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A common pre-processing challenge associated with group level fMRI analysis is spa-
tial registration of multiple subjects to a standard space. Spatial normalization, using a
reference image such as the Montreal Neurological Institute brain template, is the most
common technique currently in use to achieve spatial congruence across multiple sub-
jects. This method corrects for global shape differences preserving regional asymmetries,
but does not account for functional differences.We propose a novel approach to co-register
task-based fMRI data using resting state group-ICA networks. We posit that these intrinsic
networks (INs) can provide to the spatial normalization process with important informa-
tion about how each individual’s brain is organized functionally. The algorithm is initiated
by the extraction of single subject representations of INs using group level independent
component analysis (ICA) on resting state fMRI data. In this proof-of-concept work two
of the robust, commonly identified, networks are chosen as functional templates. As an
estimation step, the relevant INs are utilized to derive a set of normalization parameters
for each subject. Finally, the normalization parameters are applied individually to a different
set of fMRI data acquired while the subjects performed an auditory oddball task. These
normalization parameters, although derived using rest data, generalize successfully to data
obtained with a cognitive paradigm for each subject. The improvement in results is veri-
fied using two widely applied fMRI analysis methods: the general linear model and ICA.
Resulting activation patterns from each analysis method show significant improvements
in terms of detection sensitivity and statistical significance at the group level. The results
presented in this article provide initial evidence to show that common functional domains
from the resting state brain may be used to improve the group statistics of task-fMRI data.
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INTRODUCTION
fMRI NORMALIZATION METHODS
An initial requirement for analyzing fMRI data from a group of
subjects is registration of multi-subject fMRI scans to a common
spatial co-ordinate space. This requirement is incorporated as a
fundamental step in almost every pre-processing software pack-
age designed for the analysis of fMRI data. To date, one of the most
common approaches used is transforming subjects’ images to the
Montreal Neurological Institute (MNI) co-ordinate space utilizing
a template created by averaging echo-planar imaging (EPI) MRI
scans (e.g., Collins et al., 1994). Needless to say, all normalization
methods, in strict sense, map the fMRI data to a common space
using information from structural data. The structure (across sub-
jects) is different due to magnetic field homogeneities in addition
to individual biological variability. A commonly used approach
implemented within most pre-processing software packages such
as FSL (Jenkinson, 2003) and SPM (Andersson et al., 2001), uses
field maps to correct for the field inhomogeneities. This enables

correction of warping due to susceptibility within each subject,
but the biological variability in structure remains.

There is enough evidence to support the fact that the size, shape,
and position of brain structures are anatomically non-uniform for
individuals and show significant differences associated with race,
age, gender, or state of healthiness (Rademacher et al., 1993; Wat-
son et al., 1993; Thompson et al., 1997; Zilles et al., 1997, 2001;
Good et al., 2001a; Toga and Thompson, 2001; Dougherty et al.,
2003; Dubb et al., 2003; Park et al., 2004; Jang et al., 2005; Raz, 2005;
Sabuncu et al., 2010). Thus, the spatial normalization step imple-
mented using various techniques may require caution in order to
minimize the effect of spatial transformations due to inter-subject
anatomical variations that exist between the MNI template and
data being transformed.

In order to address the aforementioned problem, researchers
have tried different types of approaches and seen improvements
in context to specific requirements of their studies. Some of
these include constructing templates for region-of-interest (ROI)
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analyses in a standard space (Hammers et al., 2002; Kubota et al.,
2006), development of specially tailored transformation meth-
ods to serve specific anatomical landmarks (Grachev et al., 1999;
Hammers et al., 2003), creating atlases based on cortical surface
averaging (Fischl et al., 1999; Argall et al., 2006), utilizing localizer
contrasts or functional ROIs prior to applying hypotheses tests for
detecting activity across the cortex (Saxe et al., 2006), and devel-
oping templates to compensate for age and gender differences (Lee
et al., 2005). Comprehensive surveys such as Ardekani et al. (2005),
Crivello et al. (2002), and Robbins et al. (2004) present an elab-
orate description of differences between some of the widely used
spatial normalization techniques.

A more specialized approach is to use a “study-specific tem-
plate” (SST), which was initially proposed by Good et al. (2001b)
for voxel-based morphometric (VBM) study of multiple subjects.
The SST is generated in two steps: normalizing all individual T1-
weighted images to the MNI T1-weighted template and then taking
the average of all normalized images to create the SST. This method
proved to be extremely useful in improving the results of the VBM
analysis as initially shown in Good et al. (2001b) and later summa-
rized by (Huang et al., 2010). More recently, Huang et al. (2010)
proposed a new approach for deriving a SST using the EPI scans
of the individual subjects belonging to the group being analyzed.
The effects of the method were reported in two groups (young and
old) each of which performed a different task. Significant differ-
ences were reported in both smoothed and unsmoothed raw data
when comparing statistics from MNI template approach against
the EPI–SST approach, with a large improvement in the latter in
addition to achieving better sensitivity of local maxima. This study,
in addition to previous experiments (Good et al., 2001a,b), can be
seen as compelling evidence that anatomical variations within a
group of subjects as well as differences in scanners used for acqui-
sition can cause considerable spatial distortion when mapping the
data to a common co-ordinate space. This causes the statistics
to change significantly, and can lead to misinterpretation when
studying spatial patterns of cognitive activity.

The differences in correspondence between the functional and
structural landmarks of the human brain have been discussed
since well before the advent of fMRI. In the past, several stud-
ies have initiated efforts to try and compensate for these differ-
ences at a macroscopic as well as microscopic level. Proposals
and reviews such as those by Brett et al. (2002) and Mazziotta
et al. (2001) have re-iterated the importance of functional localiza-
tion and incorporating cyto- and chemo-architecture knowledge
in to algorithms and methods that are applied for re-alignment
and segmentation of neuroimaging data sets. Their experiments
involving superimposition of cytoarchitechtonic areas describe
the inter-subject variability in extent and position of Brodmann
areas 44 and 45. Enough evidence exists to show that function-
ally well-defined areas such as the visual motion or the MT can
vary across subjects in terms of size (Watson et al., 1993) or
mapped anatomical location (Tootell et al., 1995). A relatively
recent work by (Sabuncu et al., 2010) provides an array of examples
where structural anatomical landmarks on the cortex were offset
or inconsistent with estimated locations of corresponding func-
tional activity. Such studies (Mazziotta et al., 2001; Sabuncu et al.,
2010) support our preamble that such an approach may be able to

incorporate locally defined functional information that not only
aligns activation centers but also the boundaries of these areas and
some aspects of within-activation topography at a network level.
Hence, a possibly favorable alternative to collecting data from a
battery of tasks, as initially proposed by Mazziotta et al. (2001)
and implemented by Sabuncu et al. (2010), is to robustly estimate
functional landmarks using resting state fMRI data and use these
for functional re-alignment.

REST AND TASK: CO-EXISTING SPATIAL DYNAMICS
Prior to generalizing some recent work that addresses functional
co-registration of group fMRI data, we introduce here a few
phrases and relevant definitions that can be useful in order to
clearly follow the objectives and results of this paper.

Intrinsic Networks: Brain regions which exhibit temporally
coherent fluctuations and are identified from an fMRI scan
collected during rest or during a task (Calhoun et al., 2008).
Intrinsic Dynamics: Spontaneous temporal fluctuations exhib-
ited by intrinsic networks (INs).
Functional Domains/Systems: Spatial characteristics of INs,
essentially represented by a region or group of regions showing
variable spatial patterns across individuals.
Functional Standard Space: N -dimensional space that consists
of each individual’s data co-registered for variation in N func-
tional domains in order to bring functional normality to the
group being analyzed.
Functional Normalization: Process of registering fMRI images
to a functional standard space.

In the past decade, functional organization of the human brain
has been increasingly studied using INs alternatively known as the
“resting state networks.”Resting state fMRI has been collected on a
large scale (Biswal et al., 2010; Allen et al., 2011) since the seminal
discovery of INs in resting brain (Biswal et al., 1995) and inde-
pendent component analysis (ICA) has been a widely used tool
to analyze resting state fMRI data and draw inferences regarding
functional connectivity (Beckmann et al., 2005; Damoiseaux et al.,
2006; Calhoun et al., 2008; Harrison et al., 2008; Smith et al., 2009;
Biswal et al., 2010; Khullar et al., 2011). Recent work (Mennes
et al., 2010) shows that strong spatial associations, known as tran-
sition zones, that exist between brain regions representing intrinsic
dynamics and those active during a cognitive task. The abundance
of resting data and increased interest in building the functional
connectome (Biswal et al., 2010; Allen et al., 2011) can play a key
role in building novel methods. Thus, there exists a possibility of
successfully utilizing functional information within REST-fMRI
to better inform the data collected for cognitive tasks (Calhoun
et al., 2008) as later demonstrated in this article.

WHAT DO WE PROPOSE?
We propose a novel approach for co-registering a group of subjects
by utilizing their intrinsic functional networks (resting state fMRI)
as an additional pre-processing step in contrast to the existing
convention that only uses structure as a reference. The proposed
method, hence forth referred to as ICA-based functional normal-
ization or “ICA-fNORM” delineates resting fMRI data into INs
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using ICA and utilizes them as “functional templates” (FT) to
eventually derive normalization parameters. As shown by Calhoun
et al. (2001), and Smith et al. (2009), some of these networks co-
exist independent of the cognitive state (at rest or while performing
a task) and the condition (healthy or diseased) of the brain. Mul-
tiple networks exhibit temporal and spatial modulation during
cognitive task versus rest which implies existence of common
spatial excitation patterns between these identified networks (Cal-
houn et al., 2008). This congruence in neural activity raises two
questions that are yet to be addressed definitively: (a)“Is it possible
to build normalization templates that re-align spatial boundaries
of function rather than structure on a subject-to-subject basis?”
and (b) “Can resting state networks be used to help improve group
statistics for a cognitive task?” The main contribution of this arti-
cle is to attempt to answer these questions through the proposed
framework. We attempt to utilize the normalization parameters
(set of non-linear basis functions) computed using RSNs for re-
aligning each subject’s fMRI data corresponding to a cognitive
task such as the auditory oddball design (AOD). For every subject,
the new AOD data is normalized to the group according to vari-
ations in functional systems unique to that subject. This results
in more robust co-registration of all subjects to a functionally
standard space specific to that particular group. Our results indi-
cate that the ICA-fNORM approach applied in addition to the
conventional MNI-based spatial normalization (Ashburner and
Friston, 1999), improves the group statistics as compared to those
obtained by applying the latter method alone. Default mode net-
work (DMNrest) and the temporal lobe network (TLrest) are two
of the several INs repeatedly found to co-exist in resting state scans
and in a cognitive task (Calhoun et al., 2008; Smith et al., 2009).
These two networks were used as templates to derive the normal-
ization parameters (explained later) that are applied to task-fMRI
data for functional re-alignment.

MATERIALS AND METHODS
PARTICIPANTS
Subjects in this study consisted of 28 healthy adults, all of whom
gave written, informed, IRB approved consent at Hartford Hospi-
tal and were compensated for their participation. The data set
is comprised of the same cohort of 20 healthy controls used
by Calhoun et al. (2008) in addition to 8 other healthy sub-
jects scanned using the same scanner and scanning parame-
ters. All but one subject were right handed and the mean age
(SD) = 31.46 ± 10.9 years. There were 9 female and 19 male sub-
jects involved in the study. All subjects were able to perform the
oddball task successfully during practice held prior to the scanning
sessions.

EXPERIMENTAL DESIGN
All subjects were scanned once (one session lasting 5-min) while at
rest and twice (each sessions lasting 8-min) while performing the
auditory oddball task (referred as AOD from here on). The AOD
task comprises of pressing a button when the subject hears an
infrequent sound within a series of regular and different sounds.
The auditory stimuli were presented to each participant by a com-
puter stimulus presentation system (VAPP) via insert earphones
attached within a pair of 30-dB noise-canceling MR compatible

headphones. The standard stimulus (regular sounds) and target
stimulus (infrequent sounds) were 500 and 1000 Hz tones respec-
tively. Whereas the novel stimulus (different sound) were random
digital tones such as tone sweeps and whistles. The target and
novel stimuli each occurred with a probability of 10% and the
standard stimuli occurred with a probability of 80% during the
scans. Other details related to the AOD task can be found in Kiehl
et al. (2005). The resting state scans (referred as REST from here
on) were acquired while the participants rested (with their eyes
open) for 5 min inside the scanner.

IMAGE ACQUISITION
All scans were acquired at a single site – Olin Neuropsychia-
try Research Center at the Institute of Living/Hartford Hospital
on a Siemens Allegra 3T dedicated head scanner equipped with
40 mT/m gradients and a standard quadrature head coil. Following
parameters were set for acquiring the functional scans trans-axially
with gradient-echo EPI: repeat time (TR) = 1.50 s, echo time
(TE) = 27 ms, field of view = 24 cm, acquisition matrix = 64 × 64,
flip angle = 70˚, voxel size = 3.75 mm × 3.75 mm × 4 mm, slice
thickness = 4 mm, gap = 1 mm, 29 slices, ascending acquisition.
In order to compensate for longitudinal equilibrium, six “dummy”
scans were performed at the beginning of every session followed by
the automatic triggering of the auditory paradigm by the scanner
(Calhoun et al., 2008).

PRE-PROCESSING
The data were pre-processed using the conventional pipeline in
the SPM5 software package1. The data were (a) motion corrected
using an approach which minimizes the impact of the local signal
variations using the INRI align algorithm (Freire et al., 2002); (b)
spatially normalized (Ashburner and Friston, 1999) into the MNI
space using the EPI template in SPM5; (c) slightly re-sampled
(bi-linear interpolation) from 3.75 mm × 3.75 mm × 4 mm to
a voxel size = 3 mm × 3 mm × 3 mm resulting in 53 × 63 × 46
voxels per volume, and lastly (d) spatial smoothed using a
10 mm × 10 mm × 10 mm full width at half-maximum (FWHM)
Gaussian kernel. The four steps (a–d) stated above were applied to
both data sets used in our experiment – REST and AOD fMRI. In
addition, ICA-fNORM was applied on AOD data using templates
derived from REST data.

PROPOSED FRAMEWORK: ICA-fNORM
The proposed functional normalization approach is divided in
to four stages: (1) Stage 1: derive FT relevant to the task (see
FT From REST-fMRI), (2) Stage 2: estimate the functional re-
alignment parameters corresponding to each subject using SPM
(see Estimating Normalization Parameters), (3) Stage 3: apply
these parameters to the pre-processed task-fMRI data collected
for the same set of subjects (see Functional Normalization of AOD
Data), and lastly (4) Stage 4: perform statistical analysis using ICA
and general linear model (GLM; separately) and compare group
level statistical significance and detection sensitivity between the
“before”and“after”ICA-fNORM data sets (see Analysis Methods).
Figure 1 illustrates the complete approach including the derivation

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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FIGURE 1 | Detailed flowchart of the proposed ICA-fNORM framework

illustrating all relevant stages involved. This figure illustrates temporal lobe
(TLrest) template in stage 2. A similar process is repeated when using the
default mode network (DMNrest) as the functional template.

of normalization parameters from REST data and their utilization
for warping the task-relevant fMRI data.

Functional templates from REST-fMRI
In order to derive the FT, REST data was decomposed into INs
(spatial components) using group spatial ICA implemented within
the GIFT toolbox (Calhoun et al., 2001) available online2. We uti-
lize GICA instead of single subject ICA since it provides multiple
advantages over the latter such as efficiency, less subject to noise,
and accurately represents individual variations (Erhardt et al.,
2010). In our approach, we utilize a high model order of 50 com-
ponents for extracting large number of INs. A recent study by
Abou Elseoud et al. (2010) explains the effects of increasing model
order on ICA of resting state fMRI data. A low model order used

2http://icatb.sourceforge.net/

for resting state is expected to yield a rather less informative set of
large scale brain networks. Whereas, there is loss of repeatability
if a very high model order (>100) is used. They also presented
evidence depicting spatially overlapping IC sources as a result of
using model order of 30–40. The motivation to use a high model
order also comes from recent studies (Biswal et al., 2010; Allen
et al., 2011) that show separation of artifactual networks from
meaningful components. Previous study by Calhoun et al. (2008)
that utilized the same resting data as this article utilized a much
lower model order (∼19). However, we use a higher order keeping
in sight a future goal that is to combine multiple known resting
state networks into a single functional template that may further
be used to co-register data from any cognitive paradigm. It is wor-
thy to note that spatial characteristics of the two specific networks,
used as FT here, did not show considerable variation but it may
be useful to experiment with the model order in future so as to
develop a stable functional template. Thus, high model order for
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decomposing REST data is more feasible in order to separate the
INs with more subtle differences that have systematic significance
in context of resting state patterns within the brain.

After estimating the group spatial component maps and cor-
responding time courses through GICA, subject-specific compo-
nents are estimated using that subject’s fMRI data and the group
independent time courses through a back reconstruction step built
into the GIFT software package (Calhoun et al., 2001; Erhardt
et al., 2010). These subject-wise independent components are then
used as target images to derive the subject-specific normalization
parameters (explained in Estimating Normalization Parameters)
by warping the subject’s component map to the group mean
component map (as seen in Figure 1).

As mentioned before, we identified and utilized two INs – TLrest

(temporal lobe from REST-fMRI) and the DMNrest (default mode
network from REST-fMRI) to validate our proposed methodol-
ogy for functional normalization. The TLrest network was chosen
due to implicit reasons associated with the nature of the cogni-
tive task (AOD) involved in our experiment. The auditory oddball
task is known to induce BOLD signal increases in the tempo-
ral lobe network (Kiehl et al., 2005; Calhoun et al., 2008). Raichle
et al. (2001) proposed that the deactivation patterns observed dur-
ing goal-directed behavior may represent an operational “default
mode of brain function.” Thus, the DMNrest was chosen, firstly, in
order to understand the global interactions between this system’s
functional boundaries on subject-to-subject basis and secondly, to
compare the influence of using this network with ICA-fNORM
on statistical results and detection sensitivity against using a
task-related intrinsic network such as the TLrest.

In this initial paper, we limit the work to two INs, used one at
a time, to demonstrate the effectiveness and a proof-of-concept in
context to our approach. However, in the future we plan to extend
this to incorporate all the INs being used together. The FT cor-
responding to TLrest and DMNrest are presented in Figures 2A,B
respectively.

Estimating normalization parameters
Next, the normalization parameters for each subject were esti-
mated using the study-specific TLrest network (or DMNrest) as
the reference image and that subject’s TLrest (or DMNrest) com-
ponent as the source image, as illustrated in Figure 1. Note that,
the normalization algorithm used here was also applied to all data
sets in the pre-processing stage in order to map all the data to
the MNI co-ordinate space using the 305-subject EPI template

FIGURE 2 | Orthogonal views of the template images derived used by

the proposed framework: (A) temporal lobe (TLrest), and (B) default

mode network (DMN) component images obtained from group-ICA on

REST-fMRI data. The aggregate spatial components are presented here
with the respective MNI co-ordinates.

provided within SPM. We utilized SPM’s spatial normalization
algorithm for computing the 12-parameter affine model and the
non-linear basis functions that account for global shape differ-
ences (Friston et al., 1995; Ashburner and Friston, 1999) between
the functional network’s boundaries of each subject and that of the
group. We used the default settings within SPM for estimating the
392 parameters (7 × 8 × 7) to describe deformations in each direc-
tion. The basis functions were estimated using 3-D discrete cosine
transform (DCT) and regularization was done using λ = 0.01.
The non-linear registration was performed as 12 iterations and
normalization parameters were stored. Warping parameters were
computed for each subject and used for registration of the task-
related data corresponding to the same subject, as explained in the
next section (see Figure 1 for illustration). The above process is
repeated with DMNrest network used as the functional template
and the data were stored for further analysis.

Functional normalization of AOD data
The normalization parameters derived above are representative
of the difference between each subject’s functional activity pat-
terns and the group’s average activity with respect to a par-
ticular functional system/network. Utilization of resting state
functional boundaries as a reference to re-align another inde-
pendently acquired data set (AOD) facilitates transformation of
all the data to a functionally standard space. In this paper we
restrict to utilizing only two networks (one at a time), known to
play a significant role in performance of this task and validate
our proposed methodology. Hence, the functionally transformed
AOD data was able to incorporate the template network’s spatial
variations that exist between multiple subjects within the same
group.

In this experiment, we only applied the non-linear transfor-
mation (derived above) for re-aligning every subject’s AOD data
using SPM’s “normalize” routine. As mentioned before, AOD data
was prepared for analysis using a conventional pre-processing
pipeline that included spatial normalization to the MNI space
using SPM (see Pre-Processing). The spatial normalization step
in pre-processing included a 12-parameter rigid-body transfor-
mation, thus eliminating the need for applying another affine
transformation when performing the functional normalization
step. The geometric differences (affine matrix) between the group
level network (reference) and each subject’s network (object) are
local in nature in the sense that they may not generalize well to the
rest of the brain if applied as a set of affine parameters. Therefore,
the affine matrix was set to an identity matrix in order to avoid
distortions in the shape of the brain since the reference image for
deriving this affine transform was an activation component with
most positive values spatially distributed within a small region
across the whole brain (such as the temporal lobe or the DMN
regions). To corroborate the aforementioned observations, some
of the adverse effects, of using a second affine transformation,
such as shape distortion of the overall brain are highlighted here
through Figure 3. Thus, only the non-linear transformation Ri for
every ith subject derived in the estimation step (see Figure 1) was
applied to each subject’s AOD task data.

It is worth noting that the fNORM (functional normalization)
parameters (non-linear transformations) that were derived from
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FIGURE 3 | A comparison showing global shape distortion effects due

to affine transformation applied along with the functional

normalization step: (A) Original image, (B) ICA-fNORM with second

affine transform, (C) ICA-fNORM without second affine transform. We
use a non-conventional color-scheme to better highlight the shape distortion
effects. Images in (A–C) are derived from the same MNI co-ordinates
mentioned in (A).

the resting state networks were highly dependent on the spatial
characteristics of the reference and source images. The reference
image, and in most cases the source image, mostly had positive val-
ues concentrated within or around the primary activation region
as seen in Figure 2.

The functional dynamics across individuals within a group can
be quantified in form of INs and thus inform us about the func-
tional organization of each individual’s brain. Therefore, these
networks and in turn the normalization parameters act as a default
basis set for that particular subject. The key to our hypothesis is
that functional normalization using these INs compensates for
absence of these functional systems in structural templates such
as the MNI–EPI template or the T1-weighted images used to
register data to a stereotactic space through spatial normaliza-
tion. The INs were most likely able to provide us with a priori
information about how each individual’s brain is organized at a
functional level. It is known from literature that the brain’s func-
tional organization is modulated in many ways when performing
a task as compared to being at rest (Calhoun et al., 2008; Smith
et al., 2009; Mennes et al., 2010) while the spatial organization
of these networks remains similar on a global scale. Note that,
the same set of fNORM parameters for each subject was used
to co-register every volume of the AOD fMRI data set for that
subject.

ANALYSIS METHODS
This section briefly describes the methods used to compare the
effects of functional normalization. In order to see the improve-
ments at a group level, we applied two of the standard fMRI analy-
sis methods on the functionally re-aligned AOD data: (a) group
independent component analysis (GICA) using the GIFT toolbox
(Calhoun et al., 2001) and (b) GLM analysis using SPM5 (Friston
et al., 1994) available online (see text footnote 1). For comparisons,
the aforementioned analysis methods were also applied to the reg-
ularly pre-processed AOD data without applying ICA-fNORM as
presented under the results section.

For the AOD task, data from each participant was entered in to
the GLM group analysis framework using SPM5. Regressors were
created by modeling the target, novel, and standard stimuli as delta
functions convolved with the default SPM5 canonical hemody-
namic response function (HRF). This resulted in a set of activation
maps (β-weight maps) associated with each of the parametric
regressors. Scanner drift was modeled by a high pass filter with
cutoff at 128 s. Contrasts between target versus standard (here-
after referred to as target) were created for further analysis. This
specific contrast was selected based on existing evidence (Halgren
et al., 1998; Kiehl et al., 2005) showing detection of extensive and
spatially distributed time-locked brain activity during processing
of the target stimuli. The resultant statistics were corrected for
multiple comparisons with p < 0.01 using FDR (Genovese et al.,
2002).

Independent component analysis is a method that decomposes
data into signals that are maximally independent. We utilized a
GICA method first proposed by Calhoun et al. (2001) for deriv-
ing maximally independent components representing distributed
neural activity across the brain. In our experiment, the order
was set to n = 20 components and ICA applied to regularly pre-
processed (“before” ICA-fNORM) AOD data and the functionally
re-aligned (“after” ICA-fNORM) AOD data separately. Two task-
relevant components were chosen to investigate and verify the
improvements introduced by ICA-fNORM: (1) temporal lobe
component (TLAOD), and (2) default mode network (DMNAOD).
These correspond to the same networks that were chosen as FT for
normalizing AOD data before. All 20 components were estimated
for each individual subject using a back reconstruction method
known as GICA3 (Erhardt et al., 2010).

RESULTS
In order to study and report the effects of functional normaliza-
tion, we compared the statistics and spatial characteristics of two
task-relevant components mentioned above. Each of these was
estimated twice, that is, once before applying ICA-fNORM (that
is, MNI-based normalization only), and once after applying ICA-
fNORM (MNI-based normalization + functional re-alignment
using ICA-fNORM) with each of the two templates. The first set of
results highlight the spatial differences between activation regions
corresponding to before and after ICA-fNORM followed by the
comparisons based on difference “threshograms.” Please note that
the term threshograms is coined to avoid confusion with conven-
tional histograms, even though they appear graphically similar.
This comparison is similar to subtracting the reverse cumulative
density functions of the two methods where the x-axis corresponds
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to increasing t -thresholds. Also, ROI analysis is later presented
using multiple anatomical atlases. Each of the aforementioned
comparison is presented using results from each of the analysis
methods (GLM and ICA) for both FT (TLrest and DMNrest).

MORPHOLOGICAL AND INTENSITY VARIATIONS
Prior to presenting the statistical improvements introduced by
our method, we demonstrate here the similarities in shape, size,
and contrast differences between the data obtained before and
after application of ICA-fNORM. Global differences in shape and
size introduced by our method at an individual level are visible
only in few areas as seen from the mean images estimated by
averaging all volumes from all subjects (Figure 4). Thus, there
is minimal distortion in terms of shape, size, and intensity val-
ues. The outline of mean image after ICA-fNORM is overlaid over
the “before” ICA-fNORM mean image as shown in Figure 4B.
The outline was computed using 80% of the mean intensity value
from Figure 4A. The overall shape of the brain is preserved and
only a few differences are seen near the areas that are sensitive to
susceptibility artifacts. Also, there is little variation in intensities
introduced by ICA-fNORM, mostly at very low intensity values
as seen from the histograms in Figure 4C estimated using images
from Figures 4A,B.

SPATIAL OVERLAP AND DIFFERENTIAL ANALYSIS
Group activation patterns were extracted using a one-sample t -
test on each subject’s activation maps obtained after – (a) first
level GLM analysis built into SPM5 and (b) GICA, applied on

FIGURE 4 | Averaged data from all 28 subjects in three orthogonal

views corresponding to the two methods under comparison: (A) after

ICA-fNORM; (B) before ICA-fNORM with overlaid boundaries extracted

from images in (A); (C) intensity histograms corresponding to images

presented in (A,B).

the functionally re-aligned (after ICA-fNORM) and regularly
processed (before ICA-fNORM) AOD data. The two main advan-
tages of the proposed approach that were observed irrespective of
the analysis method (GLM or ICA) used, were higher t -statistics
for the same voxel locations and more number of significant voxels
that seemed to fill in possibly task-modulated regions that showed
little significance before applying ICA-fNORM. We investigated
the effects of applying ICA-fNORM using different templates –
(1) TLrest and (2) DMNrest. These were compared against the
results corresponding to regularly processed data, that is, when
ICA-fNORM was not applied.

General linear model
Group activation t -maps (n = 28) obtained after the group GLM
analysis of the two data sets (before and after ICA-fNORM) were
overlaid for the target condition and presented in Figure 5. Each
color on the map represents whether a voxel passed the significance
threshold (t > 6) using either or both methods under comparison.
Overlapping and differential areas seen in Figure 5A depict sev-
eral differences introduced by mapping the data with ICA-fNORM
and TLrest intrinsic network, with the following two as the most
clearly observable. Firstly, some small clusters were found to be
absent in either of the two approaches in addition to some new
voxels that filled the gaps between neighboring active clusters, thus
affecting detection sensitivity. Secondly, the number of significant
voxels (after thresholding at t > 6) obtained after ICA-fNORM
were fairly larger than those before ICA-fNORM.

A similar comparison was done for the t -maps obtained after
analyzing the AOD data that was re-aligned using the DMNrest

template. Overlapping and differential areas of activation for this
particular case are presented in Figure 5B. Additional voxels
(marked red) form contiguous connections between previously
unconnected neighboring activations (see slice z = 3 mm), which

FIGURE 5 |Thresholded activation maps (t > 6, p < 0.0001) for the

target condition from the GLM analysis (n = 28) showing overlapping

and differential regions obtained “before” and “after” ICA-fNORM of

AOD data done using different templates: (A)TLrest, (B) DMNrest. Each
method is indicated using different colors: (i) red – “after” ICA-fNORM; (ii)
black – “before” ICA-fNORM; and (iii) white – voxels active in both (1) and
(2). The functional maps were overlaid on a re-sliced and co-registered
anatomical template in SPM.
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was also our first major observation from Figure 5A. Secondly,
there were a few small clusters where either of the methods have
little or no significant voxels present. Overall, the number of sig-
nificantly active voxels is considerably greater in t -maps estimated
after ICA-fNORM (see Figure 7 for exact numbers).

Independent component analysis
The second method used to analyze the effects of functional nor-
malization on task data (AOD) is GICA (Calhoun et al., 2001).
Note that the same method was applied to the resting state fMRI
data in order to derive the FT (TLrest and DMNrest) from the
resulting independent components. Here, the order was set to
n = 20 and the primary task-related component (termed TLAOD

hereafter) is selected for spatial overlap and ROI analysis. The t -
map for TLAOD was extracted by performing a one-sample t -test
on all 28 back-reconstructed subject-specific maps correspond-
ing to this particular component. These t -maps correspond to
ICA component maps estimated separately for the two data sets
(before and after ICA-fNORM) as presented in Figure 6. The
main observation from Figure 6 is appearance of new clusters
of significant voxels (in red) that failed the threshold (t > 6) prior
to functional normalization. Also some small and medium-sized
clusters were found absent in either of the two approaches. Most
new voxels appear along boundaries of activation regions already
detected before applying ICA-fNORM (in white and black) as
seen in Figure 6A. This was a direct result of re-aligning subjects

FIGURE 6 |Thresholded activation maps (t > 6, p < 0.0001) for theTLAOD

component from ICA analysis (n = 28) showing overlapping and

differential regions obtained “before” and “after” ICA-fNORM of AOD

data done using different templates: (A)TLrest, (B) DMNrest. Each method is

indicated using different colors: (i) red – “after” ICA-fNORM; (ii)
black – “before” ICA-fNORM; and (iii) white – voxels active in both (i) and (ii).
The functional maps were overlaid on a re-sliced and co-registered anatomical
template in SPM.

FIGURE 7 | Difference threshograms derived by subtracting the “after”

and “before” ICA-fNORM t -maps for the target condition estimated

through GLM analysis. The bars correspond to number of voxels gained

(y -axis) after ICA-fNORM for increasing t -threshold (x -axis). Differences are
presented for whole brain (left) and temporal lobe ROI extracted using WFU
Pick Atlas (right) for each template: (A) TLrest and (B) DMNrest.
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to a common functional space, in turn improving the detection
sensitivity of the t -test performed on that group of subjects.

A reverse effect is observed in Figure 6B which corresponds
to functional normalization performed using the DMNrest tem-
plate. Voxels around the boundaries belong to “before” maps in
most slices in Figure 6B, thus showing the inhibitive nature of the
DMN toward positively task-modulated functional systems. Such
modulating behavior along functional boundaries was recently
illustrated in Mennes et al. (2010) where they utilized the resting
state functional boundaries to predict BOLD fMRI task activity.
Our experiment provides further evidence that the most primitive
of relationships between different networks exist along the bound-
aries of these systems and may be utilized favorably to improve the
resultant statistics.

DIFFERENCE THRESHOGRAM ANALYSIS
Next, we compare the results obtained before and after ICA-
fNORM by subtracting the t -maps (after – before) corresponding
to multiple thresholds. The resulting graphic is called a difference
threshogram as the information presented through it suggests. The
process was repeated for results corresponding to each analysis
method used (GLM and ICA) as well as each functional template
utilized in ICA-fNORM.Voxels corresponding to the primary task-
modulated ROI, that is, the temporal lobe, were extracted using
a mask constructed from the Wake Forest University Pick atlas
(WFU Pick Atlas; Lancaster et al., 2000). The masked t -maps for
the “before” and “after” images were subtracted and thresholded
using a range of thresholds.

The aforementioned steps were first applied on t -maps
obtained through GLM analysis. Figures 7A,B show the differ-
ence threshograms under the target condition for the whole brain
(left column) and the temporal lobe (right column) correspond-
ing to the TLrest and DMNrest templates respectively. Application
of ICA-fNORM clearly helps improve the statistics as seen from
large positive change in number of voxels over different thresholds
(Figure 7).

An approach similar to the one used to estimate the
threshograms in Figure 7, is followed for computing the dif-
ference threshograms for the ICA component (TLAOD) t -maps.

Threshograms corresponding to the whole brain and ROI (tem-
poral lobe) are presented separately in Figure 8. The maximum
change is seen in case of TLrest at t > 15 (854 voxels for whole brain;
739 voxels within the temporal lobe) as seen from the threshograms
in Figure 8A. The peaks were observed at a low t -threshold
(t > 6), with gradual increase until attaining the maximum height
at t > 15, eventually decaying to lowest height at the maxi-
mum t -threshold (t > 30). Such behavior was observed in both
threshograms presented in Figure 8A. Thus, t -statistics improved
consistently across the task-engaged region after application of
ICA-fNORM with TLrest.

In case of the DMNrest template, a bimodal type of pattern is
observed from the difference threshograms as seen in Figure 8B.
Initially, there is a large decrease in number of voxels (after ver-
sus before ICA-fNORM) over lower thresholds, but our method
appears to gain more at higher thresholds (t > 15) as seen from
the ROI threshogram (right column) in Figure 8B.

REGION-OF-INTEREST ANALYSIS
To provide further insight into the differences between “before”
and“after”ICA-fNORM results, the activation maps were analyzed
using the automatic anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) and ROI labels of most significant voxels.
Prior to ROI analysis, the activation maps were corrected for mul-
tiple comparisons (p < 0.01) and eventually thresholded (t > 6).
We estimated the location of maxima (x, y, z), mean t -value,
maximum t -value, and number of significant voxels above the
threshold, for all regions labeled within the thresholded t -maps
for both methods. Spatial shifts in activation foci between the
two approaches were computed as the Euclidean distance (ED)
between the local maxima. As in Section “Spatial Overlap and Dif-
ferential Analysis” and “Difference Threshogram Analysis,” these
calculations were repeated on results corresponding to each func-
tional template (TLrest and DMNrest) for the two analysis methods
(GLM and ICA).

Note that we utilized two different types of masks to generate
results in Figure 7B and Tables 1 and 2. The former was generated
using a binary mask where the bilateral temporal lobe is labeled as
the only ROI and voxels qualifying the t -threshold (t > 6) within

FIGURE 8 | Difference threshograms derived by subtracting the “after”

and “before” ICA-fNORM t-maps for theTLAOD component estimated

through ICA. The bars correspond to number of voxels gained (y -axis) after

ICA-fNORM for increasing t -threshold (x -axis). Differences are presented for
Whole brain (left) and Temporal lobe ROI extracted using WFU Pick Atlas
(right) for each template: (A) TLrest and (B) DMNrest.
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that region are used to generate the difference threshograms in
Figure 7B, whereas the values in Table 2 were estimated using
AAL atlas that contains several different regions to parcellate the
functional activation maps anatomically. The motivation for using
separate masks was to present the overall improvements in t -values
by covering the anatomical regions that were not specific to the
AAL atlas.

General linear model
The results of the ROI analysis done for the target condition’s t -
maps are presented in Table 1. The results are tabulated separately
based on the template used for ICA-fNORM and compared against
the GLM results of regular analysis.

In case of TLrest, we found five bilaterally active regions – insula,
supramarginal gyrus, thalamus, superior temporal gyrus, middle
temporal gyrus, and two regions that were significant in the left
brain only – inferior parietal lobule and postcentral gyrus. Per-
centage gains were estimated for t max, t mean, and voxels (as listed
in Table 1), and it was observed that several regions show pos-
itive gain percentages in favor of ICA-fNORM. Regions such as
left insula (4.79%), left supramarginal gyrus, left thalamus, left
superior temporal gyrus, left middle temporal gyrus, right insula,
and right thalamus show highest gains in t max among all regions
(highlighted in Table 1). A similar pattern was also observed for the
mean t -values where most regions had conforming trends for t max

and t mean. A large fall in the t -values was observed for the right
supramarginal gyrus although there was a considerable increase in
this region’s activation volume (42.86%) after ICA-fNORM. This
result was an apt example of the ability of our proposed method
to improve the detection sensitivity while assisting in determining
a region’s significance accurately based on the functional orga-
nization of all subjects within that particular group. Considerable
increase in activation volumes was recorded for 9 out of 12 regions
(in bold) presented in Table 1, highest being for the left middle
temporal gyrus (58.33%).

The group t -maps corresponding to the DMNrest were also
analyzed using the ROI analysis and the most significant regions
reported in Table 1 under the DMNrest columns. This experiment
helped reveal higher t max values for left superior temporal gyrus,
left middle temporal gyrus, and left supramarginal gyrus whereas
lower t max values for these regions were recorded in the right half
of the brain. Almost similar patterns were observed for the t mean

with an exception of right supramarginal gyrus and left inferior
parietal lobule. As observed in case of TLrest, right supramarginal
gyrus showed maximum increase in volume of activation even
though there was a minor drop observed in the t max and t mean

values. Other task-engaged regions such as the left middle tem-
poral gyrus (116.67%), thalamus (L: 17.95%; R: 30.14%), and
right superior temporal gyrus (39.06%) show large increases in
activation.

Irrespective of the template used, the activation foci of some
regions shifted considerably after applying ICA-fNORM as seen
from the ED columns in Table 1. The regions that experienced
maximum shift in local maximum include left postcentral gyrus,
right supramarginal gyrus, right thalamus, and right superior tem-
poral gyrus. However, there were some regions that shifted in
case of only one of the templates – left thalamus (TLrest), and

left middle temporal gyrus (DMNrest), left supramarginal gyrus
(DMNrest).

Independent component analysis
The results of the ROI analysis done for the group level t -maps
corresponding to the temporal lobe component are presented
in Table 2. The activation maps corresponding to the primary
task-positive component from functionally re-aligned AOD data
(TLAOD) were analyzed and ROI labels of most significant voxels
were derived. The results corresponding to different templates are
summarized below.

In case of TLrest, we identified eight anatomical regions out of
which six showed significant bilateral activity – precentral gyrus,
supramarginal gyrus, thalamus, superior temporal gyrus, middle
temporal gyrus, and postcentral gyrus. Two regions – insula and
inferior parietal lobule, were significant in the left brain only as
presented in Table 2. Two regions that recorded the maximum rel-
ative percentage gain in t max were the superior temporal gyrus (L:
10.51%; R: 43.87%) and the middle temporal gyrus (L: 19.36%;
R: 23.37%). These anatomical regions also showed similar pat-
terns of improvement in t mean with gains as high as ∼16% (right
superior temporal gyrus). However, the volumetric gains for the
aforementioned regions were minimal. The maximum improve-
ment in terms of volume was observed for supramarginal gyrus (L:
35.5%; R: 65.87%) and precentral gyrus (L: 30.65%; R: 40.74%).
As an outlier, the right thalamus experienced decrease in t max and
t mean and a slight improvement in volume (10.48%).

Interestingly, the global maximum for regularly processed data
was observed within the left insula. Whereas, the global maxi-
mum for functionally re-aligned data was found in a more highly
task-engaged region, that is, the right superior temporal gyrus
(highlighted in Table 2) alongside highest improvement in mean
t -value. ED measures (TLrest) shown in Table 2 indicated maxi-
mum shift of the activation foci for two regions that also showed
consistent improvement in rest of the statistics – right superior
temporal gyrus (28.14 mm) and the right middle temporal gyrus
(24.74 mm). A slightly different pattern was observed, in case
of DMNrest template, where large shifts in activation foci were
observed for the left superior (17.23 mm) and middle tempo-
ral gyrus (7.35 mm), right superior temporal gyrus (11.22 mm)
but no change for right middle temporal gyrus. In addition
to the above regions, more than half other regions reported in
Table 2 showed significant shifts in activation foci for of both the
templates.

In case of the DMNrest template, we used two different thresh-
olds to perform the ROI analysis separately. The two thresh-
olds used for this experiment were t > 6 (Table 2) and t > 16
(Table 3). A reasonable explanation for performing a multi-
threshold analysis can be justified through the bipolar nature
observed in Figure 8B. An expected but interesting pattern was
observed after analyzing the component t -maps using multiple
thresholds.

Threshold: (t > 6): Although minor, several regions showed
negative gain (decreases) in t mean values after ICA-fNORM with
exceptions of precentral gyrus, postcentral gyrus, supramarginal
gyrus, and right superior temporal gyrus. Similar pattern was
observed in volume calculations with exceptions of supramarginal

Frontiers in Systems Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 93 | 12

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Khullar et al. ICA-fNORM

Table 3 | Activation labels and other attributes estimated using a higher threshold (t > 16) for t -maps corresponding to ICA-fNORM using

DMNrest template.

ICA Before ICA-fNORM DMNrest (after ICA-fNORM)

TLAOD x y z tmean Voxels

(t > 16)

x y z tmean % gain Voxels

(t > 16)

% gain ED

(in mm)

L supramarginal gyrus −66 −21 15 16.24 2 −60 −24 15 17.3 6.53 6 200 6.71

L superior temporal gyrus −57 −9 6 19.13 260 −45 −21 3 19.8 3.5 264 1.54 17.23

L middle temporal gyrus −54 −18 0 18.15 71 −48 −21 −3 18.8 3.58 87 22.54 7.35

L postcentral gyrus −60 −12 15 17.46 14 −57 −15 15 17.33 −0.74 21 50 4.24

R supramarginal gyrus 54 −24 18 17.77 6 54 −24 18 17.85 0.45 7 16.67 0

R superior temporal gyrus 63 −33 9 18.49 295 66 −27 0 18.46 −0.16 325 10.17 11.22

R middle temporal gyrus 63 −30 0 18.01 90 63 −30 0 18.91 5 83 −7.78 0

Total = 738 Total = 793

We utilized multiple thresholds to depict the differences in regional activity and highlight the advantages of ICA-fNORM (using this particular template).Table 2 shows

the results corresponding to t-maps thresholded at t > 6 and this table shows the results for t-maps thresholded at t > 16. Note that the tmax values do not depend on

the threshold used, thus omitted from being reported here. The most notable changes are highlighted in bold (refer to text for more details).

gyrus (L: 11.5%; R: 40.58%) and right precentral gyrus (51.85%)
indicating enlarged activation volume. However, large improve-
ments in local maxima were observed for all regions other than
the thalamus region as reported in Table 2.

Threshold: (t > 16): Regions with significant differences at this
threshold are presented in Table 3 separately. Considerable per-
cent gain was observed in t mean and volume for the primary
task-engaged regions reported here. The superior temporal gyrus
(L: 1.54%, R: 16.67%), left middle temporal gyrus (22.54%), and
supramarginal gyrus (L: 200%; R: 16.67%) showed large gain in
activation volume. Thus, at higher significance levels, the DMNrest

template has more impact on the functional boundaries of primary
task-engaging regions.

This section provided evidence showing how ICA-fNORM,
using functional information from two INs helped improve
various aspects of post-analysis results such as t -statistics and
detection sensitivity and possibly help identify differences in
region-wise activity that may go un-noticed otherwise.

TRANSITION REGIONS
In results presented so far, the most consistent post ICA-fNORM
differences in spatial maps were observed around the edges of acti-
vation regions. These observations partially concur with recent
work (Mennes et al., 2010) that presented evidence regarding
strong spatial associations, known as transition zones, that exist
between regions representing resting state dynamics and those
active during a cognitive task. After doing a selective threshold
analysis (see Figure 9), we observed differences around regions
that conformed the recent findings (Mennes et al., 2010) about
interactions between various cognitive states. In Figure 9, some
major regional differences occurring at various levels of signifi-
cance are shown by utilizing the t -maps presented in for TLAOD

(Figure 6A) and different intervals of t -thresholds to divide them
in to boundary-type representations at various levels of statistical
significance. It was already clear from Figure 7 that more voxels
appear to be significant (t > 6) after application of ICA-fNORM.
Whereas Figure 9 is focused on the distribution of voxels around

edges at various levels of significance (starting at t > 4), thus
establishing favorable relationship between the INs from resting
state and functional systems involved in cognitive task process-
ing. Other than transitions occurring around edges, several small
clusters of active voxels exist at high range thresholds indicat-
ing activity that went undetected prior to ICA-fNORM. The new
regions were detected only after involving the intrinsic systems
of each subject’s brain and re-aligning them with respect to the
functional properties of that group.

DISCUSSION
In this paper, we presented a new framework for functional nor-
malization using resting state networks. We provided evidence
suggesting that the proposed algorithm assists in improving the
statistical results of activation patterns extracted from task-fMRI
data. Temporally coherent INs were treated as a basis set depicting
functional boundaries of an individual’s brain (REST-fMRI) and
successfully utilized to re-align the same individual’s data acquired
while they performed a cognitive task. Thus, each individual’s task
data was brought to a standard space by warping it based on spa-
tial variations in functional domains relative to the group. The
improvement in statistics led to some noteworthy findings about
the functional involvement of various regions as compared to what
was known before application of ICA-fNORM. However, there is
enough room for further investigation in order to accurately inter-
pret and parcellate the subtle changes introduced as a result of
computational approaches such as these.

The different fMRI images obtained from the two approaches
(MNI-based normalization and MNI-based + ICA-fNORM) were
first seen to be different through minor changes observed in the
histograms presented in Figure 4. There was minimal morpholog-
ical distortion and minor changes in the shape of the brain after
proper application of functional normalization (see Morphologi-
cal and Intensity Variations for a discussion of the need to reset the
affine transformation to an identity matrix). Therefore, the pro-
posed algorithm re-aligns the task-fMRI data without introducing
large morphological or intensity variations in the resulting images.
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FIGURE 9 | Illustration of transition zones using

range-thresholding of the primary task-positive component

t -map obtained through group-ICA. All voxels are labeled based
on the method – (i) “black”: Before ICA-fNORM, (ii) “red”: After

ICA-fNORM, and (iii) white – voxels active in both (i) and (ii). Most
edge-based differences are seen at lower and middle-range
thresholds whereas large cluster-based differences are seen at high
thresholds.

ENHANCED DETECTION SENSITIVITY
Analysis of the functionally re-aligned AOD data showed larger
activation volumes. This result was further supported by metrics
computed using t -maps from the two analysis methods (ICA and
GLM). In order to compare the results on a global scale, difference
threshograms were presented for each template in Figure 7 (GLM)
and Figure 8 (ICA).

Comparisons based on GLM analysis revealed substantial dif-
ferences in spatial properties of activation. Spatial analysis of
t -maps demonstrated large overlapping and differential areas of
activation for either or both methods (Figure 5). Application of
ICA-fNORM resulted in considerably greater number of voxels
being active at high levels of significance. These voxels mostly
existed as small clusters or edges around regions active prior to
ICA-fNORM, especially around the supramarginal gyrus, supe-
rior and middle temporal regions, and the thalamus. Such spatial
behavior was observed irrespective of the functional template
(TLrest or DMNrest) used for normalization. More prominent
shape of the temporal lobe was observed in case of activation

components derived using ICA as compared to the β-maps derived
using GLM. However, the two methods share the primary spatial
characteristics of activation patterns observed, that is, the differ-
ences introduced after ICA-fNORM mostly exist around edges and
in the form of small overlapping clusters as seen from Figures 5
and 6. For the ICA results, the t -statistics improved consistently
across the task-engaged region after application of ICA-fNORM
for the TLrest template. However, a different behavior was observed
in case of DMNrest which exhibited decreasing differences until a
certain threshold (t > 15), followed by a positive gain at higher
t -values. The transitions from negative to positive gain occur at
t = 15 which is also the peak threshold in case of TLrest. To fur-
ther support these findings, a brief discussion on transition zones
alongside thresholded representations of ICA component map was
provided in Section “Transition Regions” where we demonstrated
that there were an increasing number of voxels showing differences
at high threshold levels.

It is possible that changes in activation extent (Figures 7 and 8)
in group analysis can be a result of complicated interactions
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between individual subject’s activation boundaries during the
functional normalization performed using SPM’s spatial nor-
malization routine (low dimensional non-linear basis functions).
However, significant improvements in statistics were observed
even in regions that were spatially distant from the region(s) used
for functional normalization, for, e.g., ICA-fNORM with DMNrest

improved statistics for regions active within the temporal lobe.
This provides initial evidence to suggest that there are undiscov-
ered relationships between the intrinsic functional organization
of an individual’s brain and the manner it deploys resources to
process a cognitive task.

DEFAULT MODE NETWORK AND ICA-fNORM
Several studies in the past have shown the deactivation patterns
in the DMN to be associated with regions routinely exhibiting
positively task-modulated patterns (Raichle et al., 2001; Fox et al.,
2005). Even though DMN is known to be negatively modulated
during a task, we hypothesized that the spatial boundaries of an
individual’s DMN during rest can be used to re-align the functional
boundaries corresponding to the same brain while it performs a
cognitive task. We bolstered our argument relating intrinsic func-
tional boundaries and task-related statistics by presenting results
obtained after applying ICA-fNORM using an intrinsic network
(DMNrest) that is known to be deactivated during a task (see Spa-
tial Overlap and Differential Analysis, Difference Threshogram
Analysis, and Region-of-Interest Analysis). In addition to being
negatively task-modulated, the DMNrest template does not spa-
tially correlate with the positively task-modulated region (tempo-
ral lobe) and yet we observe large improvements in a statistical
sense (Tables 1 and 2) and in detection sensitivity (Figures 5–8).
The improvements in detection sensitivity were rather obvious
from the results corresponding to the GLM analysis (Figures 5
and 7). However, a relatively contrasting result in ICA analysis was
observed for the case when the DMNrest template was utilized for
re-alignment. The number of significantly active voxels demon-
strated negative gain for relatively lower (6 < t < 15) and positive
gain for higher (t > 16) thresholds (see Figure 7, and Tables 2
and 3). We hypothesize that re-alignment with warp parameters
based on DMNrest leads to complimentary interactions with the
task-engaged region (temporal lobe) at a global level. This led
to improvement in statistics especially at higher t -values. Such
a behavior can reveal initial information regarding the DMN’s
boundaries being more interactive with voxels that were of high
significance in majority of subjects, and thus being highly sig-
nificant at a group level. By individually warping each subject’s
DMNrest network to the group mean, our method was able to com-
pensate for the inter-subject variability in activation boundaries
for this particular network. As a result, the statistics and detection
sensitivity increased considerably at a group level, irrespective of
the type of template used for normalization.

INTRA-GROUP REGIONAL DEPENDENCIES REVEALED BY ICA-fNORM
The spatial analysis done using threshograms and overlapping t -
maps did not reveal information about anatomical regions that
experienced change, large or small, after functional normalization.
In order to specifically label the anatomical regions that com-
prise the activation patterns obtained after different methods of

normalization, we applied an ROI analysis on activation t -maps
from GLM and ICA as presented in Section “Region-of-Interest
Analysis.” This revealed further details about the specific improve-
ments in certain statistical features that were helpful in supporting
the utility of our proposed method. Using this ROI analysis, it
was discovered that certain regions such as the thalamus, superior
and middle temporal gyrus, supramarginal gyrus, and precentral
gyrus demonstrated consistent improvements in number of sig-
nificant voxels, mean t -values, and local maximum, across both
analysis methods (GLM and ICA). In case of task-positive tem-
plate (TLrest), most identified regions show consistent percentage
gain in t max and tmean values irrespective of the analysis method
used as seen in Tables 1–3. However, in the case of DMNrest tem-
plate, the two regions also identified as the primary task-engaged
regions – (1) superior temporal gyrus, and (2) middle temporal
gyrus, stood out in terms of improvement in local maxima and
mean t -values irrespective of the method used.

Another striking change observed as a result of applying ICA-
fNORM was the shift in the location of the global maximum
(t max) of the TLAOD component from the insula to the supe-
rior temporal gyrus. The latter region, in addition to the middle
temporal gyrus, is known to be relatively more engaged in pro-
cessing the auditory stimulus (targets) presented randomly during
the AOD task (Kiehl et al., 2005). Thus, the new location of the
global maximum is more intuitive and anatomically relevant to
the task at hand as compared to the results observed before (see
Table 2). These changes suggest that intrinsic functional systems
within the brain are capable of compensating for the inter-subject
variation in functional properties. Thus, the above observations
further strengthen the undiscovered, but statistically favorable
relationships between the boundaries of intrinsically and vari-
ably modulated functional systems with task-modulated regions
of highest significance within each individual. Hence, the results
(Tables 1–3) suggest our method may provide relatively more
accurate information regarding the location of activation maxima,
voxels, and boundaries involved in processing the task stimuli.

OTHER EXPERIMENTS WITH ICA-fNORM
We believe that applying ICA-fNORM to the REST-fMRI data
using the resting state networks that are derived from the same data
set might assist in making better decisions about functional net-
work connectivity and also reveal new regions that have significant
connections that were previously averaged out due to inter-subject
functional variability. Three substantial reasons for why we used
AOD fMRI were – (1) to validate the approach on an independently
acquired data set, (2) to show that the INs at rest can be used to
spatially normalize the INs at work, and (3) use both GLM and ICA
to validate the framework on task data that has a specific temporal
pattern associated with it in contrast to the low-frequency fluctua-
tions within resting state networks. On the other hand, the notion
of using activation networks from the task data set to re-align the
same data may theoretically be considered a valid approach but
it is more susceptible to circular analysis (double-dipping) type
of concerns that may in turn bias the final results. However, the
work by Sabuncu et al. (2010) has revealed that using two differ-
ent tasks, known to engage similar brain regions, for functional
re-alignment can convincingly improve the statistical significance
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of the regions involved in performing the task. This work pro-
vided initial evidence that cross-utilization of information from
multiple data sets could be used in order to make more informed
inference about the patterns of neural activity.

METHODOLOGICAL LIMITATIONS AND FUTURE WORK
NON-LINEAR REGISTRATION AND SUBJECT-LEVEL IMPROVEMENTS: A
PRAGMATIC EXPLANATION
When studying a group of subjects, it is a known fact that structure
and function are not always tightly coupled. Perfect registration of
structure does not imply the same for regions that perform similar
functions in different individuals. In this paper we introduced a
novel framework that utilized resting state networks to derive a
functionally standard space specific for a group of subjects. This
process revealed interesting positive and negative relationships
between various intrinsic resting networks and regions involved in
performing a task. In this section we discuss a few methodological
limitations and present possible reasoning and arguments.

A noteworthy issue with the current model used to derive the
non-linear warps is its property of being non-invertible, thus mak-
ing it difficult to transfer the results from template space to sub-
jects’ individual co-ordinates. An alternative to compute inverse
deformation fields that exists within SPM5 uses symmetric pri-
ors and group-specific averages to compute mappings efficiently
(Ashburner et al., 2000). We plan to experiment with inverse defor-
mations and other algorithms that generate invertible mappings as
part of our future work. Another possible problem that may arise
as a result of non-linear warping is unnecessary spatial expan-
sion of certain regions, especially the ones corresponding to high
loading values in the resting state ICA templates used for registra-
tion. To further explore this issue, subject-specific activation maps
obtained after ICA (temporal lobe component) of AOD data are
overlaid and compared in Figure 10. Different colors in Figure 10A
represent the number of subjects with that particular voxel active.
Regions with the most striking differences between before and
after ICA-fNORM results exist near the center of activation regions
where most subjects have significantly active (z > 3) voxels. This
finding is further illustrated in Figure 10B where voxels that are
significant (z > 3) in all 28 subjects are shown separately using
an axial rendering. These differences help establish the fact that
there is certain improvement in functional significance of cen-
trally located voxels across all subjects without introducing a large
number of false positives (expected due to non-linear registration)
within the activation region (see Figure 10A).

At this stage, it is appropriate to re-iterate that we chose two spe-
cific networks as templates in order to illustrate a proof-of-concept
explaining the possibility of doing re-alignment of task-fMRI
using resting state fMRI data. This paper, at no point, claims to
suggest that these networks are the best suited FT for normal-
ization of AOD data. It is evident from existing literature that
performing an auditory oddball task excites a network of regions
in the temporal, parietal, frontal cortices, and insula. Thus, it is
highly likely that these INs may prove to be more or as much use-
ful for functional re-alignment. We propose to investigate effects
of using combination of multiple components in coherence with
a more sophisticated registration scheme as a part of related
future work.

FIGURE 10 | Subject-specific results from all 28 subjects presented

using incidence maps from the temporal lobe IC derived from before

and after ICA-fNORM data sets. (A) Incidence maps with voxels that
overlap in at least 8 subjects (pink) to all 28 subjects (orange). Significant
differences near the center of activation clusters are highlighted to illustrate
higher functional significance of neighboring voxels after ICA-fNORM is
applied. (B) Rendering of voxels from all 28 subjects to highlight the
improvement in functional localization at a subject-specific level. More
common voxels across subjects are found to be significant after applying
ICA-fNORM.

FOR THE FUTURE: EXTENDING THE PROOF-OF-CONCEPT
In future, we intend to explore aspects that may help improve the
current methodology and ultimately result in a highly robust and
simple-to-implement framework. To start with, we are currently
working on methods to develop a template that combines multi-
ple INs to extract normalization parameters from the resting state
group fMRI data. In addition, we also wish to explore and apply
some of the more general spatial normalization approaches that
utilize diffeomorphic transformations such as DARTEL (imple-
mented within SPM) and others (Marsland and Twining, 2004;
Ashburner, 2007; Avants et al., 2008; Sabuncu et al., 2009) to
compute warps between the group level activation map and the
subject-specific maps.

A possible application may be to use the ICA-fNORM method-
ology as the last pre-processing step when performing inter-
group comparisons, for example, healthy controls and schizophre-
nia patients. The inter-group differences are expected to change
and possibly reveal marked dissimilarities in cognitive systems
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co-existing in rest and task that may have been difficult to detect
earlier due to the large magnitude of inter-subject variations, espe-
cially within the patient groups. However, there is still some uncer-
tainty whether the disrupted networks in task would be affected
negatively from the rest networks, eventually resulting in loss of
activation information. It remains to be seen if we can somehow
utilize methods that establish cross-task relationships, to better
understand some of the convoluted brain dynamics underlying
various neurodegenerative illnesses.

CONCLUSION
This article lays a foundation for utilizing several known rest-
ing (intrinsic) networks as multiple basis functions to derive a
functionally standard space. Our proposed framework, termed
as ICA-fNORM utilizes the inter-subject variation in functional
boundaries across a group to better align the functional domains
within task-fMRI data recorded for the same group. A comprehen-
sive set of results presented in this paper show significant improve-
ments in detection sensitivity, localization of activity, and above
all statistical significance of most regions known to be involved in
performing an auditory oddball task. Using a task-positive (TLrest)
and a task-negative (DMNrest) intrinsic network as separate FT not
only helps achieve gains in the statistical significance of the derived

results, but also reveal interesting relationships about variability
in interactions at multiple levels of significance (transition zones).
We used two INs separately to demonstrate the proof-of-concept,
but a future direction motivated by this work is to utilize more
networks as a combination. Our results suggest that combining
multiple INs into a single functional template, based on the nature
of task (auditory, visual, or attention), may help uncover higher
levels of interactions associated with intrinsic dynamics and task-
performance. We believe that the proposed method has a lot of
potential and can be considered user-ready in its current form for
experimentation under various pre-processing scenarios. Also, it
is possible that a high dimensional warping scheme may be able to
benefit this particular framework as compared to the current low
dimensional scheme (from SPM) utilized in our approach.
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