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Neural activity is irregular and unpredictable, yet little is known about why this is the case
and how this property relates to the functional architecture of the brain. Here we show
that the variability of a region’s activity systematically varies according to its topological
role in functional networks. We recorded the resting-state electroencephalogram (EEG)
and constructed undirected graphs of functional networks. We measured the centrality of
each node in terms of the number of connections it makes (degree), the ease with which
the node can be reached from other nodes in the network (efficiency) and the tendency
of the node to occupy a position on the shortest paths between other pairs of nodes in
the network (betweenness). As a proxy for variability, we estimated the information con-
tent of neural activity using multiscale entropy analysis. We found that the rate at which
information was generated was largely predicted by centrality. Namely, nodes with greater
degree, betweenness, and efficiency were more likely to have high information content,
while peripheral nodes had relatively low information content. These results suggest that
the variability of regional activity reflects functional embedding.
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1. INTRODUCTION
The functional architecture of the cerebral cortex is configured in
a manner that balances local segregation and global integration,
endowing the system with a high degree of complexity (Tononi
et al., 1994). The complexity of the system allows for a diverse
dynamic répertoire and is reflected in the information content and
variability of neural activity. The variability inherent in neurophys-
iological recordings is now considered a fundamental dynamical
property of the brain, allowing for spontaneous transitions among
several metastable states (Ghosh et al., 2008; McIntosh et al., 2008,
2010; Deco et al., 2009, 2011; Jirsa et al., 2010).

What determines the variability of neural activity? If brief
functional associations allow information to be integrated, then
regions which participate in the greatest number of functional
subnetworks will facilitate the flow of information by bridging
and integrating other regions that would be otherwise discon-
nected and topologically distant (Sporns et al., 2000, 2004; Stam,
2004; Stam and Reijneveld, 2007). Therefore, information con-
tent should depend on connectivity and more specifically on the
functional integration enabled by individual nodes.

Recent findings are consistent with this notion and suggest that
the information content of regional activity may depend on the
configuration of functional networks and on their participation
in such networks. For example, information – measured using
entropy-based metrics – increases during normal brain develop-
ment (McIntosh et al., 2008, 2010; Lippé et al., 2009; Mišic et al.,
2010). This may reflect intensified global integration relative to
local segregation and a gradual shift from local, clustered informa-
tion processing in children to distributed processing in adults (Fair

et al., 2009; Supekar et al., 2009; Hagmann et al., 2010). Indeed, the
developmental increase in entropy is most robust in areas such as
the precuneus and posterior cingulate (Mišic et al., 2010), which
are known to be central to the topology of resting-state functional
brain networks (Hagmann et al., 2008, 2010; Buckner et al., 2009;
Tomasi and Volkow, 2010). Moreover, just as functional networks
reconfigure in response to task-induced perturbations (Bassett
et al., 2006), so too do spatial patterns of entropy (Lippé et al.,
2009; Mišic et al., 2010).

In the present study we tested the notion that the functional
embedding of a brain region is related to the information content
of neural activity from that region. We addressed this hypothesis by
recording the electroencephalogram (EEG) from 56 participants
in the resting-state with eyes open and eyes closed. Whole-head
functional networks were constructed by measuring the phase lag
index (PLI; Stam et al., 2007, 2009) between all pairs of elec-
trodes. Centrality of individual nodes was assessed in terms of
node degree, betweenness, and efficiency. The degree of individ-
ual nodes was indexed by counting the number of connections
they make with other nodes in the network. Betweenness was
measured as the fraction of all shortest paths in the network
that pass through the node (Freeman, 1977, 1978). Regional effi-
ciency was calculated as the inverse of the minimum path length
(Latora and Marchiori, 2001; Achard and Bullmore, 2007; Bas-
sett et al., 2009). Thus, regions which have a short minimum
path to all other regions will have high efficiency. We predicted
that the centrality of a region (indexed by degree, between-
ness, and efficiency) will be associated with greater information
content.
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We quantified the information content of regional activity
using multiscale entropy (MSE) analysis (Costa et al., 2002, 2005).
As an entropy-based measure, MSE is sensitive to the complexity of
the signal and will assign low values to both completely regular and
to uncorrelated random signals. Moreover, the multiscale nature
of the index takes into account the fact that physiological dynam-
ics underlying the expressed information are likely to unfold over
multiple temporal scales (Honey et al., 2007). Although functional
magnetic resonance imaging (fMRI) would have allowed us to
delineate functional networks with greater precision, the number
of data points required to estimate entropy from empirical time
series is quite large and necessitated an imaging technique with
fast sampling such as EEG.

2. MATERIALS AND METHODS
2.1. EEG ACQUISITION
Fifty-six (29 male) healthy children 10 years old (mean 10.0, SD
0.393 years) participated in the study (see Poulsen et al. (2009)
for details). The protocol was approved by the Research Ethics
Board of the Montreal Neurological Institute and Hospital. The
participants were asked to keep their eyes open or closed in 8 alter-
nating 30 s epochs (4 each). The electroencephalogram (EEG) was
continuously recorded from 128 scalp locations using a HydroCel
geodesic sensor net (Electrical Geodesics, Inc., Eugene, OR) ref-
erenced to the vertex (Cz). The signal was digitized at a rate of
500 Hz. Impedances did not exceed 60 k�. All offline signal pro-
cessing and artifact correction was performed using the EEGLAB
toolbox (Delorme and Makeig, 2004) for MATLAB (Mathworks,
Inc.). Data were then average-referenced, digitally filtered (band-
pass: 0.5–55 Hz; notch: 60 Hz) and epoched into 30 s segments.
Only the middle 20 s of each epoch (5–25 s) were used in the analy-
sis to avoid excessive contamination associated with opening and
closing of the eyes. In the absence of a true baseline, the temporal
mean was subtracted from each epoch. Ocular (blinks and lateral
eye movements) and muscle artifacts were identified and sub-
tracted on a subject-by-subject basis using the Infomax indepen-
dent components analysis (ICA) algorithm (Bell and Sejnowski,
1995) implemented in EEGLAB. The analyses described below
produced identical results for the eyes closed and eyes open resting-
state runs, so for brevity only data from the eyes closed runs are
displayed in the rest of this report.

2.2. MULTISCALE ENTROPY (MSE)
In multiscale entropy (MSE) analysis (Costa et al., 2002, 2005) each
single trial time series is downsampled to multiple temporal scales
and sample entropy (SE; Richman and Moorman, 2000) is calcu-
lated for each scale. For a given temporal scale τ , the corresponding
time series is derived by averaging data points in non-overlapping
windows of length τ from the original time series (τ = 1 cor-
responds to the original time series). The SE algorithm calculates
the conditional probability that any two sequences of (m + 1) data
points will be similar to each other given that they were similar for
the first m points, which reflects the degree of regularity in a given
time series. The SE metric is the negative of the natural logarithm
of this quantity, so higher values of SE are associated with less
regular and more variable time series. In the present study, pat-
tern length was set to m = 2 and the similarity criterion to r = 0.5.

The pattern length (otherwise known as the embedding dimen-
sion) was judged to be optimal following the method proposed by
(Small and Tse, 2004). The similarity criterion (also known as the
tolerance) was chosen following (Richman and Moorman, 2000).
MSE was calculated for each of the 128 channels and averaged
across epochs.

2.3. FUNCTIONAL CONNECTIVITY
The biggest challenge in estimating functional associations
between EEG or magnetoencephalogram (MEG) surface sensors
is the confounding influence of volume conduction (Nunez et al.,
1997). Electromagnetic activity originating from a single brain
region may be observed instantaneously by several scalp electrodes
and misinterpreted as a functional connection. This zero-lag“blur-
ring” tends to inflate the strength of short-length, neighbor-to-
neighbor statistical interdependencies. Moreover, in EEG the effect
is exacerbated if the montage involves an active reference (Nunez
et al., 1997). One approach to address this problem has been to
reformat EEG recorded with respect to an active reference to a
reference-free montage, such as the bipolar (Rubinov et al., 2009a).
Although the technique can be extended to include multiple bipo-
lar orientations, it may still miss certain dipoles (Schiff, 2005).
Another approach has been to estimate patterns of functional con-
nectivity among reconstructed sources and to define the graph in
source space (De Vico Fallani et al., 2007, 2008). However, source
reconstruction techniques do not produce unique solutions and
therefore different assumptions and models may lead to different
results. Moreover, many common localization techniques such as
beam forming operate by changing the covariance structure of the
observed data.

To minimize the effect of volume conduction, we opted to use
a measure of functional connectivity that is insensitive to spurious
coherencies due to volume conduction, known as the Phase Lag
Index (PLI; Stam et al., 2007, 2009). The measure takes advan-
tage of the fact that functional connectivity between two channels
due to volume conduction or an active reference cannot produce
phase delays. Thus, PLI attempts to quantify the distribution of
phase differences between two signals but is explicitly insensitive
to differences that center around 0 mod π . As a result, PLI indexes
synchronization between electrodes in a way that is minimally
affected by volume conduction.

2.4. GRAPH EXTRACTION AND ANALYSIS
As we sought to compare aspects of network structure with infor-
mation, which was indexed by SE at multiple time scales, we
extracted functional connectivity graphs at multiple time scales
as well. Thus, each EEG epoch was downsampled using the same
procedure as for MSE and functional connectivity was estimated
for each of the resultant 20 coarse-grained time series. PLI was
computed between all pairs of electrodes for each epoch, scale,
subject, and condition, yielding a series of 128 × 128 matrices.
For each time scale, these matrices were then averaged across the
four epochs to yield subject- and condition-specific association
matrices.

The importance of individual nodes was quantified by
directly computing measures of centrality from each subject- and
condition-specific weighted graph. All network measures except
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regional efficiency were computed using MATLAB routines imple-
mented in the Brain Connectivity Toolbox (Rubinov and Sporns,
2010). The degree of each node was determined by taking the
sum of all weighted connections to other nodes in the network. In
order to calculate regional efficiency and betweenness for weighted
graphs, we first defined an inverse mapping from weight to length.
Thus, the length of a weighted edge between regions i and j (di,j)
was calculated as the inverse of the edge weight between those two
regions (wi,j)

di,j = 1

wi,j
. (1)

The path length between any two nodes in the network can
then be calculated as the sum of the lengths of edges along the
path. Regional efficiency was calculated by taking the inverse of
the harmonic mean of the minimum path length between a given
node and all nodes in the network (Latora and Marchiori, 2001,
2003; Achard and Bullmore, 2007). Thus, if the minimum path
length between regions i and j (i, j = 1, 2,. . ., N, and i �= j) is Li,j,
the efficiency of region i (Ei) is given by

Ei = 1

N − 1

∑

i �=j∈G

1

Li,j
. (2)

The normalized betweenness of a node j is the proportion of
all shortest paths between all pairs of nodes i and k (ρik) that also
pass through j (ρijk)

Bj = 1

(N − 1) (N − 2)

∑

i �=j ,i �=k,j �=k

ρik

ρijk
. (3)

Together, the three measures offer complementary informa-
tion about the topological role of a given node. Degree indexes
the connectedness of a given node. Efficiency tells us how close a
node is to other nodes in the network. Betweenness measures the
tendency of a node to serve as a way station between other pairs of
nodes in the network. Each of these regional measures was aver-
aged across subjects and then correlated with SE, separately for the
two conditions and for each temporal scale.

3. RESULTS
To demonstrate and broadly summarize the regional variation in
MSE, Figure 1A shows the spatial pattern of SE values that have
been summed across all 20 scales. These patterns demonstrate
that total MSE tends to be greatest at medial and mid-lateral
posterior parietal channels, in concordance with previous stud-
ies (McIntosh et al., 2008). The complete MSE curves for two
representative channels (marked by black dots in Figure 1A) are
displayed in Figure 1B. The curves show increasing entropy with
coarse-graining, similar to previous studies using electrophysi-
ological (McIntosh et al., 2008) and neuromagnetic recordings
(Mišic et al., 2010; Figure 1). Moreover, the curves show large dif-
ferences in SE across most temporal scales, except the first two.
This demonstrates that differences in variability occur at multiple
time scales and suggests that network structure should likewise be
considered at different levels of coarse-graining.

FIGURE 1 | Multiscale entropy curves. Values of SE are summed across
temporal scales and the spatial distribution is shown in (A). The complete
multiscale entropy (MSE) curves for two representative channels (marked
by black circles), showing SE at each level of coarse-graining, are displayed
in (B). Error bars indicate standard errors of the mean.

The overall correspondence between information entropy and
network embedding is explored in Figure 2. Node degree, regional
efficiency, and betweenness were positively associated with entropy
(Figure 2, top row). The relationships were statistically significant
and were observed at all temporal scales (p � 10−3). On average,
node degree, efficiency, and betweenness accounted for approxi-
mately 44, 70, and 42% of the variance in SE across electrodes. We
also observed an effect of time scale on the relationship between
network embedding and MSE, whereby correlations were slightly
weaker for fine time scales and increased with coarse-graining
(Figure 2, middle row). This was expected given the fact that
coarse-graining acts as a low-pass filter. Thus, the broad-band sig-
nal at fine time scales contains higher frequencies in addition to
lower frequencies and estimates of phase synchronization are likely
to be less robust. In contrast, the coarse-grained representations
of the signal contain a narrower band of lower frequencies and
therefore estimates of phase synchronization are more likely to be
reliable.

The bottom row of Figure 2 shows the scale-specific spatial
distributions of node degree, regional efficiency, and betweenness,
summed across all scales. Importantly, the pattern of gradations
was similar for SE (Figure 1A) and the three network metrics. For
all three measures, the highest values were observed at medial pos-
terior channels and this peak typically extended around the vertex,
forming a ring-like relief pattern over the superior aspect of the
scalp, with a minute dip at the vertex. In some instances, the corre-
spondence was not perfect and there were also minor differences.
For example, some anterior channels had relatively high efficiency
while the same was not true for SE. Likewise, the topographical
map for betweenness did not perfectly match the map for SE, but
this is not surprising since betweenness was not as good a predictor
of SE as the other two measures of centrality. Overall, comparison
of topographic maps for SE and centrality revealed the possibility
of two separate effects: a posterior parietal peak in centrality that
matched a similar peak in variability, as well as a fronto-central
peak in centrality that was not consistently accompanied by a peak
in SE.
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FIGURE 2 | Multiscale entropy and functional embedding. Top row: scatter
plots and regression lines depict the relationship between SE and centrality
across all electrodes (both have been integrated across temporal scales).
Middle row: the correlation coefficient between SE and each of the three

network measures is plotted as a function of temporal scale. Bottom row:
Scalp distributions for the three types of centrality. The measures were
calculated for functional connectivity graphs at each time scale and then
integrated across scales as a summary measure.

In general, the effects associated with node degree and effi-
ciency were similar and this is to be expected because the two
measures are complementary. Namely, efficiency is the average
minimum path length between a given node and all others, while
node degree quantifies the total number of connections. In the case
of weighted graphs, if direct connections are also the shortest, then
the measures will index the same thing and may be redundant. We
quantified this overlap and found that, on average, direct connec-
tions constituted 40% of the shortest paths. Therefore, there was
considerable overlap but also significant divergence. Moreover, cal-
culation of betweenness did not take into account this rather large
proportion of direct connections and this may explain why the
effects and the topography associated with betweenness was not
as similar to degree and efficiency as they were to each other.

Although we took several steps to ensure that the effects of vol-
ume conduction would be minimized, we still sought to assess the
extent to which this may have affected our estimates of synchro-
nization. In practice, simultaneous activation due to spatial smear-
ing will tend to be most pronounced between proximal electrodes.
Therefore, for each possible pair of electrodes we calculated a vec-
tor of Euclidean distances as well as a vector of PLI values. We then
estimated the degree to which physical distance between chan-
nels could predict the strength of their functional coupling, using
both mutual information and simple linear regression. Both meth-
ods revealed that Euclidean distance typically accounted for 24%
of the variance in functional connectivity (consistently across all
time scales). This suggests a reasonable effect of spatial proximity
on coupling strength and even compares favorably to previous
studies using MEG (Bassett et al., 2006).

4. DISCUSSION
The temporal evolution of neural activity is far from regular. This
element of unpredictability is indicative of the information car-
ried by the signal and represents an important facet of the brain’s
organization at multiple scales of time and space (McIntosh et al.,
2008, 2010; Deco et al., 2011). We have shown that the centrality of
network nodes strongly predict the information content of their
physiological activity during the resting-state.

Ephemeral functional associations among distributed regions
constitute the dominant patterns of information flow in the
brain. Vertices with many connections as well as short or direct
paths to the rest of the network are conduits for system-wide
communication. These nodes engender the exchange of infor-
mation both within and between communities (Sporns et al.,
2007). The fact that highly central areas also generate infor-
mation at a high rate is consistent with the notion that they
facilitate functional integration. Similar results were uncovered
in a recent theoretical study which explored the relationship
between node dynamics and connectivity using a simple deter-
ministic model (Rubinov et al., 2009b). The authors found that
highly connected, central nodes were more likely to receive discor-
dant inputs and as a result exhibited variable, high-dimensional
dynamics. Conversely, peripheral nodes were more likely to receive
homogeneous inputs and exhibited less variable, low-dimensional
dynamics.

Our data support the idea that the variability observed in
neural activity is an important facet of the functional organiza-
tion of the brain. Variability may take many forms and can be
measured in a multitude of ways, from information content of

Frontiers in Systems Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 90 | 4

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
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neurophysiological signals (McIntosh et al., 2008) to SD of hemo-
dynamic responses (Garrett et al., 2010). Increased variability is
associated with many benefits, both for behavioral performance
and physiology. For example, greater brain signal variability is
linked to accurate responses and stable response times (McIn-
tosh et al., 2008; Mišic et al., 2010). Network reorganization
during healthy development is associated with increased variabil-
ity (McIntosh et al., 2008; Lippé et al., 2009; Mišic et al., 2010).
Conversely, pathologically low variability is associated with tissue
damage due to seizures (Protzner et al., 2010), as well as autism
spectrum disorder (Bosl et al., 2011).

The inherent variability of neurophysiological signals repre-
sents the trajectory of a metastable dynamical system with non-
linearities (Ghosh et al., 2008; Deco et al., 2009, 2011; Jirsa et al.,
2010). As the brain typically occupies a high-energy state, small
intrinsic fluctuations (for example, due to low-fidelity cellular
processes; Faisal et al., 2008) are sufficient to perturb the sys-
tem and induce excursions to other states/configurations. Thus,
the stochastic characteristics of local physiology cause the sys-
tem to continuously traverse the state space and confer a high
degree of flexibility to adapt to changing demands in the exter-
nal environment (Breakspear et al., 2010). This fluid reconfig-
uration is reflected by the variable dynamics observed in gross
neurophysiological recordings.

In the present study we measured the connectivity of all nodes
with respect to the entire brain and then matched regional dif-
ferences in connectivity with differences in variability. In future
studies it would be interesting to focus on one select region and
to manipulate the connectivity of that region using some form
of stimulation or cognitive task. This complementary approach
would allow us to study how the information generated in a given
brain region dynamically changes under different external and
internal conditions.

4.1. METHODOLOGICAL CONSIDERATIONS
Graphs are a natural model for anatomical networks, but their
application to functional networks is subject to several method-
ological issues (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). First, graph theoretic measures of centrality tend to be
based on the importance of shortest paths (such as betweenness
and efficiency in the present study) and this may not be an accu-
rate model for a system such as the brain where information is

likely to be transmitted along multiple parallel paths that are not
necessarily the shortest. Second, it is difficult to infer the direction-
ality of functional connections and this limits the range of local
and global metrics that can be calculated for the network. In the
present investigation we chose simple indices to capture connect-
edness, centrality, and functional integration of individual nodes
that are not sensitive to directionality of edges in the network.
Third, whole-brain functional networks can only be defined with
limited precision using neurophysiological measurements over the
scalp. This was a necessary compromise that allowed us to estimate
information content over a broad-band, which would not have
been feasible with high-resolution methods such as fMRI.

In the present investigation, the resting-state paradigm was
used instead of some cognitive task with multiple trials for two rea-
sons. First, in the no-task setting cognitive processing could not
be biased by external demand. Second, the resting-state allowed
many measurements (long time series) to be recorded such that
information and functional connectivity could be reliably esti-
mated. For these reasons resting-state paradigms are often used to
estimate functional connectivity and centrality (De Vico Fallani
et al., 2007; Rubinov et al., 2009a; Boersma et al., 2011), as well
as entropy (Escudero et al., 2006; Park et al., 2007; Mizuno et al.,
2010; Takahashi et al., 2010; Bosl et al., 2011).

5. CONCLUSION
The dynamical properties of the brain give rise to a complex func-
tional architecture that stays true to the underlying anatomy over
long periods of time, but at short time scales reconfigures in a
highly fluid fashion (Honey et al., 2007,2009), thereby exploring its
functional répertoire (Ghosh et al., 2008). The fluid landscape of
functional associations drives and determines the statistical prop-
erties of neural activity. The present study demonstrates a link
between functional topology and variability of neurophysiological
activity.
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