the sequence disappears.
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FIGURE 6 | Intracellular dynamics for the simulation reported in

Figure 5. (Top) Before synaptic reconfiguration, the intracellular dynamics
do not follow the expected sequence, because the dendrite samples the
presynaptic neurons in a random fashion. The left panel show the
predictions (solid lines) and prediction errors (red dotted lines) of
presynaptic inputs. The solid lines in the left and middle panels show the
predictions (of x ) that can be considered a fusion of the expected

Lotka–Volterra dynamics and the sensory input. The right panel indicates
the synaptic configuration (as expected log-precisions). (Bottom) Same
representation as top panels but after synaptic reconfiguration is
complete. The dendrite samples the presynaptic neurons such (right panel)
that the expected Lotka–Volterra dynamics are supported by the input.
Note that the prediction error (left panel) has a log-precision of about two
(which is what we used when simulating the inputs).

Figure 7 illustrates the selectivity of postsynaptic responses
to particular sequences of presynaptic inputs, using the hidden
cause as a summary of postsynaptic responses. Each row of this
figure corresponds to a different trial of 128 time-bins, in which
we presented presynaptic inputs with different sequences. Each
sequence was created by integrating a Lotka–Volterra system using
a Gaussian bump function for the cause v(t ), that peaked at v = 1
at time-bin 64 and adding noise in the usual way. The top row
of Figure 7 shows the sequence the dendrite expects, as can be
seen by the progressive temporal shift in presynaptic input over
the 20 neurons (organized into five successive segments; upper
left). The corresponding postsynaptic response, modeled in terms
of the conditional expectation of the hidden cause, is shown on
the upper right. This shows a sustained firing throughout the
sequence. In contrast, if we present the identical presynaptic inputs
but in a different sequence, this sustained response collapses to 0.5
(the default). This can be seen in the lower two rows for two
arbitrary examples. The thin blue lines correspond to the condi-
tional expectation of the hidden cause that controls the velocity
of orbits through the stable heteroclinic channel. The gray areas
correspond to 90% confidence intervals (tubes). The thick blue
lines correspond to null firing and provide a reference. While
the middle row contains no evidence of the expected sequence,
the lower row contains two occurrences of the sequence between

time point 40–60 and time point 80 (bottom left). These chance
occurrences are promptly indicated by the postsynaptic response
(bottom right). These graded responses between the maximum
response (top right) and the minimum response (middle right)
replicate another finding of Branco et al. (2010), who reported
similar graded responses to random sequences.

VELOCITY-DEPENDENT RESPONSES
Branco et al. (2010) were able to demonstrate a velocity-dependent
selectivity in relation to inward and outward sequences of presy-
naptic activation (see Figure 1D). We attempted to reproduce their
results using the above simulations by changing the velocity of the
input sequence and presenting it in the preferred and reverse order:
Presynaptic inputs were presented over 64/v time-bins for each of
four velocities, v ∈ {1, 2, 4, 8}. We generated two presynaptic input
sequences at each velocity, one with an inward and the other with
an outward direction. Figure 8 shows the maximum response as
a function of velocity for inward (red) and outward (blue) direc-
tions using the same format as Figure 1D (Branco et al., 2010).
As with the empirical results, velocity-dependent responses are
observed up to a certain ceiling. This ceiling (about v = 4 in these
simulations) arises because the generative model cannot predict
fast or high-velocity sequences, because of a (shrinkage) prior on
the hidden cause. This means the hidden states are poor estimates
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FIGURE 7 | Sequence selectivity of dendritic response. Left column:
Three waves of presynaptic inputs and their associated postsynaptic
responses after successful reconfiguration (see Figure 6). Top: Inward
sequence, where the wave progresses as expected by the branch, from
the tip of the dendrite toward the soma. Middle and Bottom: Random
sequences, with no specific order. Right column: The postsynaptic
responses of the model to presynaptic input causing the three different

depolarization waves. The post-response is modeled as the time-varying
propagation rate exp(μ(v ) ) (see Eq. 1). Top: For the inward sequence, the
branch infers a rate of 1 during the presence of the sequence. The random
sequences let the branch infer a rate of the default of 0.5 (no inward
sequence present) 1 with brief excursions beyond the value of 0.5 when
parts of the sequence were sampled (e.g., lower right plot around time
points 40 to 60 and 80).

of the true values and the hidden cause is underestimated as a
consequence. However, within the range imposed by prior expec-
tations, the response scales linearly with the true hidden cause
(velocity). However, we were unable to reproduce the increase in
the normalized response to the outward sequence as a function of
velocity. It is an open question at what level this mismatch arises;
e.g., at the level of the generative model presented above, which
would call for a further adaptation of the model, or in terms of
measuring its responses (note we report absolute as opposed to
normalized responses).

DISCUSSION
We have described a scheme for synaptic regression and sampling
that is consistent with the selectivity of dendritic responses of pyra-
midal cells to spatiotemporal input sequences (Branco et al., 2010);
and is consistent with the principle of free-energy minimization
(Friston et al., 2006). The scheme explains how a dendrite opti-
mizes synaptic re-organization in response to presynaptic input
to minimize its free energy and therefore produce Bayes-optimal
responses. From a neurobiological perspective, the mechanism
implied by the model is simple; intracellular states of a dendrite are

viewed as predicting their presynaptic inputs. Postsynaptic spe-
cializations, with imprecise predictions (over a period of time)
are retracted and a new dendritic spine is elaborated elsewhere.
Over time, the dendrite comes to sample what it expects to sample
and this self-limiting process of synaptic reorganization converges
on an optimum pattern of synaptic contacts. At this point, post-
synaptic responses become selective for the expected sequence
of inputs. In the model, synaptic reorganization is described as
model optimization at a slow time-scale (Eq. 7), which is based
on free-energy minimization schemes at two faster time-scales
(Eqs 5 and 6). Using simulations, we showed that this scheme
leads to self-organized synaptic reorganization of a simulated den-
drite and replicated two key experimental findings reported by
Branco et al. (2010); directional selectivity and velocity-dependent
responses.

FREE-ENERGY MINIMIZATION AND INTRACELLULAR DYNAMICS
The functional form of Eq. 5 has an interesting and straightforward
interpretation in terms of transmembrane voltage differences and
conductances. The first equality of Eq. 5 can be associated with
the dynamics of transmembrane voltage in each segment. This

Frontiers in Systems Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 80 | 10

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Kiebel and Friston Free energy and dendritic self-organization

FIGURE 8 | Velocity-dependent responses of the dendrite for the

inward (red) and outward (blue) sequence. We modeled the response by
the mean over the inferred time-dependent propagation rate (see right
column of Figure 7) at four different speeds of the input sequence.

suggests that the prediction errors in Eq. 4 play the role of potential
differences that drive changes in voltage μ̃(x) according to Kirch-
hoff ’s law (where the accumulation of charge is proportional to
current). In other words, each term in Eq. 5 corresponds to a cur-
rent that is the product of a conductance and potential difference
(prediction error). For example, in the second term, where, ε̃(s) =
s̃ − g̃ (μ̃), the synaptic input s̃(t ) corresponds to local depolariza-
tion, while the generalized prediction of this depolarization, g̃ =
(I ⊗W)μ̃(x) plays the role of a dynamic reference or reversal poten-
tial. The associated conductance g̃ T

x̃ Π̃(s) depends upon the pres-
ence of a synaptic connection g̃x̃ = (I ⊗W) and the synaptic preci-
sion (gain). The conductance of the third term is more complicated
and can be thought of in terms of active membrane dynamics of
the sort seen in Hodgkin Huxley formulations of gating variables
(e.g., Cessac and Samuelides, 2007). In short, our formal (Bayes-
optimal) model of dendritic dynamics can be regarded as a mixture
of currents due to active conductances that are entrained by synap-
tic currents. This is important because it means that the present
model is consistent with standard models of active dendritic func-
tion; see Gulledge et al. (2005) for a review. Interestingly, we did
not make any such assumption in the generative model (Eq. 1) but
these active dendritic dynamics emerged as a functional feature
of self-organization from free-energy minimization. An exciting
prospect for future research is that one can ask how the generative
model could be refined to replicate other experimental findings,
such as spike timing dependent plasticity (STDP).

Although slightly more speculative, the kinetics of the hid-
den cause ˙̃μ(v) may correspond to slow dynamics, such as the
calcium ion concentration. Although the associations with mem-
brane voltage and calcium dynamics are hypothetical at this stage,
we note they can be tested by using the dynamics described by
Eq. 5 as qualitative or even quantitative predictions of empirical
dendritic responses (cf, dynamic causal modeling; Kiebel et al.,
2009a).

Furthermore, to identify generative models from empirical
observations, one can use the concept of generalized convolution
kernels, which describe the mapping between dendritic input and
output. The fact that neurons are selective for temporal sequences
necessarily requires the kernels to have a long support and to be
non-linear (a linear kernel would just average over time and not
care about temporal order). Critically, one can derive these kernels
analytically from the differential equations used in the present sim-
ulations (Eq. 5). It is possible to evaluate these kernels empirically
by looking at their input–output characteristics (e.g., Pienkowski
et al., 2009). This means, in principle, it is possible to infer the
implicit generative models used by neurons and dendrites, given
empirical estimates of their generalized (Volterra) kernels and use
these models to test concrete predictions of what output should
be observed given some defined input, e.g., provided by glutamate
uncaging.

DYNAMICAL CONSTRAINTS
In our scheme, the intracellular dynamics of a dendrite encode the
implicit expectation that input is sampled in a particular sequence.
This is enforced by prescribing the form of intracellular dynamics
(where the parameters governing these dynamics are fixed): the
only variables that can change are estimates of the hidden states
and the time-varying rate constant (Eq. 1). The only parameters
that are optimized (Eq. 3b) are the connections to presynaptic
inputs encoded by matrix W. This means that a dendrite can only
stop re-organizing its synaptic connections when the postsynaptic
effect of synaptic inputs are consistent with (predicted by) its intra-
cellular dynamics. Intuitively, this behavior may be interpreted by
an observer as if the dendrite is actively looking for a sequence
in its input. This view is conceptually important because it sug-
gests that single neurons cannot decode arbitrary synaptic input
but implicitly expect specific spatiotemporal input patterns. This
scheme may be considered slightly counter-intuitive: In the text-
book view, the assumption is that neuronal networks should be
decoders of arbitrary spatiotemporal input, thereby mimicking
the generalization abilities of the brain (Hertz et al., 1991). In
contrast, in the present scheme, a dendrite of a pyramidal cell is
“cherry-picking” just those inputs that happen to form particu-
lar sequences. Input selectivity of this kind is not necessarily a
surprise to neurophysiologists, because this hypothesis has been
entertained for some time (Destexhe, 2010). It is reasonable to
expect that neurons, whatever their apparent function, generally
expect specific spatiotemporal patterns of synaptic input; where
the morphology of a neuron (the dendritic infrastructure and
ion channel distributions) place strong constraints on its function
(Torben-Nielsen and Stiefel, 2009). The advantage of this selectiv-
ity may be that constraints simplify structural reconfiguration and
learning because there are fewer free parameters to optimize (and
fewer local minima to confound learning). In this paper, we pro-
vide some evidence that anatomic–dynamical constraints enable
synaptic reorganization by self-organization of intracellular and
synaptic dynamics.

ACTIVE INFERENCE
In the model, the dendritic branch is optimizing its internal rep-
resentation of presynaptic inputs at a fast time-scale (Eqs. 3a,b),
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while the dendrite’s implicit model of those inputs is itself opti-
mized over longer time periods, using synaptic regression (Eq.
3c). Crucially, because model-optimization changes the way that
presynaptic signals are sampled, this corresponds to a form of
“active inference” or optimal sampling of the local environment.
Conceptually, this sampling is based on model selection, which
contrasts with the use of gradient descent schemes we have used
in previous work (Friston et al., 2009). The model selection scheme
used here is stochastic and necessarily slow due to the sampling
of synapses that do not support a sequence. However, due to its
stochastic nature, the scheme is more robust to local minima and
may provide a useful metaphor for how real neuronal architectures
are selected; cf, neuronal Darwinism (Edelman, 1987).

ROBUSTNESS, SCALABILITY, AND CONVERGENCE BEHAVIOR
In the present paper, we did not evaluate the proposed scheme
with respect to robustness to noise or artifacts, its scalability or
its convergence behavior. Our aim was to provide proof of prin-
ciple that free-energy minimization is a sufficient explanation for
recent empirical observations about dendritic behavior. However,
the present model was robust to noise and showed good conver-
gence behavior within 64 iterations. We did not explore scalability,
due mainly to computational reasons: the current implementation
of free-energy minimization [dynamic expectation maximization
(DEM), see software note] is relatively fast on a modern desk-
top computer (∼10 min) for small numbers of segments (five)
but becomes prohibitive (with runtimes of hours) for dendrite
models with more than 10 segments. We are currently working
on a more efficient implementation and will report a thorough
evaluation of the proposed algorithm and extensions in future
communications.

RELATED MODELING WORK
There are several computational treatments that share key fea-
tures with the present modeling approach: Gutig and Sompolinsky
(2006) have described a classification of input spike trains based
on the membrane potential function of a point neuron. Although
both their model and inference technique differ from the present
approach, they share the idea that intracellular dynamics can be
used to decode spatiotemporal input structure. We extend this
notion and show that Bayesian inference for non-linear dynamical
systems enables decoding based on dynamical generative mod-
els (such as Lotka–Volterra dynamics). A different idea is shared
with the work by Deneve (2008) who considers single spiking
neurons as Bayesian decoders of their input, where decoding
dynamics map to neuronal and synaptic dynamics. This is exactly
the view we take here but we use non-linear dynamical systems
to describe the multi-dimensional internal state of a dendrite, as
opposed to a single state representation of “the internal activa-
tion level.” In other words, we share the view that neurons are
Bayesian decoders of their input but assume that a single neuron
(dendrite) can represent many more variables than a single state.
This enables us to describe spatiotemporal Bayesian decoding at
multiple time-scales.

Conceptually, there is a strong link with the work of Torben-
Nielsen and Stiefel (2009) where the function of a neuron (detect-
ing the order of two inputs) is specified first, followed by an

optimization of the neuron’s morphology and ion channel distrib-
ution, in relation to that function. This is similar to the free-energy
formulation, where a generative model specifies the function by
describing what input is expected. The subsequent free-energy
minimization optimizes the neuronal system to perform this func-
tion using neurobiologically plausible intracellular dynamics. As in
Torben-Nielsen and Stiefel (2009), the goal is to map the resulting
inversion dynamics to the intracellular dynamics of real neurons.

FREE-ENERGY MINIMIZATION AT DIFFERENT SCALES
We have exploited free-energy minimization over three temporal
scales in the dendritic simulations (intracellular dynamics, synap-
tic dynamics, and synaptic regression) and have framed these as
model inversion and optimization respectively. Free energy can be
minimized consistently over spatial and temporal scales because
the underlying imperative is to minimize the sum or integral of free
energy over all parts of the system and over all times. Because the
time-integral of energy is called action, we are basically appealing
to the principle of least action (Friston et al., 2008). Action here
is fundamental and, mathematically, is an upper bound on the
entropy of presynaptic inputs. In short, by minimizing surprise
(self-information) at fast temporal scales, systems can place upper
bounds on their entropy and therefore resist a natural tendency to
disorder; i.e., they resist the second law of thermodynamics.

In terms of network formulations of free-energy minimiza-
tion; how does recognizing sequences of presynaptic inputs help
at the neuronal network level? The answer to this question may
rest on message-passing schemes in cortical hierarchies that can
be understood in terms of free-energy (prediction error) mini-
mization (Mumford, 1992; Rao and Ballard, 1999; Friston, 2005;
Kiebel et al., 2008; Friston and Kiebel, 2009). A key aspect of these
schemes is that they are based on prediction error units that report
the generalized motion (local trajectory) of mismatches between
bottom-up presynaptic inputs and top-down predictions (Fris-
ton et al., 2008). This necessarily entails a selective response, not
to input patterns at any instant in time, but patterns over time.
But how does a neuron learn what to respond to? In this paper,
we have avoided this question and assumed that the neuron has
a pre-ordained generative model (prior expectations) of its local
presynaptic milieu. This model rests upon the form and para-
meters of internal dynamics; i.e., the form and parameters of
Lotka–Volterra dynamics. Clearly, in the real brain, these para-
meters themselves have to be learned (optimized). Future research
may show the utility of free-energy minimization at different spa-
tial and temporal scales to relate learning at the single neuron and
network level.

SOFTWARE NOTE
The simulations described in this paper are available (in Matlab
code) within the DEM Toolbox of the SPM Academic freeware
(http://www.fil.ion.ucl.ac.uk/spm). To reproduce the figures in
this paper, type “DEM_demo” at the Matlab prompt and select
“Synaptic selection” from the user interface.
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