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Variability in source dynamics across the sources in an activated network may be indica-
tive of how the information is processed within a network. Information-theoretic tools
allow one not only to characterize local brain dynamics but also to describe interactions
between distributed brain activity. This study follows such a framework and explores the
relations between signal variability and asymmetry in mutual interdependencies in a data-
driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human
magnetoencephalographic (MEG) data collected as a reaction to a face recognition task.
Asymmetry in non-linear interdependencies in the network was analyzed using transfer
entropy, which quantifies predictive information transfer between the sources. Variabil-
ity of the source activity was estimated using multi-scale entropy, quantifying the rate
of which information is generated. The empirical results are supported by an analysis of
synthetic data based on the dynamics of coupled systems with time delay in coupling.
We found that the amount of information transferred from one source to another was
correlated with the difference in variability between the dynamics of these two sources,
with the directionality of net information transfer depending on the time scale at which
the sample entropy was computed.The results based on synthetic data suggest that both
time delay and strength of coupling can contribute to the relations between variability of
brain signals and information transfer between them. Our findings support the previous
attempts to characterize functional organization of the activated brain, based on a com-
bination of non-linear dynamics and temporal features of brain connectivity, such as time
delay.
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1. INTRODUCTION
Recently, significant progress has been made showing that cogni-
tive operations result from the generation and transformation of
cooperative modes of neural activity (Bressler, 1995, 2002; McIn-
tosh, 1999). Specifically, the progress in this field was based on the
principle that emphasizes the integrative capacity of the brain in
terms of ensembles of coupled neural systems (Nunez, 1995; Jirsa
and McIntosh, 2007). In turn, we have witnessed advances both
in the modeling endeavors to explore brain integration and the
collection of empirical evidence in support for this integration.

From the theoretical point of view, the neural ensembles can be
represented by single oscillators (Haken, 1996). Further, different
neural ensembles can be coupled with long-range connections,
forming a large-scale network of coupled oscillators. Due to the
separation of sources in the space and limited transmission speeds,
communication between brain regions may include time delays.
Thus, the coupling between two nodes in a brain network can be
characterized by the connection strength, directionality, and time
delay. In turn, time delays in coupling can influence the dynami-
cal properties of coupled oscillatory models (Niebur et al., 1991).
Encouraging results were obtained in modeling the resting state

network dynamics wherein time delays play a crucial role in gen-
eration of the realistic fluctuations in brain signals (Ghosh et al.,
2008; Deco et al., 2009).

At the same time, from the perspective of empirical analy-
sis, recently developed non-linear tools were able to characterize
variability of local brain dynamics and interaction effects of dis-
tributed brain activity (see Stam, 2005 for a review). Information-
theoretic techniques provide a model-free non-linear approach to
address both issues (Pereda et al., 2005; Vakorin et al., 2011).

First, such techniques can be used to characterize the variabil-
ity in brain signals as a consequence of more complicated neural
processing. A typical application includes a comparative analysis
of different groups, for example, in brain development (McIn-
tosh et al., 2008) or clinical versus normal populations (Stam,
2005), or different conditions within the same groups (Lippé et al.,
2009). Traditionally, the analysis is performed at the level of elec-
troencephalographic (EEG) or magnetoencephalographic (MEG)
scalp measurements that do not directly represent localized brain
regions in the vicinity of one electrode due to volume conduction
(Nunez and Shrinivasan, 2005). The translation to source space
would be a logical extension, and it has been recently shown that
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entropy-based techniques are sensitive enough to discriminate the
variability of neural activity within a network of sources (Mišić
et al., 2010; Vakorin et al., 2010b).

Second, a number of studies have explored methods of assess-
ing linear and non-linear interactions between dynamics of neu-
ronal sources, reconstructed using beamformers (Hadjipapas et al.,
2005; Vakorin et al., 2010b; Wibral et al., 2011). Analyses of asym-
metries in non-linear interdependency between different brain
areas, both in normal and clinical populations, may provide an
insight upon processing and integration of information in a neu-
ronal network. The time course of one process may predict the time
course of another process better than the other way around. This
enhancement in predictive power can characterize the coupling
between these two processes (Blinowska et al., 2004; Hlavackova-
Schindler et al., 2007). This idea was originally proposed by
Granger (1969), who used autoregressive models to describe the
interaction between the processes as well as the time courses of the
processes themselves. A non-linear extension of the framework of
predicting a future of one system from the past and present of
another one is based on estimating the information transfer, using
information-theoretic tools. Two measures can be used, namely
transfer entropy (Schreiber, 2000) or conditional mutual infor-
mation (Palus et al., 2001), which are essentially equivalent to each
other under certain conditions (Palus and Vejmelka, 2007). Trans-
fer entropy has been applied in both EEG (Chavez et al., 2003;
Vakorin et al., 2010a) and MEG data (Vicente et al., 2011; Wibral
et al., 2011), as well in functional magnetic resonance imaging
(Hinrichs et al., 2006).

Differences in signal variability among brain areas constituting
an activated network as a reaction to a cognitive or perceptual task,
can be indicative of how that task is being processed in the brain
(Mišić et al., 2010; Vakorin et al., 2010b). In this study, we explored
empirical aspects of the relations between complexity of individual
sources constituting a network and the exchange of information
between them. The analysis was performed under the assumption
that the neuronal ensembles activated in performing the task can
be represented by non-linear dynamic systems interacting with
each other.

The first part of this study presents a data-driven pipeline for
non-linear analysis of neuromagnetic sources reconstructed from
human MEG data collected in reaction to face recognition task.
Specifically, we first computed the asymmetries in mutual inter-
dependencies between the original MEG sources using the condi-
tional mutual information as a measure of information transfer.
We then estimated variability of the MEG sources using the mea-
sure of sample entropy. Sample entropy was designed in essence
as an approximation to the Kolmogorov entropy (Richman and
Moorman, 2000), which can be interpreted as the mean rate of
information generated by a dynamic system (Kolmogorov, 1959).
Sample entropy can be used to infer the presence of non-linear
effects. In practice, however, sample entropy is sensitive not only
to non-linear deterministic effects but also to the linear stochas-
tic effects such as, for example, auto-correlation. A number of
studies indicate that the information averaged over a larger time
horizon can reflect non-linear determinism with higher confi-
dence (Govindan et al., 2007; Kaffashi et al., 2008). Multi-scale
entropy represents an approach when sample entropy is estimated

at different time scales (Costa et al., 2002). In this study, we
explored how the differences in variability of the source dynam-
ics, estimated at fine and coarse time scales, can be explained, in
a statistical sense, by an asymmetry in the amount of informa-
tion transferred from one source to another. In the second part
of this study, using synthetic data based on a model of coupled
non-linear oscillators with time delay in coupling, we demon-
strated how the effects found in the MEG data, may arise from
time delayed interactions.

2. METHODS
2.1. PARTICIPANTS
Twenty-two healthy adults (20–41 years, mean = 25.7 year, 9
female) took part in the study. None of the participants wore
any metallic implants or had metal in their dental work and all
reported normal or corrected-to-normal vision. Experiments were
performed with the informed consent of each individual and with
the approval of the Research Ethics Board at the Hospital for Sick
Children.

2.2. STIMULI AND TASK
Participants performed a one-back task in which they judged
whether the currently viewed stimulus was the same as the previ-
ous one. The stimulus set comprised 240 grayscale photographs of
unfamiliar faces of young adults (2.4˚ × 3˚ visual angle) with neu-
tral expressions. All faces were without glasses, earrings, jewelry, or
other paraphernalia. Male and female faces were equiprobable. In
each block of trials, one-third of the faces immediately repeated.
Thus, there were 120 new faces that either did or did not repeat
on the subsequent trial (N1 and N2, 60 trials each), as well as
60 repeated faces (R) per block (180 faces in total). Upright faces
were presented in one block and inverted faces in the other, with
the order of the two blocks counterbalanced across participants.
For more information on stimulus control please see Taylor et al.
(2008). The tasks will be coded as invN1, invN2, invR, upN1, upN2,
and upR.

2.3. MEG SIGNAL ACQUISITION
The MEG was acquired in a magnetically shielded room at the
Hospital for Sick Children. Head position relative to the MEG
sensor array was determined at the start and end of each block
using three localization coils that were placed at the nasion and
bilateral preauricular points prior to acquisition. Motion toler-
ance was set to 0.5 cm. Surface magnetic fields were recorded using
a 151-channel whole-head CTF system (MEG International Ser-
vices, Ltd., Coquitlam, BC) at a rate of 625 Hz, with a band pass of
DC-100 Hz. Data were epoched into [−100 1500] ms segments
time-locked to stimulus onset. Structural Magnetic Resonance
Imaging (MRI) data were also acquired for each participant. Fol-
lowing the MEG recording session, the three localization coils were
replaced by MRI-visible markers and 3D SPGR (T1-weighted)
anatomical images were acquired using a 1.5-T Signa Advantage
system (GE Medical Systems, Milwaukee, WI).

2.4. EXTRACTION OF NEUROMAGNETIC SOURCES
Individual anatomical MR images were warped into a common
Talairach space using a non-linear transform in SPM2. Latencies
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of interest were chosen from the group average event-related fields
(ERFs). Source analysis was performed using event-related beam-
forming (ERB; Robinson and Vrba, 1999; Sekihara et al., 2001;
Cheyne et al., 2007), a 3D spatial filtering technique which is used
to estimate instantaneous source power at desired locations in the
brain. To model the forward solution for the beamformer, multiple
sphere models were fit to the inner skull surface of each partici-
pant’s MRI using BrainSuite software (Shattuck and Leahy, 2002).
Activity at each target source was estimated as a weighted sum of
the surface field measurements. Weight parameters and the ori-
entation of the source dipole were optimized in the least squares
sense, such that the average power originating from all other loca-
tions was maximally attenuated without any change to the power
of the forward solution associated with the target source. The
weights were then used to compute single-trial time series for each
source.

Two prominent peaks sensitive to facial orientation were
observed at 100 ms and 150 ms following stimulus onset
(Figure 1A) and were localized bilaterally to the primary visual
cortex (Figure 1B, sources 1 and 2) and bilaterally to fusiform
gyrus (Figure 1B, sources 3 and 4), respectively. A third, less
prominent peak was observed at 220 ms (Figure 1C) and was
most affected by the memory manipulation (i.e., it differed most
between the first presentation of a face and its repeat). To avoid
any confounding interaction between the effects of face inversion
and working memory, the N2-R difference waves were computed
and localized separately for Upright and Inverted faces (Figure 1D,
sources 5 and 6, respectively). Both were localized to the anterior
cingulate cortex. Thus, neuromagnetic activity was extracted from
all six source locations, in all six conditions. For the purpose of
this paper, the sources were coded as follows: (1) VISL; (2) VISR;
(3) FUSL; (4) FUSR; (5) ACCUP; (6) ACCINV.

2.5. INFORMATION GENERATED BY A SYSTEM
Many complex biophysiological phenomena are due to non-linear
effects. Recently there has been an increasing interest in study-
ing complex neural networks in the brain, specifically by applying
concepts and time series analysis techniques derived from non-
linear dynamics (see Stam, 2005 for a comprehensive review on
non-linear dynamical analysis of EEG/MEG). Various statistics
quantifying signal variability based on the presence of non-linear
deterministic effects, were developed to compare and distinguish
time series. Among others, sample entropy was developed as a
measure of signal regularity (Richman and Moorman, 2000). The
sample entropy was proposed as a refined version of approxi-
mate entropy (Pincus, 1991), compensating for self-matches in
the signal patterns. In turn, approximate entropy was devised
as an attempt to estimate Kolmogorov entropy (Grassberger and
Procaccia, 1983), the rate of information generated by a dynamic
system, from noisy and short time series of clinical data.

One approach to non-linear analysis consists of reconstruct-
ing the underlying dynamical systems underlying EEG or MEG
time series through time delay embedding. Specifically, let xt

denote the delay vectors, describing recent history of the observed
process xt:

x t = (
xt , xt − τ , . . . , xt−τ(d−1)

)T
(1)

where d is embedding dimension, and τ is embedding delay
measured in multiples of the sampling interval.

For estimating sample entropy of time series xt, two multi-
dimensional representations of xt are used, as defined by two sets
of embedding parameters: {d, τ } and {d + 1, τ }. Typically, the val-
ues of the time embedding delay τ are kept equal to 1, measured
in data points of a given time series for which sample entropy
is to be estimated. Sample entropy can be estimated in terms of
the average natural logarithm of conditional probability that two
delay vectors (points in a multi-dimensional state-space), which
are close in the d-dimensional space (meaning that the distance
between them is less than the scale length r), will remain close in
the (d + 1)-dimensional space. A greater likelihood of remaining
close results in smaller values for the sample entropy statistic, indi-
cating fewer irregularities. Conversely, higher values are associated
with the signals having more variability and less regular patterns
in their representations.

Specifically, let x(d)
t = (xt , xt−1, . . . , xt−d+1)

T represent
d-dimensional (N − m − 1) delay vectors reconstructed from a
time series xt of length N. The function Bd

i (r) is defined as

1/(N − d − 1) multiplied by the number of state vectors x(d)
j

located within r of x(d)
j :

Bd
i (r) = 1

N − d − 1

N−d∑
j such that

j �=i

�
(

r −
∥∥∥x(d)

i − x(d)
j

∥∥∥)
(2)

where j goes from 1 to N − d, and ||·|| stands for the maximum
norm distance between two state vectors. Then, averaging across
(N − d) vectors, we have

Bd(r) = 1

N − d

N−d∑
i=1

Bd
i (r) (3)

Similarly, the equivalent of Bd
i (r) in a (d + 1)-dimensional rep-

resentation of the original time series x(t ), the function Ad
i (r) , is

given by 1/(N − d − 1) times the number of state vectors x(d+1)
j

located within r of x(d+1)
j :

Ad
i (r) = 1

N − d − 1

N−d∑
j such that

j �=i

�
(

r −
∥∥∥x(d+1)

i − x(d+1)
j

∥∥∥)
(4)

which can be averaged across (M − n) points as

Ad(r) = 1

N − d

N−d∑
i=1

Ad
i (r) (5)

Sample entropy is defined as

SampEn(d , r) = ln
[

Bd(r)
]

− ln
[

Ad(r)
]

= −ln

[
Ad(r)

Bd(r)

]
(6)

Frontiers in Systems Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 96 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Vakorin et al. Generation and transfer of information in MEG

FIGURE 1 | Source reconstruction using ERB. The first two peaks in the surface fields (A) were directly localized to the left and right primary visual cortex
[sources 1 and 2, (B) left] and the left and right occipito-temporal cortex [sources 3 and 4, (B) right].The third peak [sources 5 and 6, (D)] was not localized directly
from the surface field ERFs, but rather at the latency at which the difference in global field power (GFP) was greatest between the N2 and R conditions (C).

Multi-scale entropy (MSE) was proposed to estimate sample
entropy of finite time series at different time scales (Costa et al.,
2002). First, multiple coarse-grained time series are constructed

from the original signal. This is performed by averaging the
data points from the original time series within non-overlapping
windows of increasing length. Specifically, the amplitude of the
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coarse-grained time series y(θ)(t ) at time scale θ is calculated
according to

y(θ)
t = 1

θ

i=tθ∑
i=(t−1)θ+1

xi , 1 ≤ t ≤ N/θ (7)

wherein the fluctuations at scales smaller than θ are eliminated.
The window length, measured in data points, represents the scale
factor, θ = 1, 2, 3,. . .. Note that θ = 1 represents the original time
series, whereas relatively large θ produces a smooth signal, con-
taining basically low frequency components of the original signal.
To obtained the MSE curve, sample entropy is computed for each
coarse-grained time series.

2.6. INFORMATION TRANSFER
A number of studies have used information-theoretic tools to char-
acterize coupled systems (see Pereda et al., 2005 for a comprehen-
sive review). Within this approach, predictive information transfer
is a key concept used to define asymmetries in mutual interdepen-
dence (Palus et al., 2001; Lizier and Prokopenko, 2010). Infor-
mation transfer Ik(x → y) is defined as the conditional mutual
information I (xt, yt + k|yt) between the past and present of one
system, xt, and a future of another system, yt + k, provided that
information about the past and present of the second system, yt is
excluded (Palus et al., 2001). The subindex k is used to designate
dependence of the conditional mutual information I (xt, yt + k|yt)
on the latency k, which typically is measured in units of data points.
Thus, I (xt, yt + k|yt) can be considered as a function of the latency
between the past and present of the first system and the future of
the second one.

The measure I (xt, yt + k|yt) can be expressed in terms of
individual H (·) and joint entropies H (·,·) and H (·,·,·) as follows:

Ik(x → y) = I
(
x t , yt+k |y t

) = H
(
yt+k , y t

) + H
(
x t , y t

)
− H

(
yt+k , x t , y t

) − H
(
y t

)
. (8)

In a similar way, we can define the transfer of information from
the past and present of the second system, yt, to the future of the
first one, xt + k:

Ik(y → x) = I
(
y t , xt+k |x t

) = H
(
xt+k , x t

) + H
(
y t , x t

)
− H

(
xt+k , y t , x t

) − H (x t ) . (9)

I (xt, yt + k|yt) or I (yt, xt + k|xt) are closely related to the sta-
tistic termed transfer entropy, a measure of the deviation from
the independence property for coupled systems evolving in time
(Schreiber, 2000). It can be shown that under proper condi-
tions the transfer entropy is equivalent to the conditional mutual
information (Palus and Vejmelka, 2007): Ik(x → y) = Tk(x → y).

Net transfer entropy or information transfer, �T (x → y) =
Tk(x → y) − Tk(y → x), can be used to infer the directionality of
the dominant transfer of information between coupled systems.
Positive �T (x → y) would imply that the system xt has a higher
predictive power to explain the time course of the system yt, than
vice verse.

In estimating transfer entropy, the key issue is estimation of the
entropies themselves. The straightforward approach is to divide
the state-space into bins, i = 1, 2, 3,. . ., of some size δ and cal-
culate the entropy of the multi-dimensional dynamics through
constructing a multi-dimensional histogram, estimating proba-
bilities of being in the ith bin. This study took another approach,
as proposed by Prichard and Theiler (1995) and tested using lin-
ear and linear models (Chavez et al., 2003; Gourévitch et al.,
2007). Specifically, individual and joint entropies H (x) are approx-
imated by estimating the corresponding correlation integral Cq(x,
r) computed as

H (x) ≈ −log2Cq (x , r) , (10)

where

Cq (x , r) = 1

N (N − 1)q−1 ×
N∑

s=1

⎡
⎣∑

s �=t

� (r − ‖x s − x t ‖)
⎤
⎦ ,

(11)
N is the number of data points, and � is the Heaviside function.
Specifically, the correlation integral Cq(x, r) is a function of a scale
parameter r, which in general, can be related to the bin size δ, and
the integral order q. The second order (q = 2) correlation integral,
as used in this study, is interpreted as the likelihood that the dis-
tance between two randomly chosen delay vectors (points in the
multi-dimensional state-space) is smaller than r.

3. ANALYSIS
3.1. PIPELINE OF THE ANALYSIS
The dynamics of the networks consisting of six sources were identi-
fied for 22 participants in 6 conditions, as described in the Section
1. To determine the optimal embedding parameters for recon-
structing the delay vector from the observed time series, we applied
the information criterion proposed by Small and Tse (2004). For
most of the time series, with a few exceptions, the embedding win-
dow was estimated to be equal to 2, which implies the embedding
dimension d = 2 (a two-dimensional system) and the embedding
delay τ = 1. For each subject and condition, sample entropy was
computed for the scales 1–20 for all of the single trials. The infor-
mation rate produced by a system underlying the observed signal
was computed by averaging the sample entropy statistic across the
trials, as well as over some range of scale factors. Specifically, the
information rate at fine time scales was estimated by averaging
the first five scale factors, whereas the information rate of coarse-
grained time series was computed by averaging the time scales
16–20. Thus, for a network of six sources, each source was asso-
ciated with two values: information rate at fine and coarse time
scales. For the purpose of this study, we use the terms variability,
sample entropy and information rate interchangeably.

For the same networks, transfer entropy was computed as a
function of the latency between the past of dynamics of one
source and a future of the dynamics of another source (k = 1,
2,. . .,50), for all possible pairs of the sources (30 connections in
total) and for all single trials. Following Palus et al., 2001, the
transfer entropy was averaged across the latency k with the idea
to decrease the variability of estimated statistics and to increase
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the robustness of the results. Note that as the MEG epochs were
relatively short, the transfer entropy was computed only at time
scale θ = 1, which corresponds to the original time series. For
each trial and pathway, the information transfer was estimated in
both directions: Ik(x → y) and Ik(y → x), as described in Section
6. The net information transfer was computed as the difference
between two amounts of transfer entropy, averaged across tri-
als. Thus, for a network of six sources, each pathway between
two sources was associated with a value of the net information

transfer, reflecting the asymmetry in the predictive power between
the source activity.

3.2. MEG DATA
In Figure 2, the relations between asymmetry in mutual interde-
pendence and variability are shown across subjects, separately for
all the conditions. Specifically, the figure shows the net information
transfer between two sources as a function of difference in sam-
ple entropy computed at fine (Figure 2A) and coarse (Figure 2B)

FIGURE 2 | Net information transfer between sources within the same

network versus the difference in sample entropy, computed (A) at fine

time scales; (B) at coarse time scales. Each point is associated with one
subject (22 in total) and one connection (out of 30 possible pathways
between 6 sources). The top of each plot shows the correlation value r

between the two measures (significant for all the conditions with p-values
less than 0.001). A positive correlation implies that the net information is
transferred from a source with higher sample entropy to a source with lower
sample entropy. Negative correlations imply that more information is
transferred toward a system with a higher sample entropy.
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time scales, separately for each condition. Each point is associ-
ated with one subject and a pair of sources. Correlations between
the two variables are given at the top of corresponding plots. In
all the cases, the correlations are relatively strong (on the order
of 0.5–0.8), statistically significant with p-values less than 0.001.
Positive correlations in Figure 2A imply that a system with higher
variability can better predict the behavior of a system with lower
variability, than the other way around. Conversely, negative corre-
lations observed in Figure 2B support the conclusion that at coarse
time scales more information is transferred from sources with
lower variability to sources with higher variability, than vice versa.

In addition to the relations between information transfer and
complexity, it may be important to explore the connectivity maps
of the networks based on neuromagnetic sources, in the context of
the latencies between the peaks of the event-related fields (ERF).
Figure 3 illustrates the measures of transfer entropy for a pair of
sources, shown as functions of the latency k between the future
of one signal and the past of the other signal. Figure 4 shows the
reconstructed connectivity patterns masked by the bootstrap ratio
maps, computed separately for six conditions. The significance of
the couplings was estimating by bootstrapping the subjects (selec-
tion with replacement). The bootstrap ratio threshold of 3.0,which
corresponds roughly to a 95% confidence interval, was used to
define the connections which were robust across the subjects.

Connections can essentially be divided into two groups. One
group represents the connections between the brain regions with
the asymmetry in predictive power leading from right to left.
Those are VISR →VISL, FUSR → FUSL, and FURR →VISL. The
other group unites the connections with the net information
transfer directed from the sources with smaller latencies in the
peaks of ERF to those with larger latencies, such as VISR → FUSL,
VISR → ACCUP, or FURR → ACCUP.

FIGURE 3 |Transfer entropy as a function of the time lag between the

future of one signal and the past of the other signal, illustrated for a

pair of sources. The sources are taken from the same network for a given
subject and condition. The errorbars are specified by the mean and standard
error of the estimated measures across trials.

3.3. SYNTHETIC DATA
In the previous section, we considered some empirical aspects
of the interplay between sample entropy (information rate) and
transfer entropy (information transfer) in the pairwise relations
between the neuromagnetic sources. In the following section, we
propose that such an interplay might be explained by coupling
parameters, such as time delays or coupling strength, character-
izing coupled non-linear dynamic systems. Our objective would
be to demonstrate the same pattern of relationships between vari-
ability computed at different time scales and asymmetry in mutual
interdependence between the original time series, using a simple
computational model of interacting sources. Specifically, we will
consider a model of coupled oscillators with time delay in cou-
pling. We will show that such a model has a potential to explain
the peculiarities we observed in Figure 2. The model we simulate
is based on unidirectionally coupled chaotic Rössler oscillators.

Hadjipapas et al. (2009) used coupled Rössler systems to study
collective dynamics in oscillatory networks as a simple case of peri-
odic systems perturbed by a noise that has a deterministic rather
than stochastic nature. Such systems represent a relatively sim-
ple non-linear system able to generate self-sustained non-periodic
oscillations. In turn, oscillatory behavior and rhythms of the brain
have been extensively studied as a plausible mechanism for neu-
ronal synchronization (Varela et al., 2001). Under this context, the
coupled Rössler oscillators can be viewed as a prototypical example
of oscillatory networks.

Explicitly, the model reads

d x1

d t
= −ω1y1 − z1+ ∈ x2 (t − T )

d x2

d t
= −ω2y2 − z2

d y1

d t
= ω1x1 + 0.15y1

d y2

d t
= ω2x2 + 0.15y2

d z1

d t
= 0.2 + z1 (x1 − 10)

d z2

d t
= 0.2 + z2 (x2 − 10)

(12)

where ω1 = ω2 = 0.99 are the natural frequencies of the oscillators,
∈ is the coupling strength, and T denotes the delay in coupling.
In the model, the dynamics of the first system determined by a
behavior of three variables (x1, y1, z1) is the response driven by the
second system based on a behavior of (x2, y2, z2). Further analysis
is based on an assumption that only the dynamics of the variables
x1(t ) and x2(t ) can be observed. Our specific goal is threefold:
(i) to reconstruct the directionality of coupling between x1(t )
and x2(t ), (ii) to analyze the complexity of these signals, and (iii)
explore relations between the complexity and causal information.

Numerical solutions of Eqs. (12) were obtained using the dde23
Matlab function (the Mathworks, Natick, MA) with a subsequent
resampling of the time series with a fixed step 0.1. The dynamics
were solved on the interval [0, 600], subsequently discarding the
interval [0, 300] to avoid transitory effects. Thus, each time series
had 3000 data points.

For a given pair of parameters, ∈ and T, the signals were gen-
erated 20 times. Analyses of sample entropy and transfer entropy
were performed similarly to the pipeline for the analysis of the
MEG data, as described in Section 1. The only difference was that
for synthetic data, we had a network consisting of two systems, and
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FIGURE 4 | Net information transfer, robustly expressed across the

participants in six conditions: (A) invN1; (B) upN1; (C) invN2; (D) upN2;

(E) invR; (F) upR. The robustness is estimated by bootstrapping, selecting the
participants with replacement. The net transfer information maps are masked

by the bootstrap maps, using the bootstrap ratio threshold of 3.0,
corresponding roughly to a 95% confidence interval. The arrow’s
width is related to the bootstrap ratio value associated with a given
connection.

realizations of the model as an equivalent to trials. Transfer entropy
between the two systems was computed for all the realizations, as
functions of the past of system #1 and the future of system #2.
The latency varied from 1 to 100 data points, which corresponded
to the interval [0, 10]s. To obtain a value of the net information
transfer, the difference between two amounts of transfer entropy
was averaged across realizations and latency range. For the same
data, sample entropy was computed as a function of scale factors
1–20. As in the MEG data analysis, the variability at fine time scales

was estimated by averaging the sample entropy values across the
first five scale factors, whereas the variability of coarse-grained
time series was computed by averaging the sample entropy across
the time scales 16–20.

First, we considered the influence of the time delay, T, varied
on the interval [1, 20], with the coupling parameter ∈ fixed. The
effects of its variability on complexity and information exchange
are shown in Figure 5. The figure shows net transfer entropy
(Figure 5A), differences in sample entropy at fine (Figure 5B)
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FIGURE 5 | Effects of time delay in coupling on the relations between

differences in sample entropy between coupled Rössler’s oscillators

and net information transfer between them. Specifically, net transfer
entropy (A) and differences in sample entropy computed at fine (B) and
coarse (D) time scales are plotted as functions of the time delay T in
coupling. Sample entropy and transfer entropy were estimated based on
the time series x 1 and x 2, generated according to the model (12) for the
different values of the parameter T with a contant ∈. Only the relations
illustrated in (C,E) can be observed in the MEG data analysis (Figure 2).
Specifically, (C) (correlation r = 0.73, p-value < 0.0001) corresponds to
Figure 2A, whereas (E) (correlation r = −0.08, statistically not different
from 0) corresponds to Figure 2B.

and coarse time scales (Figure 5D) as functions of the time delay
T. Note that, when we deal with real data, such relations cannot be
observed as typically the true values of T are not known (see, how-
ever, Prokhorov and Ponomarenko, 2005; Silchenko et al., 2010;
Vicente et al., 2011 for the attempts in recovering time delays in
coupling). What we can observe is the correlations between the
net transfer entropy and the differences in sample entropy shown
in Figures 5C,E. The results revealed the presence of a relatively
strong and robust linear correlation between the two statistics,
similar to what we saw for MEG data in Figure 2A. However, the
correlation observed in Figure 5E is close to zero and statistically
insignificant, contrary to Figure 2B.

Similar to the time delay, the coupling parameter ∈ turned out
to be able to explain, to some degree, the results in Figure 2. As
expected, the net transfer entropy was found to be a monotoni-
cally increasing function of the coupling strength ∈, as shown in
Figure 6A. Also, the difference in coarse-grained sample entropy
was, at first approximation, a linear function of ∈, as shown in
Figure 6D. In turn, this led to the negative correlation between the

FIGURE 6 | Effects of the strength of coupling (parameter ∈) on the

relations between differences in sample entropy between coupled

Rössler’s oscillators and net information transfer between them.

Specifically, net transfer entropy (A) and differences in sample entropy
estimated at fine (B) and coarse (D) time scales are given as functions of
the coupling strength ∈. Complexity and transfer entropy were estimated
based on the signals x 1 and x 2, according to the model (12) for the different
values of the parameter ∈ with a fixed T. As in Figure 5, only the relations
illustrated in (C,E) can be observed in the MEG data analysis (Figure 2).
Note that Figures 2A,B are consistent with (C,E), respectively, only for
relatively weak couplings, with ∈ < 0.08 (B).

complexity difference and net transfer entropy for all the values of
the coupling parameter, as plotted in Figure 6E, in a good accor-
dance with the results observed in Figure 2B. The influence of ∈
on the fine-grained sample entropy was ambiguous, as shown in
Figures 6B,C. It is worth noting that Figures 2A,B are consistent
with Figures 6C,E, respectively, only for a weak coupling.

4. CONCLUSION AND DISCUSSION
In this paper, we examined relations between signal variability
and asymmetry in mutual interdependencies between activated
neuromagnetic sources. Variability was quantified based on sam-
ple entropy (Richman and Moorman, 2000), which is ultimately
interpreted as the average rate of information generated by a
dynamic system (Grassberger and Procaccia, 1983; Pincus, 1995).
Using the concept of multi-scale entropy (Costa et al., 2002), we
examined variability at fine and coarse resolutions of the same
time series. Interdependencies between source dynamics was esti-
mated using conditional mutual information between the past and
present of one signal and the future of another signal, provided
that the knowledge about the past and present of the second signal
is excluded (Palus et al., 2001). The asymmetry in information
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transfer represent the differences in predictive power between
sources, i.e., to predict the activity of each other.

The analyses of signal variability and information transfer
were performed under an assumptions that neuronal ensembles
involved in performing a task can be described by coupled non-
linear dynamic systems (Haken, 1996). Noise can be present at
different levels of the non-linear models describing the observed
time series. For the purpose of this study, we differentiate three
types of noise-like activity. First, there is internal noise, which is
an inherent component of a model, and is a part of the input
entering the non-linear deterministic system. Second, we distin-
guish the variability in the signal generated by non-linear dynamic
system. Finally, observational noise can be mixed with the output
of the system.

This study focuses on exploring the variability in non-linear
dynamics and describes this variability in its relations to the
transfer of information in functional networks. Typically, there
is the assumption that one observes non-linear systems in differ-
ent states, and the goal is to describe these differences. Although
different, two initial conditions would not be differentiated with
certain experimental precision. However, they may evolve into dis-
tinguishable states after some finite time. Thus, one could say that
a system that is sensitive to initial conditions produces information
(Eckmann and Ruelle, 1985).

Sample entropy, which was used as a measure of variability,
is closely related to the mean rate of information generated by a
dynamic system underlying the observed signals. In practice, how-
ever, both linear stochastic and non-linear deterministic effects can
contribute to the measure of sample entropy. A number of stud-
ies indicate that averaging the information rate over a larger time
horizon allows one to alleviate linear effects, in particular, those
associated with observational noise, and to focus on the signal vari-
ability due to the underlying non-linear determinism (Govindan
et al., 2007; Kaffashi et al., 2008). Down-sampling of the original
time series, as used in the multi-scale entropy approach, can be
viewed as a way to extend the period over which the information
generated by a system is averaged.

The first part of our analysis was based on the dynamics of
neuromagnetic sources reconstructed from MEG data collected
during a face recognition task. In the second part, we extended
our empirical findings with an analysis of synthetic data based
on the dynamics of coupled non-linear oscillators with time delay
in coupling. We found that relations between sample entropy of
the activity of neuromagnetic sources and the net information
transfer between them depends on time scales at which the sample
entropy is computed. Specifically, we found that more information
is transferred from a source with a higher sample entropy at coarse
time scales, but with a lower sample entropy at fine time scales.

Under certain conditions, analysis of the synthetic data offered
a potential explanation our empirical findings. Specifically, a study
of the system of two coupled oscillators with time delay in cou-
pling revealed the same relations between the difference in sample
entropy and asymmetry in information transfer. In particular, we
found that the interplay between sample entropy-based on fine-
grained signals and information transfer can be explained, in a
statistical sense, by the variability in the time delay in coupling.
On the contrary, correlations between information transfer and

sample entropy computed at coarse time scales were insignifi-
cant. In addition, we found that the variability in the coupling
strength can contribute to the observed relations between the
sample entropy-based on the coarse-grained signals and the infor-
mation transfer. Taking into account that the coarse scales would
better reflect non-linear effects, these results indicate that the vari-
ability of the signals due to non-linear determinism become more
diversified as a result of the propagation of information in the
network. In other words, propagation of information in a net-
work may be described as accumulation of complexity (variability)
of the brain signals. Similar results were found in (Mišić et al.,
2011), who showed that the variability of a region’s activity sys-
tematically varied according to its topological role in functional
networks. Specifically, the rate at which information was generated
was largely predicted by graph-theoretic measures characterizing
the importance of a given node in a functional network, such as
the node centrality or efficiency of information transfer.

It would be worth discussing the differences between an analysis
of transfer entropy, as performed in this study, and an analy-
sis of causal relationships between the source activity. Lizier and
Prokopenko (2010) suggested to distinguish information transfer
and causal effects. Information transfer is defined as the condi-
tional mutual information, representing the averaged information
contained in the future of one process about the past of another
process, but not in the past of the first process itself. In contrast,
causal effect can be viewed as information flow quantifying the
deviation of one process from causal independence on another
process, given a set of variables that may affect these two processes
of interest. Along a similar line of reasoning, Valdes-Sosa et al.
(2011) differentiate predictive capacity between temporally dis-
tinct events and the effects of controlled intervention on the target
process. Observing activity at a network node may potentially
indicate its effects at remote nodes. However, identification of a
physical influence upon a node at a given network assumes that any
other physical influence that this node receives should be excluded.

Under this context, it should be emphasized that this study
focuses on predictive information transfer, rather than on infor-
mation flow. Using bivariate variant of information transfer, com-
pared to the multivariate version, imposes a few limitations. First,
it is impossible to distinguish between direct and indirect connec-
tions (Gourévitch et al., 2007). Specifically, confounding effects
of indirect connections on estimation of transfer entropy were
considered in Vakorin et al. (2009). Second, bivariate estimates of
directionality in case of mutually interdependent sources may pro-
duce spurious results (Blinowska et al., 2004). With regards to this
study, it should be noted that the issue associated with common
sources is less of a problem in MEG than in EEG, as neuromagnetic
signals do not suffer from volume conduction (Hämäläinen et al.,
1993). However, in general, choosing an optimal set of variables
constituting a network to analyze in a multivariate way remains an
open issue. For example, it was shown that information-theoretic
measures (transfer entropy), which in general does not require a
model of interactions between nodes of a network, in contrast
to autoregressive models, remain sensitive to model misspecifica-
tion, wherein excluding a node from the analysis or adding a node
affects the estimation of transfer entropy and robustness of the
results (Vakorin et al., 2009).
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Mišić, B., Mills, T., Taylor, M. J., and
McIntosh, A. R. (2010). Brain

noise is task-dependent and region-
specific. J. Neurophysiol. 104,
2667–2676.
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O and McIntosh AR (2011) Empirical
and theoretical aspects of genera-
tion and transfer of information in

a neuromagnetic source network.
Front. Syst. Neurosci. 5:96. doi:
10.3389/fnsys.2011.00096
Copyright © 2011 Vakorin, Mišić,
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