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The organization of representations in the brain has been observed to locally reflect sub-
spaces of inputs that are relevant to behavioral or perceptual feature combinations, such
as in areas receptive to lower and higher-order features in the visual system. The early
olfactory system developed highly plastic mechanisms and convergent evidence indicates
that projections from primary neurons converge onto the glomerular level of the olfactory
bulb (OB) to form a code composed of continuous spatial zones that are differentially active
for particular physico-chemical feature combinations, some of which are known to trigger
behavioral responses. In a model study of the early human olfactory system, we derive a
glomerular organization based on a set of real-world, biologically relevant stimuli, a distri-
bution of receptors that respond each to a set of odorants of similar ranges of molecular
properties, and a mechanism of axon guidance based on activity. Apart from demonstrat-
ing activity-dependent glomeruli formation and reproducing the relationship of glomerular
recruitment with concentration, it is shown that glomerular responses reflect similarities
of human odor category perceptions and that further, a spatial code provides a better cor-
relation than a distributed population code. These results are consistent with evidence of
functional compartmentalization in the OB and could suggest a function for the bulb in
encoding of perceptual dimensions.
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1. INTRODUCTION
Complex repertoires of olfactory receptors (OR) evolved in differ-
ent numbers over species. In humans, each ORN expresses only
one of a possible 384 identified functional types (Aloni et al., 2006),
and axons from ORNs that express the same type converge on the
surface of the OB at stereotyped positions. The OB is a crucial
processing station for olfactory signals (Buschhüter et al., 2008)
and glomeruli are thought to be functional units and convergence
target for axons from many ORNs of just one type of odorant
receptor (OR) (Kauer and Cinelli, 1993; Mori, 1999; Bozza et al.,
2002; Mombaerts, 2004), so that each odorant elicits a specific
map of glomerular activation (e.g., Ressler et al., 1994). Olfactory
bulb output neurons, mitral, and tufted cells (MT cells), project
to primary olfactory cortical areas, such as the anterior olfactory
nucleus, piriform cortex, olfactory tubercle and lateral entorhinal
cortex, and the amygdala (Shipley et al., 2008). A schematic draw-
ing of the organization of the early olfactory system is shown in
Figure 1.

Sensory axon coalescence onto glomeruli has been found to rely
on several mechanisms that contribute differently on a local and
global scale, some of which likely related to activity. It is known
that ORN type-convergence onto glomeruli is at least partly medi-
ated by experience (Yu et al., 2004; Kerr and Belluscio, 2006; Imai
and Sakano, 2007) and that activity plays a role in axon fate (Ming
et al., 2002; Mombaerts, 2006; Sakano, 2010; Mori and Sakano,

2011). In axon growth, direction of the axon’s growth cone is reg-
ulated by various chemical cues, diffusible chemoattractants, and
repellants, in a series of discrete steps (Sanes and Jessell, 2000).
Serizawa et al. (2006) found evidence in the mouse that correla-
tion of neural activity mediated axonal attraction and repulsion by
up- and down-regulation of a set of olfactory axon guidance cues,
which suggested that axon sorting could be based on correlated
neural activity.

It has been found at different levels of the brain, especially in the
visual and auditory systems, that inputs are spatially embedded,
so that the spatial structure of the nervous system reflects sen-
sory stimuli within the environment, as well as the quality of the
stimulus itself (cf. Udin and Fawcett, 1988; Singer, 1994; Malach
et al., 2002). The spatial structure of representations in the brain
has been observed in many parts of the brain to reflect locally
subspaces of inputs that are behaviorally or perceptually relevant
(e.g., Swindale, 2008; Humphries et al., 2010). In olfaction, dis-
criminatory dimensions are still elusive (Sell, 2006; Haddad et al.,
2008a), although several groups have found evidence for con-
tinuous spatial zones responsive for certain groups of odorants
based on data accumulated using different techniques (e.g., Vassar
et al., 1994; Meister and Bonhoeffer, 2001; Lodovichi et al., 2003;
Mori et al., 2006, 2009; Johnson and Leon, 2007) and a system-
atic large-scale study of glomerular representations suggests that
encoding is very local (Auffarth et al., 2011b). Evidence is now
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Auffarth et al. Map formation in the olfactory bulb

FIGURE 1 | Schematic of the early olfactory system including the

olfactory epithelium and bulb. Each ORN expresses one OR which
responds to different odorants (see Figure 2). In the first step of the
sensory pathway, odorant molecules bind to ORs in the olfactory cilium
which activate ORNs in the epithelium which in turn transduce the input
signal into action potentials. ORNs expressing the same OR generally
project to the same glomerulus (Bozza et al., 2002; Mombaerts, 2004) and
connect to the principal neurons of the OB, the mitral, and tufted cells (MT
cells). These principal neurons forward their output to higher-order brain
regions. Bulbar interneurons, granule cells (not shown) receive lateral
inhibition and feedback from piriform cortex (Haberly and Price, 1977). The
colors and symbols indicate molecular features of odorants and a
chemotopic convergence from ORN axons to glomeruli. According to
odotope theory (Shepherd, 1987; Mori, 1995), individual MT cells transmit
information about a range of odor molecules with related molecular
structures (so called odotopes). Cleland et al. (2007) and Johnson and Leon
(2000) argued that qualitative odor perception is determined by glomerular
activity patterns. They described also that different glomerular activity
patterns, elicited, e.g., by increased concentration can lead to qualitatively
different odor percepts.

accumulating of behavioral relevance of molecular feature combi-
nations and glomerular domains (e.g., Dielenberg and McGregor,
2001; Kobayakawa et al., 2007; Raman and Gutierrez-Osuna, 2009;
Sakano, 2010). It has also been shown that perceptual differences
can be predicted by glomerular spatial activity patterns (Uchida
et al., 2000; Linster et al., 2001; Auffarth et al., 2011a).

We present a model of olfactory learning in humans in which
competitive axonal wiring adaptations in the early olfactory system
are a mechanism by which experiences are translated into memo-
ries expressed by structural changes of neurites and synapses. We

set OR sensitivities as biologically relevant feature combinations
in a set of real-world odorants. We cluster olfactory axons by an
activity-dependent mechanism that results in a self-organization
of glomeruli by the affinity of their corresponding ORs. After
a description of the data used in our study and the model, we
show results concerning the formation of glomeruli, the relation-
ship between recruitment of glomeruli and concentration, and
the match between glomerular responses and human perceptual
ordering. For the last point, we compare codes of glomerular
responses at population and spatial levels to human-rated per-
ceptual similarities of odorant categories. The spatial code is a test
of the hypothesis that distance between coding regions are rele-
vant for behavior or perception. Finally, we discuss results in the
context of olfactory information processing.

2. MATERIALS AND METHODS
As commented in the introduction, there is no simple scale or
known dimensionality to olfactory perception. Therefore one
solution to order odorants is to represent them by a large num-
ber of molecular descriptors. (Haddad et al., 2008a) presented a
set of 32 physico-chemical descriptors, derived from an initial set
of 1,664 descriptors, that were shown to reflect variability of the
bulb and antennal lobe population responses. In simple terms, this
means that odors that cause similar responses are proximal in this
space and odors that elicit dissimilar responses are distant. They
supplied a dataset of 447 odorants described by these 32 proper-
ties as supplementary material with their paper, which we use this
study.

We extracted perceptual odorant descriptors from flavor net
(Acree and Arn, 1998)1, a public resource on volatile com-
pounds that humans experience in their environment. Examples
for these odor descriptors are sweet, camphoraceous, floral, or
minty. We assigned these descriptors to categories defined by Zarzo
(2008). These categories are florals, cleaner, foul, woody, medici-
nal, nutty/spicy, balsamic, fruity, alcohol, oily, herbacious, musk,
vegetable, and green. From 238 compounds for which we had per-
ceptual information, we could categorize 210 odorants into at least
one of these 14 categories.

Our odorant receptors should be distributed to capture vari-
ance of the physical space and each be placed to recognize biolog-
ically relevant regions (compare Sánchez-Montañés and Pearce,
2002; Schmuker and Schneider, 2007 for similar concepts). We
applied the fuzzy c-means algorithm (Bezdek, 1981) to draw clus-
ter centers at locations in the 32-dimensional space. In this way,
each OR responds to ligands that occupy a neighborhood in phys-
ical space as described by molecular descriptors. The closer the
combination of molecular properties of an odorant to the center
of the receptive field of the receptor, the higher the response. Each
OR can be described by its center in the 32-dimensional space
and its affinities to odorants based on the distance relation in
the 32-dimensional space. OR–odorant affinity relationships are
indicated by the circle radii in Figure 2.

We modeled ORN responses to ligands at a given concentra-
tion after Sandström et al. (2009a) as a sigmoidal function of the

1Available at http://www.flavornet.org/
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FIGURE 2 | Olfactory receptor-odorant affinity matrix. In total,
384 ORs were generated with graded affinity to each of the 447
odorants. Shown is a subset of 60 ORs and the 30 odorants to which

these ORs have the highest affinity. Affinity is indicated by the radii of the
circles. Black circles stand for excitatory OR response, red circles stand for
inhibitory responses.

OR–ligand affinities. The response Ri(C) of ORN i to a ligand at
concentration C is expressed as the product of a term Ai that repre-
sents the amplitude and a term that includes the ligand responses
of ORs. ai is the affinity of receptor to the ligand and h is the gain
(steepness) of the ORN response curve.

Ri (C) = Ai

(
1 − 1

ehi ai C

)
(1)

The response of ORN population i is expressed as the prod-
uct of a term μA and a term that includes the ligand responses of
homogeneous ORs. The mean frequency of responses was taken
to be as in this formula (adapted from Sandström et al., 2009a):

μRi (C) = μA

(
1 − 1

eμhai C

)
(2)

We set the mean amplitude,μA, of ORNs to 1 and mean gain μh

to 1.4. Please see Figure 3 for an illustration of ORN dose-response
curves.

We clustered ORN axon projections by a biomimetic method
described in (Lansner et al., 2009). Using multi-dimensional scal-
ing (MDS), axons can be put in a lower-dimensional space where
their locations are defined by distance relations based on co-
activation. In this way, the distances between glomeruli reflects
regularities in the physical odor space. For distance relationships
we calculated correlations between vectors of response activities
of ORN populations to all odorants. We reduced the resulting
matrix by MDS to three dimensions and obtained coordinate
points corresponding to each olfactory axon bundle. MDS makes
few assumptions about the structure of data and preserves the dis-
tance relationships among data samples. In total, this operation is

FIGURE 3 | Dose-responses of ORNs of different OR types (affinities) to

a single ligand at linearly increasing concentrations. Compare to Eq. 2.

similar in principle to the self-organizing map used as ORN con-
vergence model used earlier (Gutierrez-Osuna, 2002; Schmuker
and Schneider, 2007) and is consistent with the chemoaffinity
hypothesis (Sperry, 1963).

We first show how glomerular structures could arise from
activity-dependent mechanisms. For this purpose, we explicitly
modeled ORN populations using Eq. 1. In the following we used
the population Eq. 2.

After having obtained the spatial distribution of glomerular
responses, we determined the activation loci for odor categories by
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the following procedure: We tested statistically for each glomeru-
lus whether it showed significant differences with respect to the
odor category by comparing responses to odors that belonged to
an odor category with responses to odors that did not belong to the
odor category. We did the comparison using the Wilcoxon ranked-
sum test (also called Mann–Whitney U test). The test was applied
within a bootstrap (Efron, 1982) resampling procedure in order
to estimate distributions from small sample sizes and to account
for unequal number of maps. We thresholded p-values at 5% sig-
nificance. Thus, we found for each odor category, the glomeruli
which are activated differentially. More details about this method
are available in (Auffarth et al., 2011b).

We investigate how perceptual categories are represented in
the olfactory bulb responses. Spatial coding refers to the situation,
where specialized local encoders exist for certain information. This
concept is opposed to population coding, where information is
distributed in the responses of the population. We analyzed and
compared glomerular responses to human perceptual categories.

Zarzo (Zarzo, 2008; Zarzo and Stanton, 2009) published analy-
ses of two studies, perfumers’ odor perception space (BH, Boe-
lens and Haring, 1981) and cross-cultural odor similarity ratings
(Chrea, 2004). In order to know how well the coding as identified
by the coding centers reflected perceptual orderings as reported in
the literature, we mined PCA plots in the two papers by Zarzo,
which indicated perceptual distances in the first two principal
components between odorant qualities. This provided us with a
pair-wise distance matrix between two sets of perceptual odor
categories.

We extracted two distance matrices, DChrea and DBHsmall.
Chrea corresponded to odor categories floral/cosmetic, cleaner,
foul/musty, woody, medicinal, nutty/spicy, balsamic, and fruity.
BH small corresponded to categories floral, woody, medicinal, bal-
samic, fruity. We compared matches to these perceptual spaces
from both population activities of the entire glomerular layer and
from spatial codes in order to see which reflected better these
perceptual orderings.

In order to obtain population responses, we took the mean
map over all activity maps corresponding to the same odor qual-
ity (cf. Rubin and Katz, 1999; Lin et al., 2006; Cleland et al.,
2007). Thus, a population code for a given odor category A can

be written as �vA = (〈x1〉A , . . . , 〈xnglom〉A) where A is the set of
odorants representing category A and 〈xi〉 stands for the mean
response of glomerulus i averaged over all odorants belonging to
A. As an ordering between properties we calculated the Euclid-
ean distances between these mean-maps, thus obtaining pair-wise
distances between odor qualities based on population code, DP.

As for the ordering between spatial zones, we applied the
Hausdorff distance (cf. Alt et al., 2003), which calculates dis-
tances between two-dimensional shapes and therefore incorpo-
rates coding center distance (similar to Euclidean distances), but
additionally information of shape, size, and orientation match.
We applied the modified Hausdorff distance function (Dubuisson
and Jain, 1994) between vertices of pairs of encoding zones. Ver-
tices consisted of points that were found to be responsive to odor
categories.

Informally, the Hausdorff distance is the farthest distance of
closest points between two sets. Formally, given X and Y, two
non-empty subsets of a metric space (M, d), their Hausdorff
distance dH(X, Y ) is defined as follows:

dH (X , Y ) = max

{
sup
x∈X

inf
y∈Y

d
(
x , y

)
, sup

y∈Y
inf
x∈X

d(x , y)

}
, (3)

with sup and inf representing the supremum and infimum,
respectively.

Thus, we obtained a matrix of pair-wise differences between
properties based on coding maps, DS.

We normalized each of the three matrices of pair-wise distances
DP, DS to unit sum, and calculated the sum of the absolute error
between both of them and DChrea and DBHsmall.

We also added spatial and population information linearly with
the same weight to see if combined they provided a better fit to
the perceptual space. For the baseline, 100,000 sets of points were
sampled from random uniform distributions. Then the distances
from their pair-wise distances to perceptual space was calculated.

3. RESULTS
We generated populations of ORNs according to Eq. 1 to show
how sensory axons can cluster together based on activity. This is
demonstrated in Figure 4. Figures 4A,B illustrate how through the

FIGURE 4 | (A,B) Show a 3D visualization of the ORN layer organization

before and after calculating the projection. The visualization was done
based on the Visualization Toolkit (VTK) C++ libraries (Schroeder et al., 1996).
ORNs of five OR families are highlighted by color. In (B) you can see how

ORNs of a certain type (indicated by color) cluster together. Subfigure (C) is
an illustration of how olfactory axons project from epithelium (bottom) to
glomeruli (top) in a small network consisting of five OR types and five ORNs
per type. Colors indicate OR identity.
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projection from epithelium to bulb, olfactory neurons can become
ordered. Figure 4C shows on a toy example how ORNs of the same
type converge onto the bulb. At each iteration odorants were pre-
sented to the network and the distance between olfactory axons
was adjusted.

In the following, we applied Eq. 2 for concentration–responses
of populations. In Figure 5, we show the effect of concentration
on recruitment of glomeruli.

Table 1 gives an indication about how accurately the perceptual
space is reflected in the glomerular responses. Distances, DP were
generated from the population code, based on the activity of all
neurons. Distances between spatial zones, DS, are the Hausdorff
distances between coding regions. Both matrices were compared
to perceptual orderings of odors. The numbers give the sum of the
absolute error of fit. We added the normalized pair-wise distance
matrices for population and spatial codes to combine them and
also calculated the error of fit. This is annotated as combined. Error
of fit from pair-wise distances between points drawn from a uni-
form random distribution is given as baseline. The numbers for
baseline with variance are 0.65 ± 0.09 for Chrea and 0.65 ± 0.15
for BH.

Graphically you can compare in Figure 6 the perceptual spaces
and the two datasets to distances resulting from spatial and popula-
tion code. The plots show the pair-wise distances dimensionality-
reduced to two dimensions using the MDS algorithm. This means
that distances between odor categories are maintained in the plots.

We found significant (Spearman rank) correlations (at the 5%
significance threshold) between distances only for the BP data and
the spatial code (ρ = 0.6848, p = 0.04), while other correlations
were insignificant. Correlations between spatial and population
codes were low and highly insignificant (Chrea: ρ = 0.07, p = 0.71;
BP: ρ = 0.04, p = 0.92).

We looked at general patterns of distances between odor qual-
ities and found that medicinal emerged as an odor quality that
was especially well-situated in the codes over Chrea and BP, while
fruity was ill-fitting.

4. DISCUSSION
Haddad et al. (2008a) presented a set of 32 physico-chemical
descriptors that maximized correlations between variability of
OB/antennal lobe activity responses and variability of the odor-
ant descriptors. In our model, we placed OR receptive fields in
the space captured by these molecular odorant descriptors and
defined positions of ORN axon projections onto the bulb by
dimensionality reduction of the OR–odorant affinity correlation
matrix. Our model includes a population mean rate in response
to a concentration.

We showed how activity-dependent mechanisms could serve to
organize olfactory axons into glomerular structures (cf. Figure 4).
Axons of receptor neurons of different types are intermixed as
they grow toward the brain and they have to undergo a sorting
process before arriving at their target glomeruli. In our model,
olfactory axons cluster together over several iterations of the MDS
algorithm.

We then showed how glomerular responses spatially broadened
and saturated with increasing concentrations. It is well-established
that increasing concentration leads to an increasing recruitment of
glomeruli and thereby to a spatial broadening of local peaks (John-
son and Leon, 2000; Khan et al., 2010). Figure 5 demonstrates how
our model can account for this.

We then analyzed variability of glomerular responses over dif-
ferent odor categories. Data of odor categories were obtained
by mapping odorant descriptors. We used a statistical method

Table 1 | Absolute error of fit between coding spaces (DP , DS ) and

perceptual spaces (DChrea and DBHsmall).

DChrea DBHsmall

DS 0.51 0.24

DP 0.60 0.55

Combined 0.43 0.34

Baseline 0.65 0.65

FIGURE 5 | Glomerular activations at three different concentrations.

(A) shows glomerular responses at a low concentration, (B) at a medium
concentration, and (C) at a high concentration. Plots are shown in two
dimensions for clearer illustration (the actual space is in three
dimensions). The color map starts from dark blue for small activations

and includes shades of blue, cyan, green, yellow, and red, and ends with
dark red for high values. At low concentration few glomeruli are activated
(indicated by red). As concentration increases more glomeruli are
activated, until the glomerular map becomes very unspecific and
saturated.

Frontiers in Systems Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 84 | 5

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Auffarth et al. Map formation in the olfactory bulb

FIGURE 6 | Perceptual spaces constructed from pair-wise distances

reduced to two dimensions by multi-dimensional scaling. (A) Shows the
perceptual space in Chrea (2004), as per Zarzo (2008). (B) Shows the space as
given by the distances from spatial encodings. (C) Shows the space as given

by distances between activations of the entire glomerular layer, independent
of spatial arrangement of glomeruli. The lower panel compares the perceptual
space, (D) for the BH small data set, and the distances between the
categories in the spatial encoding, (E), and the population encoding, (F).

to calculate receptive fields corresponding to odor categories for
each glomerulus. Then, we compared how well a spatial code and
population code matched human perceptual experiences.

Table 1 gives an indication about how accurately the per-
ceptual space is reflected by the two different coding methods.
Distances DP are the distances between population codes, and DS

are distances between zones that showed differential activation in
response to odor categories. Both were compared to perceptual
orderings of odors. The errors between the perceptual space and
the spatial encoding space is smaller compared to the population
coding space for both data sets. Both population and spatial coding
spaces performed better than a baseline generated from random
points. For the Chrea data set, some categories have close distances
from each in both the perceptual space and the spatial encoding
space, such as for example medicinal–floral, balsamic–woody, and
nutty/spicy–balsamic, which do not appear in the population cod-
ing space. Still, the match between the perceptual space and the
spatial encoding space is not exact, as, e.g., the category cleaner
show, which is misplaced in both encoding spaces.

For the smaller data set BH small, the absolute error was signif-
icantly smaller for the spatial encoding, but still quite high for the
population code. This is reflected, e.g., by the concave pentagon
structure in the population coding space (see Figure 6F) in com-
parison to the convex pentagon structure in the perceptual and
spatial encoding space (compare Figures 6D,E).

Our results therefore suggest that spatial coding has a stronger
relation to perception, but we also find a match better than baseline
for population coding of perceptual categories. The combined

codes integrating population and spatial codes, matched better
in the case of the smaller set of odor descriptors and worse for
Chrea. Therefore no clear conclusion can be drawn with regard to
whether population and spatial coding complement each other.

4.1. TRANSLATING PHYSICAL REGULARITIES INTO SPATIAL MAPS
It is not clear yet how the early olfactory system translates infor-
mation about molecules into a space relevant for perception and
action. As discussed in the next paragraphs, some research groups
found regularities in the physical odor space relative to percep-
tual, especially hedonic values, others found representations in the
olfactory bulb (and insect antennal lobe) for representations of
perceptual categories.

Khan, Haddad, Sobel, and colleagues suggested (Khan et al.,
2007; Haddad et al., 2008b) that olfactory pleasantness corre-
sponds to a natural axis of maximal discriminability among bio-
logically relevant molecules and that the olfactory system has
evolved to exploit regularities in the odor space. Where exactly
physico-chemical properties are mapped to perceptual qualities is
unclear, however a perceptual ordering of representations has been
found previously in the piriform cortex (Howard et al., 2009). We
found for our model of the OB that main orientations of percep-
tual and encoding spaces matched, however internal distances over
these two spaces were different, which suggests that this mapping
could occur earlier.

It is known that some odors are associated with specific mol-
ecular properties, e.g., putrid to amines and Doleman (1998)
suggested that increased sensitivities to amines could constitute
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an evolutionary adaptation for detecting decaying food and toxic
gases.

We show in this paper that a model of cortical projections
(Lansner et al., 2009) can be extended to explain the emergence of
topography from statistics of naturally occurring odors. The appli-
cation of this principle based on coalescence by co-activation gives
rise to a topographic map where the distance of the components in
the topographic representation is a function of the dependencies
of the components.

We hope that our model can provide insights into the formation
of the olfactory bulb map and internalizations of environmental
regularities, even though the match between glomerular activ-
ity and human perceptual space could be improved by tuning
parameters of the receptor affinity distribution or by includ-
ing top-down projections. It could be that odorant receptors
and projections to the OB are optimized to make environmen-
tal regularities more prominent. For example Geisler and Diehl
(2002) proposed that the design of perceptual systems is optimized
according to statistics of natural stimuli and evolutionary fitness.
More particular for olfaction, Nei et al. (2008) discussed that part
of molecular changes in chemoreceptor repertoires constitutes an
adaptation of organisms to different environments. However, it
was suggested (Abbott and Luo, 2007) that olfactory receptors
are not optimal either and Sánchez-Montañés and Pearce (2002)
demonstrated that optimal stimulus estimation arises from a local
randomized mechanism for receptor specificity generation.

4.2. SPATIAL CODING IN THE OLFACTORY BULB
There are arguments for spatial, temporal, and spatio-temporal
coding in the OB (cf. Leon and Johnson, 2009). For example,
Wilson and Stevenson (2006) argued for the plausibility of popu-
lation coding in the olfactory bulb. Rubin and Katz (1999) showed
that maps of similar molecules were more correlated than maps
of different molecules. (Haddad et al., 2010) analyzed population
activity of glomeruli and MT cells from different studies and found
that the first principal component was correlated to approach or
withdrawal in animals and to odorant pleasantness in humans.
They also argued that for reasons of robustness, speed, and in the
light of experimental evidence, it is plausible that global and local
coding schemes could work together.

A relationship between olfactory bulb activations and percep-
tual representations was also found on a spatial level. In fact,
many studies suggest a spatial encoding (e.g., Vassar et al., 1994;
Meister and Bonhoeffer, 2001; Mori et al., 2006; Johnson and
Leon, 2007). There is evidence that distance between spatial zones
could have a relationship to behavior. Laska and Teubner (1999)
found in a forced-choice test that discrimination ability of subjects
between homologous odors was correlated to differences in carbon
chain length and Auffarth et al. (2011b) confirmed that different
glomerular areas in the olfactory bulb are activated depending on
carbon chain length and found contiguous olfactory bulb cod-
ing sites for several properties. In the same study, it was found
that classification of molecular properties using a support-vector
machine on activation data, for most compared properties, the
spatial zones for coding were small and compact.

Leon and Johnson (2009) examining arguments for temporal
and spatial coding, concluded that much of the available data is

actually inconsistent with hypotheses related to temporal coding
and rather support a spatial coding scheme. They argued that in
rodents spatial patterns of glomerular activities and perceptual
similarities are related. They suggested that perceptually driven
behavior could serve as a starting point to evaluate the two coding
schemes. We think that our study is a first step in that direction.

Studies in rats and mice have shown that different types of
behavior, e.g., defensive behavior toward predators, aversion, or
attraction toward food, can be related to the chemical categories of
odorants emitted by the odor source (Dielenberg and McGregor,
2001) and that glomeruli coding for these categories are orga-
nized in domains or clusters in the OB. A study by Kobayakawa
et al. (2007) suggested that the OB of mice consists of at least
two different functional modules, one for innate odor responses
and one for (associatively) learned odor responses. Similar spatial
behavioral organization is also known to occur in insects (e.g.,
Semmelhack and Wang, 2009).

FUNCTION OF TOPOGRAPHY
Studies of odorant coding in the OB show that odor codes are
represented on the levels of glomeruli and M/T cells by spatio-
temporal codes (cf. Laurent, 1997; Leon and Johnson, 2009). Our
model of activity-dependent self-organization of the glomerular
layer suggests that there could be information about perceptual
categories on spatial and population levels. It is not clear if topog-
raphy on the olfactory bulb is key to a function (Zou et al., 2009).
However, it was known that changing locations of glomeruli can
result in behavioral impairments in mice, in spite of persistent
physiological activations (Adam and Mizrahi, 2010). This could
imply the existence of readout mechanisms that rely on spatial
codes.

It could be speculated that local patterns of odor categories
constitute an instance of the minimization of wiring length in
cortical networks (cf. Chen et al., 2006) with functional impli-
cations (cf. Thivierge and Marcus, 2007). Practically topography
could constitute an anatomical basis to sharpen MT responses over
periglomerular pathways. Yaksi and Wilson (2010) provide evi-
dence that local circuity between glomeruli in the antennal lobe,
the insect analog of the OB, could serve for gain control by both
contrast enhancement and increase of sensitivity. In favor of this
functionality speaks also the length of periglomerular axons,which
reach only a few glomeruli far (Shepherd et al., 2004).

One hypothesis for the generation of receptive fields on the
MT layer is that competitive inhibitory mechanisms between MT
cells could facilitate a mechanism for odorant concentration (see
Sandström et al., 2009b) based on the highly variable response
properties of ORNs expressing the same OR (Grosmaitre et al.,
2006). In fact, a viral tracer study (Willhite et al., 2006) suggests a
columnar organization by receptor type reaching from glomerular
to deep granular layers (Willhite et al., 2006). This could indicate
a local proximity which would be expected to underly circuits
optimized for wiring length.

Evidence is accumulating that ORs and glomeruli are inter-
nalizations of environmental regularities (e.g., Dielenberg and
McGregor, 2001; Hommel et al., 2002; Khan et al., 2007;
Kobayakawa et al., 2007; Semmelhack and Wang, 2009; Sakano,
2010). In this model of axonal convergence we could account for
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at least part of the organization of representations. Together with
earlier evidence for spatial continuous maps for perceptual cat-
egories (Auffarth et al., 2011a), results are consistent with other
studies to show a functional compartmentalization and a spatial
organization in the OB. This could indicate organizing principles
that could serve to efficiently convey behaviorally relevant infor-
mation to higher stages, e.g., the amygdala or piriform cortex.
Thus, higher brain regions seem to sample from glomeruli in spa-
tial domains of the OB to receive behaviorally relevant information
which triggers innate behavior, e.g., aversion due to fox urine or
aggression due to male mouse odors.

The establishment of a functional architecture relies on process
outgrowth and synapse formation. Connectivity is defined by mol-
ecular cues and neural activity (Katz and Crowley, 2002). While
neural activity could be generated spontaneously in early phases of
development, in later phases it is then crucially dependent on sen-
sory experience, so that connectivity is defined by different forms
of input, such as intrinsic, sensory, and other, such as coming from
cognitive or motor areas. It is known that top-down projections
from higher stages influence the dynamics in the OB (Fuentes et al.,
2008) and therefore they could shape the glomerular map in a way
to simplify the readout of behaviorally relevant information. The
formation of topographic organization in our model relies exclu-
sively on the input side, however other factors could be integrated
as adaptations to the distance matrix, which is fed into the MDS
algorithm.

CONCLUSION
We presented a model of olfactory perceptual coding at the
glomerular level. Although the machinery responsible for axon
guidance is much more complex than that presented here, we
hope that progress of functional understanding may be facilitated
by keeping our model as simple as reasonably possible. We used
realistic, ecologically relevant odorant data and showed how from
simple principles glomeruli form and spatial maps emerge with
receptive fields specialized on a combination of physico-chemical
features and odor categories. We showed in our model how OR
affinities govern the formation of a topographic map in the OB
and how the emergent coding domains for receptive molecular
ranges reflect a perceptually relevant categorization.

We found that glomerular regions responsive to odor categories
have relative spatial distributions over the bulb that represent a
qualitatively good match between the odor ratings by humans.
Therefore, our findings confirm previous studies which suggest a
spatial coding at the olfactory bulb. This could suggest that the OB
encodes perceptual categories.
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