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The honeybee Apis mellifera has been a central insect model in the study of olfactory
perception and learning for more than a century, starting with pioneer work by Karl von
Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range
of behavioral and neurophysiological paradigms in the Lab. Here I review major findings
about how the honeybee brain detects, processes, and learns odors, based on behavioral,
neuroanatomical, and neurophysiological approaches. I first address the behavioral study
of olfactory learning, from experiments on free-flying workers visiting artificial flowers to
laboratory-based conditioning protocols on restrained individuals. I explain how the study
of olfactory learning has allowed understanding the discrimination and generalization ability
of the honeybee olfactory system, its capacity to grant special properties to olfactory mix-
tures as well as to retain individual component information. Next, based on the impressive
amount of anatomical and immunochemical studies of the bee brain, I detail our knowl-
edge of olfactory pathways. I then show how functional recordings of odor-evoked activity
in the brain allow following the transformation of the olfactory message from the periphery
until higher-order central structures. Data from extra- and intracellular electrophysiological
approaches as well as from the most recent optical imaging developments are described.
Lastly, I discuss results addressing how odor representation changes as a result of expe-
rience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological
data available in the bee make it an attractive model for future research aiming to understand
olfactory perception and learning in an integrative fashion.
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INTRODUCTION
Chemical molecules, especially volatile ones, are the vessel of cru-
cial information that may determine an animal’s eventual survival
and reproductive success. Perhaps for this reason, the sense of
chemoreception is ubiquitously represented in the animal king-
dom (Ache and Young, 2005). The role of the olfactory system
is to decode the complex eddies of molecules in the environ-
ment and shape them into pieces of relevant information that
will allow the animal to make decisions and engage in adapted
behaviors. Major tasks of the olfactory system are for instance the
identification of food sources, the detection of possible dangers
(such as fire or predators), the recognition of potential mates as
well as allowing social interactions. How the nervous system oper-
ates this transformation from the detection of chemical molecules
via the formation of neural representations until the creation of
percepts has been the focus of intense research especially in ver-
tebrates (Lledo et al., 2005; Mori et al., 2006; Leon and Johnson,
2009; Mandairon and Linster, 2009) and in insects (Galizia and
Menzel, 2001; Laurent, 2002; Galizia, 2008; Masse et al., 2009).
A general finding of these studies is that the basic rules underly-
ing olfactory processing in these different classes of animals are
highly similar (Hildebrand and Shepherd, 1997; Ache and Young,
2005). For the most part, this resemblance is thought to result

from evolutionary convergence due to similar constraints (Eisthen,
2002).

Olfaction consists in a series of transformations from the chem-
ical world of odor molecules into spatiotemporal patterns of
neural activity in the animal’s brain, eventually giving rise to a per-
ceptual odor representation. Odor molecules exist in a myriad of
chemical compositions, three-dimensional shapes, and vibration
properties, to name but a few of their characteristics. They cannot
be easily described based on simple dimensions like the wavelength
and intensity of stimulus light when studying color vision. There-
fore, only multiple descriptors can adequately describe an odorant
molecule. In olfaction, the first transformation is thus the detec-
tion of particular features of the molecules by dedicated receptor
(and associated) proteins, leading through a transduction of the
signal to the activation of a subset of receptor cells (Touhara and
Vosshall, 2009). This combinatorial code will then be conveyed to
a series of structures in the brain and will undergo intense pro-
cessing leading to a reformatting of the odor representation that
will allow the extraction of the most relevant information for the
system (Laurent, 2002; Kay and Stopfer, 2006). This processing
will then give rise to a perceptual representation used for behav-
ioral decision, and may link odor quality with hedonic value and
learned relationships between odor and probable outcomes.
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For a century now, the honeybee Apis mellifera L. has been a key
insect model in which behavioral, neuroanatomical, and neuro-
physiological approaches have been performed to unravel the basis
of olfaction and olfactory learning. Honeybees are social insects
which present a wide range of behaviors relying on olfaction both
within and outside of the colony (Winston, 1987; Seeley, 1995).
Moreover, the study of olfaction is easily amenable to the labo-
ratory, since dedicated protocols have been developed in which
bees show rapid and robust odor learning abilities (Menzel, 1999;
Giurfa, 2007). In addition, the olfactory pathway of the honey-
bee brain has been extensively described (Kenyon, 1896; Mobbs,
1982; Strausfeld, 2002; Kirschner et al., 2006) and the bee brain
is easily accessible to neurophysiological experiments like electro-
physiological or optical imaging recordings (Galizia and Menzel,
2001; Sandoz et al., 2007). We will discuss in turn these different
aspects.

OLFACTORY BEHAVIOR IN THE HONEYBEE
ROLE OF PHEROMONES IN SOCIAL LIFE
Honeybees employ a rich repertoire of pheromones to ensure
intraspecific communication in many behavioral contexts (Free,
1987; Slessor et al., 2005; Sandoz et al., 2007). The social organi-
zation of a honeybee colony is determined by chemical signals
produced by the queen, but also by workers. Most honeybee
pheromones are complex blends of many substances which are
most effective when all components are present in appropriate
ratios in the blend. The most important pheromonal components,
which were sometimes used in olfactory learning experiments, are
detailed below.

The queen, the only fertile female in the colony, communicates
her presence mostly by means of a mixture of substances released
from her mandibular glands. The queen mandibular pheromone
(QMP) was originally considered to be a unique substance, 9-oxo-
(E)-2-decenoic acid (9-ODA) (Barbier and Lederer, 1960; Butler
et al., 1962), but later studies revealed that the actual pheromone
contains several additional components (Slessor et al., 1988; Keel-
ing et al., 2003). The queen pheromone reinforces social cohesion,
by attracting workers and enticing them to groom the queen. It
also has a physiological effect on workers, inhibiting their ovarian
development (Hoover et al., 2003) and modifying gene expression
(Grozinger et al., 2003). An interesting aspect of this pheromone
is that it acts on different receivers. The queen component 9-ODA
thus also acts on males (drones) and plays a crucial role for in-flight
mating, attracting them from as far as 60 m (Free, 1987).

The second major source of pheromones is workers, who per-
form different tasks depending on their age (Winston, 1987).
Aggregation pheromones are used by workers to mark and elicit
attraction of other workers to important locations (profitable food
source, potential nest site, etc.). This pheromone is a complex
blend comprising many volatiles among which geraniol and cit-
ral are principal components (Pickett et al., 1980). On the other
hand, alarm pheromones are released when confronting poten-
tial enemies (Breed et al., 2004). The main alarm pheromone is
released near the sting and consists of more than 40 highly volatile
compounds, among which the major component isopentyl acetate
(IPA; Boch et al., 1962; Collins and Blum, 1982; Pickett et al., 1982).
Release of this pheromone attracts other bees and causes them

to sting and attack. Another alarm pheromone, 2-heptanone, is
released by workers’ mandibular glands (Shearer and Boch, 1965)
and exerts a repellent action on potential intruders and robbers
from other hives. Additionally, it is used by foragers to mark
recently depleted flowers to avoid immediate revisit (Giurfa and
Núñez, 1992).

ROLE OF FLORAL ODORS IN FOOD SEARCH
When reaching 2–3 weeks of age, workers engage in foraging for
nectar or pollen outside the hive (Seeley, 1982). Honeybees are
generalist pollinators and are not bound to a limited number of
plants for gathering food. However, at the individual level, they
are “flower constant,” memorizing the features of a given floral
species, and exploiting it as long as profitable (Grant, 1950; Chit-
tka et al., 1999). Floral cues include color, odor, shape, and texture,
but among those, odors play the most prominent role, being most
readily associated with nectar or pollen reward (von Frisch, 1967;
Menzel et al., 1993). The scent of a flower is a mixture of many
volatile compounds that varies with respect to genotype, stage of
development, and local environmental conditions (Pham-Delègue
et al., 1989; Dobson, 1994; Dudareva and Pichersky, 2000). Flow-
ers of the same plant may show differences in volatile compounds
according to the time of day and with respect to their pollina-
tion status (Tollsten and Bergström, 1989; Schiestl et al., 1997).
To maximize their profit from foraging, honeybees have to show
good olfactory discrimination capacity. In other words, they have
to be able to distinguish between fine differences in the volatile
emissions of the visited flowers, to choose flowers whose volatile
blend indicates good forage (Menzel, 1985). Indeed, honeybees
are able to differentiate between very subtle differences in odor
blends, as for instance between two genotypes of the same species
or between flowering stages (Pham-Delègue et al., 1989; Wright
et al., 2002). On the other hand, many of the variations in volatile
emissions displayed by flowers are not indicative of any difference
in reward quality, and therefore, another key ability is olfactory
generalization. This ability corresponds to extending a behav-
ior learned for a given stimulus to other, novel, stimuli, which
are perceived as different, but sufficiently similar, to the learned
one (Shepard, 1987). As for many lines of work about honey-
bee behavior and sensory capacities, both of these abilities were
first recognized experimentally by Karl von Frisch. In a pioneering
investigation, von Frisch (1919) trained free-flying bees to visit
an artificial feeder presenting several essential oils (odor mix-
tures). Using a set of 32 such odors, von Frisch observed that
after learning that one odor was associated with sucrose solution,
bees tended to prefer this odor over others, clearly discriminat-
ing among odors, although they also sometimes visited other
odors that were, to the human nose, similar to the rewarded one,
thus displaying clear generalization behavior. This work laid the
ground to a plethora of experimental studies on the olfactory
detection, perception, and learning capacity of honeybees with
odors.

OLFACTORY LEARNING PROTOCOLS IN FREELY FLYING AND
RESTRAINED BEES
Many experiments have been performed with free-flying bees visit-
ing scented feeders (e.g., Kriston, 1971, 1973; Pham-Delègue et al.,
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1993; Laska et al., 1999). These experiments have the advantage of
providing an ecologically relevant context, but many variables of
the experiment, like bees’ physiological status, or the time intervals
between learning trials, cannot be precisely controlled. Moreover,
the search for the neural basis of olfaction needs the use of neuro-
physiological methods to monitor the bee brain while it processes
and learns odors (Menzel, 1999; Giurfa, 2007). For these reasons,
an experimental protocol allowing the study of olfactory learn-
ing on restrained individuals was developed, the conditioning of
the proboscis extension reflex (PER; Figure 1A). The PER was

FIGURE 1 |The study of olfactory learning and generalization in bees.

(A) Conditioning of the proboscis extension reflex (PER) on restrained bees.
The PER is a reflex shown by bees when their antennae, tarsi, or
mouthparts are contacted with sucrose solution. During conditioning, an
odor (conditioned stimulus, CS) is presented in temporal association with
sucrose solution to the antennae and to the proboscis (unconditioned
stimulus, US), so that the odor progressively gains control over the PER
[see acquisition in (B)]. After conditioning, presentation of the odor alone
triggers the PER. (B) Generalization experiment. During acquisition, bees
learn to associate the CS with the sucrose reinforcement and respond with
a PER to the CS. In a test phase, bees are presented in a random order with
the CS and novel odorants 1 and 2 (respectively NO1 and NO2). The
perceptual similarity between the CS and each novel odor can be measured
as the response level to this novel odor relative to responses to the CS. In
this example, NO1 would be considered as more perceptually similar to the
CS for bees, than NO2. (C) Frontal view of the bee head showing a
three-dimensional model (from Brandt et al., 2005) of the brain. Olfactory
processing follows three main steps. First, odors are detected at the level of
the antenna. Information is conveyed to the antennal lobe (AL) for primary
processing. Processed information is then relayed by different pathways to
higher-order centers, the mushroom bodies (MB), and the lateral horn (LH),
creating multiple olfactory representations in the bee brain (see Figure 4C).

initially described by Minnich (1932) in flies and Frings (1944)
in bees. When the antennae, mouthparts, or tarsi of a hungry bee
are touched with sucrose solution, the animal reflexively extends
its proboscis to suck the sucrose. This response was later con-
ditioned by Kuwabara (1957) and Takeda (1961), by associating
visual and olfactory stimuli respectively with a sucrose reward.
Perfecting the olfactory version of this protocol, Bitterman et al.
(1983) also showed that it corresponds to a case of associative
Pavlovian conditioning. Odors to the antennae do not usually
release a PER in naive animals. If an odor is presented immedi-
ately before the sucrose solution (forward pairing), an association
is formed and the odor will subsequently trigger the PER in a fol-
lowing test (Figures 1A,B). Thus, the odor can be viewed as the
conditioned stimulus (CS) and sucrose solution as the reinforcing
unconditioned stimulus (US). This association is thought to reca-
pitulate the final phase of the foraging behavior, when bees drink
nectar from an odorous flower.

More recently, another type of Pavlovian conditioning protocol
on restrained individuals was developed, which is based on aver-
sive associations. The sting extension reflex (SER) is a defensive
response of bees to potentially noxious stimuli (Breed et al., 2004),
which can be elicited experimentally by delivering a mild electric
shock to the thorax (Núñez et al., 1983, 1998; Balderrama et al.,
2002). During conditioning, harnessed bees learn to associate an
initially neutral odor (CS) with the electric shock (US; Vergoz
et al., 2007; Giurfa et al., 2009; Roussel et al., 2009). While PER
conditioning is appetitive and induces attraction toward the CS
in a choice test (Sandoz et al., 2000; Chaffiol et al., 2005; Carcaud
et al., 2009), SER conditioning is aversive and bees will accordingly
avoid the CS (Carcaud et al., 2009). Hence, olfactory process-
ing, detection and learning capacities of honeybees can now be
studied and compared with respect to different reinforcement
modalities.

LEARNING OF ODORS WITH DIFFERENT BIOLOGICAL MEANINGS
The olfactory abilities and behavior of honeybees are the fruit
of millions of years of co-evolution between hymenoptera and
angiosperms. One could imagine that it would be beneficial to
bees to not only be able to learn the features of rewarding flow-
ers, but also to “know” in advance the sensory characteristics
of a potential food source (Menzel, 1985). Do bees have an
“innate search image”? It was initially expected that bees would
only be able to learn floral odorants in an appetitive context,
but the extreme plasticity of their olfactory learning behavior
was soon recognized (von Frisch, 1919). While certain odor-
ants are clearly attractive to bees prior to foraging (essential
oils, aggregation pheromones), others are also clearly repulsive
(propanol, 3-methyl indole). However, bees can still learn to
associate these stimuli with sucrose reward, both in free-flying
(Kriston, 1971, 1973) and in restrained conditions (Vareschi,
1971). Nevertheless, some odorants will be learned more quickly
than others (above studies), and after learning, may produce
stronger or longer responses (Smith and Menzel, 1989). How-
ever, it is difficult to interpret such differences as truly “innate,”
since bees already learn odors within the hive (Farina et al.,
2005) and may not be truly naïve when used in conditioning
experiments.
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Interestingly, bees can even learn to associate pheromonal odors
with sucrose reinforcement. This has been proven with aggrega-
tion pheromones (citral, geraniol, Getz and Smith, 1987; Smith,
1991; Laska et al., 1999), and even more surprisingly with alarm
pheromones (IPA and 2-heptanone, Smith and Menzel, 1989;
Laska et al., 1999; Sandoz et al., 2001). However, even though
learning does take place, social pheromones do not seem to be
treated like general odors (Getz and Smith, 1991; Sandoz et al.,
2001). For instance alarm pheromones (IPA and 2-heptanone)
produce very high generalization to other odors (Sandoz et al.,
2001). Most puzzling, although these two molecules do not have a
similar structure, very high generalization was observed between
them, suggesting that bees may have also associated their biolog-
ical value (here alarm) with the appetitive reward and used this
information to generalize.

ODOR DISCRIMINATION AND GENERALIZATION
As explained above, stimulus discrimination and generaliza-
tion are two crucial abilities for bees. To study discrimina-
tion, researchers use differential conditioning procedures: bees are
repeatedly presented with two odors, one (CS+) that is associated
with reinforcement, while the other (CS−) is presented without
reinforcement. If bees respond significantly more to the CS+ than
to the CS−, it can then be concluded that they can discriminate
between them. To study generalization, bees are simply condi-
tioned to one odorant (CS) and are then presented with novel
odorants without reinforcement (Figure 1B). The perceived sim-
ilarity between the CS and each novel odorant is measured as the
level of response to this odorant relative to the CS (amount of
generalization, Figure 1B).

An important question in sensory neuroscience is along which
dimensions animals measure similarity among stimuli (Shepard,
1987). Vareschi (1971) was the first to use PER conditioning to
study the discrimination capacities of honeybees with a wide range
of odors. He used a kind of differential conditioning, with one
rewarded odor (CS) and 27 non-rewarded odors presented in-
between CS trials. Bees were found to differentiate the odors from
>95% of the 1816 tested odor pairs. The same high discrimination
ability is also found in free-flying bees (97% of 1848 tested odor
pairs, Laska et al., 1999).

In the bee, as in vertebrates (Mori et al., 2006; Johnson and
Leon, 2007), aliphatic odor molecules have attracted the inter-
est of researchers because they can be described by two main
characteristics: their chemical group and the length of their car-
bon chain. Bees generalize more often between odors with sim-
ilar carbon chain lengths or belonging to the same functional
group, as found with restrained (Smith and Menzel, 1989) and
with free-flying bees (Getz and Smith, 1990; Laska et al., 1999).
Recently, Guerrieri et al. (2005b) systematically studied the gen-
eralization behavior of bees with 16 odorants presenting all com-
binations of four possible functional groups (primary and sec-
ondary alcohols, aldehydes, ketones) and chain lengths (six to
nine carbons). These authors found that generalization is not
always symmetrical, so that generalization from odor A to odor
B is not always the same as from B to A. Strikingly, learning an
aldehyde induced low generalization to other odors, while bees

often responded to aldehydes after learning other odorants. In
this study, the first factor determining honeybees’ generalization
behavior was a molecule’s chain length, followed by the chemi-
cal group. This was the demonstration on a simple set of odor
molecules that chemical dimensions are somehow encoded in
the brain of honeybees and determine their behavior (Guerri-
eri et al., 2005b). However the bees’ natural environment pro-
vides an incredible wealth of possible odor molecules and we
are still far from knowing the encoding dimensions for all these
molecules.

ODOR CONCENTRATION
The fact that honeybees are able to learn absolute odor concen-
trations was recognized by Kramer (1976), who trained individual
workers in simulated odor gradients using a locomotion compen-
sator with feedback control of odor concentration. The bees were
reinforced with sucrose solution at a particular concentration of
an odor, and were then placed at different concentrations. They
showed a typical upwind walk when placed in a range of concen-
trations relatively close to the learned one (20–180%), but walked
downwind when placed outside of these boundaries. Moreover,
bees showed a particular alerting behavior at about 85–90% of the
learned concentration (Kramer, 1976). Similarly, free-flying bees
visiting a vertical odor array choose the right odor at the right
concentration and reject higher or lower concentrations (Ditzen
et al., 2003). In contrast to the freely moving situation, differential
conditioning with two concentrations of the same odor is difficult
in harnessed bees (Bhagavan and Smith, 1997; Pelz et al., 1997).
Honeybees’ sensory capacity and motivation may be different in
these two situations. In the visual modality, for instance, honey-
bees easily associate colors or patterns with sucrose reward when
flying freely, but show much lower performance when restrained
(especially when the antennae are not cut, Hori et al., 2006; Mota
et al., 2011).

Concentration strongly influences the salience of olfactory
stimuli. Generally, odors are learned more quickly at higher con-
centration (Bhagavan and Smith, 1997; Wright et al., 2009), and
support better memory consolidation (Pelz et al., 1997). More-
over, conditioned responses to a high concentration are produced
more quickly, suggesting that the olfactory system needs less
time to determine odor quality at high than at low concentra-
tion (Wright et al., 2009). The discrimination power between
different odorants also increases with their concentration (Getz
and Smith, 1991; Wright and Smith, 2004). Lastly, bees gener-
alize more from low to high concentrations, than from high to
low concentrations (Marfaing et al., 1989; Getz and Smith, 1991;
Bhagavan and Smith, 1997; Pelz et al., 1997). However, in some
instances bees generalize more between different odors at the
same concentration, than between different concentrations of the
same odor (Wright et al., 2005). To summarize, odor identity is
not totally invariant as a function of concentration, so that it is
both possible for bees to differentiate between concentrations of
an odorant, but also to show high generalization between dif-
ferent concentrations of this odorant. Such versatile capacities
may be crucial when foraging for identifying and locating floral
sources.
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THE CASE OF OLFACTORY MIXTURES
Natural floral odors encountered by foraging bees are not single
molecules but complex mixtures (Knudsen et al., 1993). Hon-
eybees are thus confronted to the problem of discriminating
among complex blends but also of recognizing the same floral
source although its blend composition varies. Some authors have
attempted to understand complex mixture processing in learning
experiments with whole floral extracts (Pham-Delègue et al., 1986;
Le Métayer et al., 1997) or with synthetic mixtures of six to 14
components (Pham-Delègue et al., 1993; Wadhams et al., 1994;
Blight et al., 1997; Reinhard et al., 2010). A general finding of
these experiments is that when bees learn a mixture and are after-
ward tested with the individual components, they usually respond
to some components more strongly than to others. Such com-
ponents have been termed key-compounds (or key-components,
Wadhams et al., 1994; Laloi et al., 2000; Reinhard et al., 2010).
What determines that a component is a key-component? Nei-
ther relative quantity nor volatility are predictive (Wadhams et al.,
1994; Le Métayer et al., 1997; Reinhard et al., 2010). Rather, the
perceptual salience of a component appears to be important, as
measured by the conditioning success with this odor presented
alone (Laloi et al., 2000). Additionally, whether a component will
be learned in a mixture depends on the identity of the other
components (Laloi et al., 2000; Reinhard et al., 2010). Thus, the
processing of different odorants simultaneously produces unpre-
dictable outcomes, a phenomenon termed “mixture interaction.”
Due to the apparent complexity of mixture processing, research
on mixture interactions has focused on binary mixtures (Getz
and Smith, 1987, 1990, 1991; Chandra and Smith, 1998; Smith,
1998; Deisig et al., 2001). Generally an odor is better learned
when presented alone, than when together with a second odor-
ant (Smith, 1998). Usually, when learning a mixture AB, bees
can recognize the components (Getz and Smith, 1987, 1990).
However, one component is often learned better than the other,
a phenomenon called “overshadowing.” Using three odors pre-
sented in the form of binary mixtures, Smith (1998) found that
overshadowing depended on which odors were in a pair, so that
overshadowing was difficult to predict. Mixture interactions may
also depend on the sequence of experiences the bee has had with
the stimuli. In the phenomenon of “blocking,” initial learning
of an odorant A blocks learning of odorant B when the mix-
ture AB is subsequently trained. Although this effect has been
observed in different studies (Smith and Cobey, 1994; Linster
and Smith, 1997; Hosler and Smith, 2000), it remains contro-
versial, as it only rarely appeared when possible confounding
variables were controlled (Gerber and Ullrich, 1999; Guerrieri
et al., 2005a).

On a theoretical level, concepts from psychophysical theories
have been used to attempt to understand how a mixture is repre-
sented in the bee brain (Chandra and Smith, 1998; Deisig et al.,
2001; Lachnit et al., 2004). Two widely differing theories have been
put to the test. First, the elemental approach assumes that a com-
pound AB will be represented in the brain as two elements, A
and B, each of which can be associated with the US (Rescorla and
Wagner, 1972). In other terms, “the whole equals the sum of its
parts.” On the other hand, configural approaches propose a rad-
ically different view by assuming that the representation of AB

is a different entity from those of A and B (“the whole is differ-
ent from the sum of its parts,” Pearce, 1987, 1994). In fact both
accounts were shown to be wrong using the so-called patterning
experiments (Chandra and Smith, 1998; Deisig et al., 2001). In
such experiments, bees have to differentiate between two single
odorants A and B and the mixture AB. In negative patterning, the
single elements are both reinforced when presented alone (A+,
B+), while the mixture is non-reinforced (AB−). Conversely, in
positive patterning, the two elements are non-reinforced when
presented alone (A−, B−), while the mixture is reinforced (AB+).
Honeybees can be trained to solve both tasks with odors (Deisig
et al., 2001, 2002). The elemental approach can explain positive
patterning but not negative patterning, because when each com-
ponent is reinforced, a mixture would elicit, through elemental
summation, twice as much responding as each component. On
the other hand, in its principle, the configural approach could
cope with both patterning tasks, as compound and elements are
associated with reinforcement independently (Pearce,1994). How-
ever, it ran into problems when analyzing response summation
between elements and mixtures at the beginning of condition-
ing (Deisig et al., 2003). Experiments in bees thus suggested that
the best model for explaining mixture learning was an expansion
of elemental models, called the unique cue hypothesis (Rescorla,
1972, 1973; Whitlow and Wagner, 1972). In addition to the rep-
resentations of the elements, the compound would give rise to a
supplementary (internal) representation, the unique cue. During
the negative patterning problem, the unique cue U would build
inhibitory associations with the US, while the elements A and B
would build excitatory associations. When A and B are presented
alone, the excitatory association would thus trigger behavioral
responses, but during AB presentations, the added inhibitory
strength of the unique cue would hamper the response. Using
different types of patterning tasks, it was possible to show that
a version of the unique cue hypothesis best coped with all the
experimental results (Deisig et al., 2001, 2002, 2003; Lachnit et al.,
2004).

For simplicity, all experiments described above considered that
mixture composition is stable in time, which is not the case
in nature, as floral aroma changes throughout the day and the
plant’s state. Honeybees seem to focus on those components which
remain relatively constant in their concentration (Wright and
Smith, 2004). Such ability may be beneficial for bees in order to
recognize the same floral species in spite of fluctuations in the
composition of its odor blend.

NEUROANATOMY OF THE HONEYBEE OLFACTORY SYSTEM
An advantage of the bee model for understanding olfaction
and olfactory learning is that the neuroanatomy of its olfactory
pathway is known in great detail (e.g., Kenyon, 1896; Pareto,
1972; Suzuki, 1975; Mobbs, 1982; Abel et al., 2001; Strausfeld,
2002; Kirschner et al., 2006). Olfactory processing follows dif-
ferent steps, from the detection of molecules at the periphery,
via primary processing by antennal lobe (AL) networks, until
the establishment of olfactory representations in higher-order
brain centers (Figure 1C). A simplified model of the differ-
ent neuron types involved in olfactory processing is provided in
Figure 2.
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FIGURE 2 |The honeybee brain and the olfactory pathway. For clarity,
different neuron types have been presented separately in the two brain
hemispheres. On the left, major excitatory pathways involved in the
transmission of olfactory information in the brain are shown. On the
right, mostly inhibitory connections and modulatory neurons are
presented. The antennal lobe, first-order olfactory neuropil, receives
input from ∼60,000 olfactory receptor neurons (ORNs) which detect
odorants within placode sensilla on the antenna. Within the AL’s
anatomical and functional units, the 165 glomeruli, ORNs contact ∼4000
inhibitory local neurons (LNs) which carry out local computations, and
∼800 projection neurons which further convey processed information via
different tracts. The lateral antenno-cerebralis tract (l-APT) projects first
to the lateral horn (LH) and then to the mushroom body (MB) calyces
(lips and basal ring), while the medial tract (m-APT) projects to the same
structures, but in the reverse order. Both tracts are uniglomerular, each
neuron taking information within a single glomerulus. They form two
parallel, mostly independent olfactory subsystems (in green and in
magenta), from the periphery until higher-order centers, where they

project in non-overlapping regions. Multiglomerular projection neurons
form a medio-lateral tract (ml-APT) which conveys information directly to
the medial protocerebrum and to the LH. The dendrites of the Kenyon
cells (KCs), the mushroom bodies’ 170,000 intrinsic neurons, form the
calyces, while their axons form the pedunculus. The output regions of
the MB are the vertical and horizontal lobes, formed by two collaterals of
each KC axon. Within the MBs, feedback neurons (FN) project from the
pedunculus and lobes back to the calyces, providing inhibitory feedback
to the MB input regions. Extrinsic neurons (ENs) take information from
the pedunculus and the lobes and project to different parts of the
protocerebrum and most conspicuously to the LH. It is thought that
descending neurons from these areas are then involved in the control of
olfactory behavior. The figure also presents a single identified
octopaminergic neuron, VUM-mx1, which was shown to represent
reinforcement during appetitive conditioning. This neuron projects from
the suboesophageal ganglion (SOG), where it gets gustatory input from
sucrose receptors, to the brain and converges with the olfactory
pathway in three areas, the AL, the MB calyces, and the LH.

PERIPHERAL ODOR DETECTION: THE ANTENNA
Peripheral odor detection starts at the level of olfactory receptor
neurons (ORNs), which are located below cuticular structures on
the antennae, called sensilla (Kaissling, 1987). Different morpho-
logical types of sensilla exist on the insect antenna, but sensilla
placodea (pore plate sensilla) are the main olfactory sensilla in the
honeybee (Esslen and Kaissling, 1976). A sensillum placodeum
is formed by an oval-shaped (9 μm × 6 μm) thin cuticular plate
with numerous minute pores and is innervated by five to 35

ORNs (Schneider and Steinbrecht, 1968; Esslen and Kaissling,
1976; Kelber et al., 2006). Odorant molecules reach the dendrites
of ORNs by diffusing through an extracellular fluid, called the
receptor or sensillum lymph, filling the sensillum cavity (Kaissling,
1987; Masson and Mustaparta, 1990). In this fluid, odorant bind-
ing proteins (OBPs) may help transporting odorants to the ORNs
but very little is known about them in bees.

When reaching the ORN membrane, the odorant molecule
interacts with the olfactory receptor protein (OR). Insect ORs
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belong to a family of highly divergent proteins with seven-
transmembrane domains, which are different from the verte-
brate OR family (Benton, 2006; Touhara and Vosshall, 2009).
The functional receptor is a heteromeric complex of an OR and
a broadly expressed co-receptor AmOr2, which is the honeybee
ortholog to the co-receptor Or83b of Drosophila (Benton et al.,
2006; Robertson and Wanner, 2006). Honeybees present a remark-
able expansion of the insect odorant receptor family relative to the
repertoires of the fly Drosophila melanogaster and the mosquito
Anopheles gambiae, which respectively possess 62 and 79 ORs, with
a total of 170 OR genes including seven pseudogenes (Robertson
and Wanner, 2006).

THE PRIMARY OLFACTORY CENTER: THE ANTENNAL LOBE
ORN axons form the antennal nerve and project to a primary
olfactory center in the brain, the AL (Figure 2). The bee AL is com-
partmentalized in 165 spheroidal neuropile units called glomeruli.
Glomeruli are the anatomical and functional units of the AL and
constitute the first site of synaptic interaction between ORNs and
other neuron types. Glomeruli can be recognized based on their
relative position, size, and shape, using an anatomical atlas of
the AL (Flanagan and Mercer, 1989a; Galizia et al., 1999a). In
Drosophila axons of ORNs expressing the same odorant recep-
tor converge onto the same glomerulus (Vosshall et al., 2000;
Dahanukar et al., 2005). Thus, the array of AL glomeruli cor-
responds to an array of OR types. Noticeably, the number of
163 potentially functional ORs in bees coincides with the num-
ber of glomeruli in the AL (∼165). This would thus support the
one-receptor/one-ORN/one-glomerulus hypothesis in bees.

Within each glomerulus, ORNs release acetylcholine (ACh), the
primary excitatory transmitter of the insect brain (Bicker, 1999).
Thus doing, they activate local neurons (LNs) connecting dif-
ferent glomeruli and projection neurons (PNs), which relay the
olfactory message processed at the level of the AL to higher-order
centers such as the lateral horn (LH) and the mushroom bodies
(MBs).

Local neurons are neurons whose branching patterns are
restricted to the AL (Figure 2). The ∼4000 LNs can be clas-
sified in two main types. One type innervates most if not all
glomeruli in a uniform manner, and are therefore called homoge-
neous LNs (homo-LNs; Flanagan and Mercer, 1989b; Fonta et al.,
1993). Neurons of the second type innervate only a small sub-
set of glomeruli and are called heterogeneous LNs (hetero-LNs).
They have one dominant glomerulus with very dense innervation
and a few other glomeruli with very sparse processes (Flanagan
and Mercer, 1989b; Fonta et al., 1993). Hetero-LNs branch in
the core of the sparsely innervated glomeruli but branch in the
whole (core and cortex) of their densely innervated glomerulus
(Fonta et al., 1993; Abel et al., 2001). LNs are thought to carry out
the first processing of olfactory information, with two different
functions of Homo-LNs and Hetero-LNs, respectively global inhi-
bition for gain control and asymmetrical lateral inhibition between
glomeruli for refining odor representation and allowing better dis-
crimination among olfactory representations (Sachse and Galizia,
2002).

Local neurons in bees are mostly inhibitory and may use
many different neurotransmitters. About 750 LNs are GABAergic

(Schäfer and Bicker, 1986) and functional data indicate that
GABA is indeed inhibitory in the AL (Stopfer et al., 1997;
Sachse and Galizia, 2002; Dupuis et al., 2010). In addition, glu-
tamate (for review see Bicker, 1999) and histamine (only about
35 neurons, Bornhauser and Meyer, 1997) have been identi-
fied in the AL. Several lines of evidence indicate that gluta-
mate (Barbara et al., 2005; El Hassani et al., 2008) and hist-
amine (Sachse et al., 2006) also act as inhibitory neurotrans-
mitters in the bee brain. Lastly, the AL houses many, often
small, subpopulations of LNs which each express characteristic
peptides, including allatostatins, allatotropin, tachykinins, FMR-
Famide, and other RFamide peptides (Galizia, 2008; Kreissl et al.,
2010).

Projection neurons connect the AL with higher-order brain
areas (Figure 2), following five different pathways, called antenno-
protocerebral tracts (APTs; Mobbs, 1982; Abel et al., 2001).
From their morphology, PNs can also be classified in two types.
Uniglomerular projection neurons (uPNs) branch in a single
glomerulus within the AL and have axons that project to the
MBs and to the LH using the two major APT tracts (see below).
On the other hand, multiglomerular projection neurons (mPNs)
branch in most glomeruli and are therefore potentially capa-
ble, in contrast to uPNs, to extract combinatorial information
across glomeruli. Their axons follow the three lesser tracts, the
medio-lateral (ml) APTs, leading not to the MBs, but to other
areas of the protocerebrum, surrounding the α-lobe of the MB
or extending toward the LH (Abel et al., 2001; Kirschner et al.,
2006).

The more numerous uniglomerular PNs (∼800) form two
roughly equal tracts toward higher-order brain centers, the lat-
eral (l-APT), and medial (m-APT) tract. The l-APT leaves the AL
dorsally and then runs on the lateral side of the protocerebrum,
forming collaterals in the LH and then continuing on to the MB
calyces. The m-APT runs along the brain midline first toward
the MBs where collaterals enter into the calyces, and then trav-
els laterally to end in the LH (Abel et al., 2001; Kirschner et al.,
2006). The current understanding of this anatomical organiza-
tion is that the honeybee brain may arbor two parallel olfactory
subsystems, as excitatory transmission of the olfactory message
follows essentially two independent pathways in each brain hemi-
sphere toward higher-order brain centers. L- and m-APT neurons
take their information from two non-overlapping groups of 84
and 77 glomeruli respectively (Abel et al., 2001; Kirschner et al.,
2006). Following the current hypothesis that each glomerulus is
the projection center for all ORNs expressing a given OR, one
may thus say that PNs from the l- and m-APT each transmit
information about two independent portions of the honeybee
odor detection repertoire. Moreover, the central projection areas
of the two PN tracts are segregated in the MB calyces and in
the LH with only partial overlap (Abel et al., 2001; Kirschner
et al., 2006). How are the two subsystems connected through
local networks? Several hypotheses are possible, from almost total
segregation of the subsystems with hetero-LNs providing lateral
inhibition only within each system, to an equal and symmetrical
weight of lateral inhibition between both subsystems (Galizia and
Rössler, 2010). However, no data are available yet concerning this
question.
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SECOND-ORDER OLFACTORY CENTERS: THE MUSHROOM BODIES AND
THE LATERAL HORN
Olfactory information leaving the AL takes several routes to the
MBs and LH (Figure 2). While the function of the LH is still
unclear, the MBs are thought to be involved in a sparsening of
olfactory representation, in olfactory learning and memory, as
well as the integration of olfactory information with other sen-
sory modalities (Menzel et al., 1994; Menzel, 1999; Giurfa, 2003,
2007).

MB-intrinsic neurons are the Kenyon cells (KCs; Kenyon, 1896),
which form two cup-shaped regions called calyces in each hemi-
sphere. MB calyces are anatomically and functionally subdivided
into the lip, the collar, and the basal ring (Mobbs, 1982, 1984;
Gronenberg, 2001; Strausfeld, 2002). The lip region and the inner
half of the basal ring receive olfactory input, whereas the collar
and outer half of the basal ring receive visual input (Gronenberg,
2001), in addition to input from mechanosensory and gustatory
pathways (Strausfeld, 2002; Schröter and Menzel, 2003). The pro-
jections of individual PNs extend in most parts of each calyx
(Müller et al., 2002). PN boutons form multisynaptic microcircuits
in the MB lips, with GABAergic input and KC output connections
arranged to form particular structures termed microglomeruli
(Ganeshina and Menzel, 2001). KC axons project in bundles into
the midbrain, forming the peduncle and the vertical and horizon-
tal lobes (also called α and β lobes). The calyx is topologically
represented in the lobes (Mobbs, 1982; Strausfeld et al., 2000;
Strausfeld, 2002). About 55 GABAergic feedback neurons from
the MB output lobes project back to the calyces (Bicker et al.,
1985; Figure 2). Due to the parallel arrangement of intrinsic KCs,
most subcompartments in the calyx receive feedback from their
corresponding layer in the α lobe (Grünewald, 1999). Most KCs
provide bifurcating axons to both α and β lobes. In the bee, about
800 PNs diverge onto a major proportion of the 170,000 KCs of
each MB (i.e., onto olfactory KCs). Each PN contacts many KCs
and each KC receives input from many PNs. If the figures calcu-
lated for the locust Schistocerca americana (Jortner et al., 2007)
were to apply to the honeybee, each KC would contact about
400 PNs (i.e., 50% of the total PN count). This organization
appears ideal for a combinatorial readout across PNs (Laurent,
2002).

The second major target area of both the m- and l-APT uPNs
is the LH. In addition to the uPN innervation, the LH receives
input from mPNs via the ml-APTs (Fonta et al., 1993). Similarly
to the olfactory input of the MB calyx, the LH shows a PN
tract-specific compartmentalization, with at least four subcom-
partments: one receives exclusively projections of m-APT uPNs,
while others receive mixed input from m- and l-APT PNs, from
l-APT and ml-APT PNs, or from the latter type alone (Kirschner
et al., 2006). Possible local computations within this structure as
well as the connectivity between PNs and other neurons are still
mostly unknown.

MUSHROOM BODY OUTPUT
A number of neuron populations project from the MBs toward
other brain centers (Figure 2), with two major output regions
being the α and β lobes (Mobbs, 1982). About 400 extrinsic neu-
rons (ENs) from the α lobe have been studied in details (Rybak

and Menzel, 1993). Some are unilateral neurons with projec-
tion fields restricted to the ipsilateral protocerebrum, while oth-
ers are bilateral neurons connecting both α lobes, or projecting
from one lobe to the contralateral protocerebrum around the α

lobe (Rybak and Menzel, 1993). A single conspicuous neuron in
each MB, called Pe-1, forms a major output pathway from the
peduncle of the MBs (Mauelshagen, 1993). This neuron arborizes
extensively in the peduncle and projects to the lateral proto-
cerebral lobe, and more specifically to the LH where it synapses
directly or via interneurons onto descending neurons involved in
behavior.

Although the anatomical description of projections to the LH
is good, knowledge of the neurons leaving the LH and of descend-
ing pathways involved in behavioral output is still scarce in bees.
Some anatomical descriptions of descending neurons in other
insects, like cockroaches, suggest that their dendrites are distrib-
uted mainly in the lateral and medial protocerebrum, which are
major termination areas of MB output neurons, but not in the AL,
MBs, or regions of the LH receiving PN input (Okada et al., 2003).
Thus it is possible that both MB output neurons and yet unknown
LH output neurons contact descending neurons and can therefore
modulate behavior. Investigation of descending neurons and the
neural pathways involved in behavioral control in bees may help
bridge this gap (Ibbotson and Goodman, 1990; Ibbotson, 2001;
Schröter et al., 2007).

AVERSIVE AND APPETITIVE REINFORCEMENT INFORMATION
The olfactory pathway also receives input from different mod-
ulatory systems. Of special importance are the reinforcement
systems necessary for the formation of neural associations between
odors and particular outcomes. Such associations rely on the co-
activation of two neural pathways, the olfactory pathway and
a pathway representing the specific reinforcement. As in other
insects, appetitive reinforcement in bees depends on octopamine
(Hammer and Menzel, 1998; Farooqui et al., 2003) and aver-
sive reinforcement on dopamine (Vergoz et al., 2007). A sin-
gle, putatively octopaminergic, neuron in the bee brain, VUM-
mx1 (Figure 2), was shown to represent a neural substrate
of the sucrose US pathway (Hammer, 1993), because the for-
ward (but not backward) pairing of an odor CS with an artifi-
cial depolarization of VUM-mx1 produces an associative mem-
ory trace. VUM-mx1, has its cell body in the suboesophageal
ganglion (SOG), and converges with the olfactory pathway in
both brain hemispheres at three sites, in the AL, in the MB
calyces, and in the LH. Another neuron with a similar projec-
tion pattern has been found with its cell body in another neu-
romere of the SOG (VUM-md1, Schröter et al., 2007). On the
other hand, many dopaminergic neurons are found in the bee
brain (Schäfer and Rehder, 1989; Schürmann et al., 1989) but
until now, none of them could be shown to provide aversive
reinforcement.

NEUROPHYSIOLOGICAL STUDY OF OLFACTORY PROCESSING
AND LEARNING
PERIPHERAL ODOR DETECTION: THE ANTENNA
The search for the neural correlates of olfactory detection and pro-
cessing has started at the periphery, using extracellular recordings
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of single placodes (e.g., Lacher and Schneider, 1963; Lacher, 1964;
Vareschi, 1971; Akers and Getz, 1992, 1993). The first demonstra-
tion that placode sensilla were responsible for olfactory detection
was provided by Lacher and Schneider (1963) with individual pla-
code recordings showing responses to benzylacetate in workers,
and caproic acid in drones, but no answers to light, sound, water
vapor, or CO2. ORNs show little spontaneous activity, but respond
to odors mostly with a spike frequency increase in a phasic-tonic
manner. Sometimes, they also show inhibitory responses or off-
responses (response at the end of the stimulus). Because a single
placode houses many ORNs it is difficult to segregate the responses
of individual cells based on spike amplitude. Using statistical tech-
niques to attempt such segregation, Akers and Getz (1992) found
that units with similar odor-response spectra were more likely
to be found in different placodes than within the same placode.
This observation fits with anatomical data showing that ORNs
from a placode innervate different glomeruli (Kelber et al., 2006).
The complex organization of ORNs in the honeybee antenna has
strongly hindered efforts to study peripheral odor detection in this
species.

OLFACTORY PROCESSING IN THE ANTENNAL LOBE
Thanks to the technique of in vivo calcium imaging, it was however
possible to record neural activity at the glomerular level (Joerges
et al., 1997, Figure 3). This recording technique uses fluorescent
dyes to measure the increase of intracellular calcium (coming from
the extracellular medium and/or released from internal stores)
following neuronal excitation (Joerges et al., 1997; Galizia and
Vetter, 2004). In the most simple form of this technique, bees
are fixed in a recording chamber, and the head capsule is care-
fully opened (Figures 3A,B). Membranes and tracheas covering
the brain are removed, and a calcium-sensitive fluorescent dye
(for instance, Calcium Green 2-AM) is bath-applied onto the
brain (Figures 3C,D). After about 1 h incubation, during which
the dye has penetrated AL cells, the brain is rinsed with saline
solution and the bee is placed under an upright fluorescence
microscope in front of an odor stimulation device (Figure 3A).
This bath-application of Calcium Green 2-AM allows recording
a composite calcium signal which could potentially come from
all cell populations of the AL: ORNs, LNs, PNs, and glial cells
(Joerges et al., 1997). Due to the numerical preponderance of
ORNs and because odor-induced signals have a very stereotypical
time course and do not show spontaneous activity or inhibitory
responses (the hallmark of LNs and PNs, see below), these record-
ings are thought to emphasize presynaptic calcium variations from
ORNs (Galizia et al., 1998; Sachse and Galizia, 2003), with a pos-
sibly significant contribution from glial cells surrounding each
glomerulus (Galizia and Vetter, 2004). The compound signal has
therefore been long interpreted as representative of sensory input
(Sachse and Galizia, 2003; Deisig et al., 2006, 2010; Sachse et al.,
2006).

Optical imaging experiments showed that odors elicit combi-
natorial activity patterns across glomeruli (Joerges et al., 1997;
see Figure 3D). Combining imaging recordings with anatomical
staining allowed assigning activity patterns to identified glomeruli
using the published anatomical AL atlas (Galizia et al., 1999a).

This showed that odor quality is represented in the AL accord-
ing to a specific distributed code conserved between individuals
(Galizia et al., 1999b; Sachse et al., 1999). Each glomerulus – rep-
resenting an ORN type expressing a given OR – shows a rather
broad molecular receptive range (Galizia et al., 1999b). Because
the optical imaging technique allows recording activity only at
the tissue surface, only a small part of the 165 glomeruli could
be accessed (up to 38 glomeruli; Sachse et al., 1999). The ques-
tion therefore arose whether the signals recorded in this subpart
of the AL had any significance with regards to odor representa-
tion and olfactory behavior. To answer this question, Guerrieri
et al. (2005b) studied the generalization behavior of honeybees
among a panel of 16 odorants for which the activity patterns
in these glomeruli were known (Sachse et al., 1999). As men-
tioned above, these authors built a complete generalization matrix
among the 16 odorants differing according to their functional
group and their carbon chain length (Figure 4A). Importantly,
this work demonstrated for the first time a significant correlation
between the similarity among odors in the behavior and in the
neurophysiological recordings (Figure 4B). Thus, calcium signals
in this subpart of the AL could to some extent allow predict-
ing bees’ generalization behavior. As shown on the figure, the
data showed however some scatter and the question whether
extending the neurophysiological recordings to more glomeruli,
or to other parts of the brain may ameliorate this prediction
remains unanswered. In theory, the bee brain contains different
sets of olfactory representations in its different olfactory struc-
tures, which each can be characterized by an odor-similarity
matrix based on combinatorial activity of its neuronal units
(Figure 4C). It will be the goal of future research to compare
the capacity of these different levels for predicting bees’ olfactory
behavior.

AL neurons are involved in the processing of incoming odor
information provided by ORNs. Intracellular recordings of LN
and PN responses provided some insights about this processing
(Flanagan and Mercer, 1989b; Sun et al., 1993; Stopfer et al., 1997;
Abel et al., 2001; Müller et al., 2002; Krofczik et al., 2009). LNs
are odor-specific, responding in a differential manner to differ-
ent odors. They can show excitatory responses to some odors
and inhibitory responses (i.e., a reduction of spiking activity rel-
ative to background) to others (Sun et al., 1993). Staining of
hetero-LNs allows identifying the glomerulus in which this LN
most intensively branches (Galizia and Kimmerle, 2004). Gen-
erally, the response profile of the recorded LN corresponded to
the known response profile of the innervated glomerulus, sug-
gesting that hetero-LNs take their input in this glomerulus. LNs
tend to show a shorter latency than PNs, which allows them to
rapidly and efficiently inhibit the firing of PNs (Krofczik et al.,
2009).

Projection neuron responses are the product of direct excitation
from ORNs, direct inhibition from LNs and possibly disinhibi-
tion from LN–LN connections and can therefore be temporally
complex (Sun et al., 1993; Müller et al., 2002). PNs are usu-
ally spontaneously active and can change their responses upon
odor presentations in an either excitatory or inhibitory manner
(respectively increasing or decreasing firing rate; Abel et al., 2001;

Frontiers in Systems Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 98 | 9

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Sandoz Olfactory perception and learning in honeybees

FIGURE 3 | Optical imaging of odor representations in the bee

brain. Thanks to in vivo calcium imaging, odor representation can
be recorded in the bee brain. (A) Bees are placed under an
epifluorescence microscope in front of an odor-delivery device delivering a
permanent airflow. (B) Their head capsule is opened revealing the brain, which
is then kept under saline solution at all times, while the antennae are
maintained in the airflow. (C) Example view of the brain surface after
bath-application of a calcium dye (method 1, below). The recording can be
restrained to the region corresponding to the antennal lobe (square). (D)

Using different staining techniques, odor representation was recorded at
different levels of olfactory processing. On the left the staining technique and
the imaged neuronal population are shown, while on the right, activity maps
evoked by two sample odorants (1-hexanol and linalool) as well as an
exemplary time course are presented. (1) Using bath-application of a
calcium-sensitive dye (Calcium-Green 2-AM), a compound signal can be
recorded in the antennal lobe in response to odors (Joerges et al., 1997). This
signal is thought to represent mostly olfactory input from the ORN population

(see text). Different odors induce different, but overlapping, multiglomerular
activity patterns. Bath application signals are temporally slow and biphasic. (2)
Using retrograde staining with a migrating dye (Fura-2 dextran), projection
neurons can be selectively stained (Sachse and Galizia, 2002). A dye-coated
electrode is inserted into the PNs axon tract (arrow number 2). The dye is
taken up by the neurons and migrates back to their dendrites in AL glomeruli.
Such staining allows the selective recording of AL output information sent to
higher-order centers. Odors also induce multiglomerular activity patterns, but
these are scarcer (less glomeruli are activated) and more contrasted than the
compound signals. The time course is mostly phasic-tonic, but also presents
some complex temporal patterns and inhibitions. (3) Inserting the dye-coated
electrode into the ventral part of the vertical lobe allowed recording activity
from Kenyon cell dendrites and somata (Szyszka et al., 2005). Olfactory
representation becomes even sparser in the MBs as few KCs respond to
each odorant. Responses are phasic and often present off-responses at
stimulus offset. (Recordings 1 and 2 from Deisig et al., 2006,
2010 – Recordings 3 from Szyszka et al., 2005).

Müller et al., 2002). However, PNs belonging to the two anatomical
tracts conveying information to MBs and LH may have different
response properties. In contrast to initially thought (Müller et al.,
2002), there does not seem to be very clear-cut differences between
PN pathways in their propensity to respond to odorants, all PNs
responding rather non-specifically to many odors (Krofczik et al.,
2009). On average, the dynamic response profiles of l- and m-APT
neurons were found to be similar so that in both systems odor iden-
tity would be encoded both in the pattern of response latencies and
in the subset of activated PNs. However, even though responses
to single odors may be similar, this work and a recent imaging

study (Yamagata et al., 2009) both showed that the two subsystems
may treat odor mixtures differently. Moreover, the two systems
seem to respond differently to odor concentration (Yamagata et al.,
2009).

While intracellular recordings precisely describe the tempo-
ral response patterns of individual AL neurons to odors, imaging
methods allow recording the combinatorial responses of many
PNs simultaneously. This was possible using back-tracing of PN
processes with the calcium dye Fura-dextran (Figure 3D). By
placing a high concentration of dye into the axonal tract of l-
APT PNs on their way to the MBs, the dye is taken up by the
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FIGURE 4 | Neural representations of odors and olfactory behavior.

(A) Using a generalization experiment as shown in Figure 1B, it was
possible to measure the perceptual similarity among all possible
pairs of 16 aliphatic odorants. The table presents the amount of
generalization between any two of these odors. Odors used for
conditioning are presented vertically, while odors used in the
generalization tests are presented horizontally. Bees respond
preferentially to the learned odor (main diagonal), but also to
other – perceptually similar – odors. For instance, they generalize between
odors sharing the same carbon chain length (smaller diagonals) or the same
functional group (boxes along diagonals, see for instance the high
generalization among aldehydes). (B) Similarity among odors at the neural
level (measured in the AL using bath-application of the calcium dye, method 1
in Figure 3) significantly correlates with similarity at the behavioral level, as

measured in (A). Thus, the AL contains a neural representation of odors which
allows predicting to some extent the bees’ olfactory behavior. (C) At its
different processing levels, the bee brain is thought to contain multiple odor
representations, which can be characterized by different odor-similarity
matrices. Sequential and/or parallel transformation of olfactory information
shapes odor representations in higher-order centers that would eventually
determine olfactory behavior. Thus, higher-order representations should
correlate more strongly with behavioral output than more peripheral
representations [like AL input, see (B)]. As shown in Figure 3, we have
access to representations at the level of ORNs, PNs, and KCs corresponding
to the l-APT subsystem. There, a sparsening of olfactory representation is
found, but its influence on predicting behavior is still unknown. In addition,
representations in the m-APT subsystem, as well as in the LH are still
unknown and should be studied in future work.

neurons and transported retrogradely to the soma near the AL, and
to the dendrites within AL glomeruli (Sachse and Galizia, 2002).
In agreement with electrophysiological recordings, the imaging

recordings showed that PN odor-response patterns are temporally
more complex than the input activity (bath application), and
can show both excitation and inhibition phases. These calcium
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responses seem to follow – although with a lower temporal resolu-
tion – the spiking activity of the neurons, as shown by consecutive
intracellular electrophysiology and optical imaging of the same
AL neurons (Galizia and Kimmerle, 2004). Imaging of PN pop-
ulation activity allowed comparing glomerular activity patterns
between the input (Sachse et al., 1999) and PN output represen-
tation, even within the same animal (Sachse and Galizia, 2003).
Such comparison showed that most glomeruli which are interme-
diately or weakly active in the compound signal, do not present
any calcium increase in PNs (Sachse and Galizia, 2002). Thus, PN
patterns are sparser than input patterns. Moreover, it was found
that AL networks improve the separability of odor representa-
tions, both with single odors over a wide concentration range
(Sachse and Galizia, 2003) and with mixtures (Deisig et al., 2010,
see below).

From this, AL processing appears to perform mainly two
operations: gain control, which quantitatively controls the overall
amount of PN activity and contrast enhancement which quali-
tatively modifies the activity patterns. These two properties can
be attributed to the action of inhibitory LN networks, in par-
ticular GABAergic ones. Indeed, application of GABA onto the
brain blocks spontaneous activity and totally abolishes calcium
response to odors (Sachse and Galizia, 2002). Conversely, appli-
cation of a GABAA-like receptor antagonist, picrotoxin, stim-
ulates spontaneous activity, and increases the number of acti-
vated glomeruli upon odor presentation, also modifying the time
course of the signals. Picrotoxin also abolishes network oscillation
dynamics (Stopfer et al., 1997). Imaging recordings confirmed the
existence of (at least) two different inhibitory networks, follow-
ing the anatomical features of the bee AL (Sachse and Galizia,
2002). The first one would be a global inhibitory network dri-
ven by all glomeruli and affecting all glomeruli, corresponding
to homo-LNs. Based on the above results, it would be sensitive
to picrotoxin and have a gain control function. The second net-
work would be an asymmetrical inhibitory network driven by
one glomerulus and affecting mainly another glomerulus, corre-
sponding to hetero-LNs. The neurotransmitter for the hetero-LN
network involved in contrast enhancement is still unknown. Glu-
tamate (Barbara et al., 2005) or histamine (Sachse et al., 2006)
may play such a role, but this has not been demonstrated to
date.

Which rule underlies the inhibition relationships of hetero-LNs
between individual glomeruli? Comparison of the result of com-
putational modeling with imaging experiments established that
the transformation of odor representation between AL input and
output is best achieved by an interglomerular inhibition based
on functional similarity between glomeruli and less so by inhibi-
tion based on anatomical neighborhood relationships or random
connections (Linster et al., 2005).

ODOR REPRESENTATION IN THE MUSHROOM BODIES
After AL processing, l-APT and m-APT PNs convey information to
the MB calyces. In honeybees, KCs, the MB-intrinsic neurons, are
too small to perform intracellular recordings. Data from locusts
suggest that whereas PNs respond to odors with trains of spikes,
KCs often respond with a single or very few spikes (Perez-Orive
et al., 2002). KCs do not show any spontaneous activity, and

respond to very few odorants, i.e., representation at the KC level
is highly sparse. Optical imaging recordings used Fura-dextran
forward- and back-fills of PNs and KCs respectively, to study
this transformation of odor representation from the AL to the
MB (Szyszka et al., 2005, Figure 3D). This study showed that
the proportion of cells responding to only one odor out of a
four-odor panel increased at each level, respectively 55, 70, and
lastly 92%. Thus, olfactory representation would follow a series of
transformations with a progressive sparsening of odor represen-
tation (Figure 4C). The last step of sparsening, which takes place
at the level of the MB calyx involves several mechanisms. First,
the low synaptic strength between PNs and KCs would imply that
coherent input from many PNs at the same time is needed to
excite a KC (Perez-Orive et al., 2002). Second, KCs would detect
coincidence among many PNs thanks to odor-driven inhibition
produced by LH inhibitory neurons locked in anti-phase to PN
oscillations (Perez-Orive et al., 2002, 2004). Third, local microcir-
cuits involving GABA processes in the MB microglomeruli would
also shape KC responses (Ganeshina and Menzel, 2001; Szyszka
et al., 2005).

Odor representation at the KC level is thus highly sparse, and
each KC represents a particular pattern of PN inputs, possibly for
a particular concentration of an odorant (Stopfer et al., 2003) or a
particular composition of a mixture (Broome et al., 2006). There-
fore, they are thought to be the ideal representation of a particular
odorant for storing associative memories, i.e., storing the informa-
tion that one particular odor has been associated with a sucrose
reward or with a noxious stimulus (Heisenberg, 2003; Gerber et al.,
2004).

MUSHROOM BODY OUTPUT AND THE LATERAL HORN
The most studied MB output neuron is the Pe-1 neuron, which
is recognizable by a characteristic firing pattern in doublets or
triplets of action potentials (Mauelshagen, 1993; Rybak and Men-
zel, 1998; Okada et al., 2007). This wide-field neuron does not
only respond to odors, but also to other sensory modalities (visual,
mechanosensory). Moreover, it changes its responses during con-
ditioning (Okada et al., 2007). At this level of the olfactory pathway,
odor information is thus integrated with other modalities, and
the function of neurons such as Pe-1 might not be to represent
specific information about the learned odor like its identity, con-
centration, or multimodal context, but rather that this particular
stimulus combination has been learned.

Practically nothing is known about odor processing and repre-
sentation in the honeybee LH. In Drosophila, recent neuroanatom-
ical work could reconstruct putative maps of olfactory input to
the LH (Jefferis et al., 2007). In this species, the response spec-
tra of individual ORNs to odors are known (Hallem et al., 2004;
Hallem and Carlson, 2006; Galizia et al., 2010) and glomeruli
receiving input from ORNs carrying each receptor have been
mapped (Couto et al., 2005; Fishilevich and Vosshall, 2005). More-
over, the projection patterns of uniglomerular PNs from identified
glomeruli have been retraced to the higher-order centers. The
putative olfactory maps at the level of the LH predict a clear seg-
regation between candidate pheromone responsive PNs and fruit
odor responsive PNs (Jefferis et al., 2007). Such functional segre-
gation was not apparent in the MBs, although PNs from different
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glomeruli also project there in at least 17 different areas (Jefferis
et al., 2007). Thus, in Drosophila, particular subregions of the LH
may code the biological nature of olfactory stimuli. If a similar
organization of the olfactory circuit exists in the honeybee, one
could expect the honeybee LH to exhibit pheromone processing
regionalization. Anatomical and electrophysiological work in ants
also confirms this idea (Yamagata and Mizunami, 2010). Moreover,
because the LH receives input from associative neurons like Pe-1,
it was proposed that it may represent a pre-motor center for both
innate biological behavior (pheromones) and acquired behavior
(associative learning). Future research should invest more efforts
in anatomical and physiological experiments for addressing this
question.

CONCENTRATION CODING
Odor concentration strongly affects the odor map in the AL
as the number of activated glomeruli increases with increasing
concentrations of the odor (Sachse and Galizia, 2003). Thus, neu-
rons integrating the overall excitation over many glomeruli, like
multiglomerular PNs, may be adequate for monitoring absolute
stimulus concentration. But how can odor-specific concentration
coding as well as concentration invariance be achieved given the
changing nature of the odor representation with concentration?
The identity of an odorant is combinatorial and resides more in
the relative activation of different glomeruli (or PNs) than in the
absolute activation of individual glomeruli (Galizia and Szyszka,
2008). Therefore, neurons recognizing a particular pattern of
inputs, such as KCs, could perform both operations, as was shown
in locusts (Stopfer et al., 2003): while some KCs were found to be
tuned to a narrow concentration range of one particular odorant,
other KCs recognized the same odorant on a wide concentration
scale. Some concentration invariance can be achieved earlier in
the olfactory pathway, mainly through gain control mechanisms.
Imaging experiments showed that processing in the AL makes
odor representation more reliable over a broader concentration
range (Sachse and Galizia, 2003). Moreover, the two PN subsys-
tems may provide differential information to higher-order centers.
Imaging recordings of PN boutons in the MB lips showed that
while l-APT neurons display low concentration dependency (i.e.,
concentration invariant representation), m-APT neurons show
a clear concentration effect and change their response quickly
with concentration (Yamagata et al., 2009). Thus, concentration
coding and concentration invariance may be extracted by differ-
ential processing at the level of PNs, and/or differential readout by
KCs.

MIXTURE PROCESSING
In vivo calcium imaging at the AL input showed that usually a
glomerulus is activated by a mixture when at least one of its com-
ponents activates this glomerulus (Joerges et al., 1997; Deisig et al.,
2006). A putative presynaptic inhibition process induces a gain
control at the system’s input, so that complex mixtures do not sat-
urate the capacity of the olfactory system. The more components a
mixture contains, the more suppression phenomena were observed
(Deisig et al., 2006), i.e., cases in which the response to a mixture
was lower than to the components (Duchamp-Viret et al., 2003).
Taking into account all measured glomeruli, the whole mixture

representation follows essentially an elemental rule, because it can
be predicted linearly from the responses to the components: the
more a component activates the AL when presented alone (in
number of activated glomeruli, for instance), the more present it
is in the mixture representation (Deisig et al., 2006). The situa-
tion was slightly different at the PN level, as AL processing via LN
networks increased the number of suppression cases, allowing the
emergence of synthetic properties, i.e., the appearance of a rep-
resentation that cannot be predicted based only on component
information (Deisig et al., 2010). Indeed, similarity relationships
between mixtures and their components were more homogeneous
than at the input with a more equal representation of weak- and
strong-components in the mixture. These recordings showed that
reformatting by LNs in the AL increases separability among odor
mixture representations, probably facilitating olfactory mixture
discrimination by bees (Deisig et al., 2010).

How mixture representation further transforms along the
olfactory pathway is mostly unknown. Recordings at the level of
PN boutons in the MB lips confirmed an important proportion
of suppression effects in l-APT PNs, but showed that such mix-
ture non-linearities are mostly absent in m-APT PNs, providing an
additional hypothesis for the functional role of this dichotomous
system: one system would be involved in synthetic processing,
while the other would conserve component information (Yam-
agata et al., 2009). The strong sparsening of odor representation
from PNs to KCs and their coincidence detection properties could
be the basis for mixture-specific units.

OLFACTORY PLASTICITY
In bees, olfactory processing is not a static phenomenon, but is
subject to plasticity as a function of both age and experience. This
plasticity is manifested by structural and functional changes of
olfactory circuits.

DEVELOPMENTAL PLASTICITY
The olfactory system of bees goes through intensive remodeling
during the pupal stage and metamorphosis. The compartmenta-
tions of AL and MB calyces first take place during the beginning
of pupal development (Menzel et al., 1994; Hähnlein and Bicker,
1997). At pupal stage 1, the AL neuropil is still homogeneous
without any trace of the first spherical neuropil regions, called
“preglomeruli” which appear starting at pupal stage 3 (Masson
and Arnold, 1984). During subsequent stages the number of pre-
glomeruli progressively increases, so that at pupal stage 7, all
glomeruli appear adult-like (Gascuel and Masson, 1991). At the
MB level, a small, homogeneously structured neuropil that is not
yet divided into subcompartments appears at the prepupal stage
(Menzel et al., 1994). Then, starting at pupal stage 3, the calyces
gradually become separated from each other, with the lip, col-
lar, and basal ring regions being clearly developed at pupal stage
6 (Hähnlein and Bicker, 1997). Interestingly, PNs achieve their
adult arborization pattern within their main output region (MB
lip) earlier during development (pupal stage 1) than their dendritic
processes within their input region, the AL (pupal stage 2; Schröter
and Malun, 2000). The olfactory system remains highly plastic
throughout adulthood: an age-dependent increase in neuropil
volume is observed for most of the MB, but the lip (olfactory),
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and collar (visual) regions show both age-related and experience-
dependent volume increases (Withers et al., 1993; Durst et al.,
1994; Fahrbach et al., 1998; Ismail et al., 2006). Moreover, the
density of microglomerular complexes in the lips also undergoes
changes with both age and experience (Groh et al., 2006; Krofczik
et al., 2008).

The hive is a highly odorous environment, and bees at all
ages are subject to constant olfactory stimulation from honey and
pollen stores and from pheromones produced by the queen, work-
ers, and brood (Winston, 1987). This olfactory environment can
have a significant effect on the maturation of the olfactory system
of young bees. A number of experiments attempted to understand
the effect of a passive olfactory exposure on honeybees’ behavior.
Some studies showed an increase in orientation toward a prior
passively exposed odor, both in bees walking in an olfactome-
ter (Pham-Delègue et al., 1990) and in free-flying bees visiting an
artificial feeder (Jakobsen et al., 1995). In contrast, in the PER con-
ditioning procedure, no effect of passive exposure was found, or if
it was found, exposed bees tended to learn the exposure odor less
efficiently than naïve bees (Getz and Smith, 1991; Gerber et al.,
1996; Sandoz et al., 2000). At the same time exposed bees were
found to spend more time than controls in this odor in a four-
armed olfactometer (Sandoz et al., 2000). As control bees tended
to avoid the odor, this increased time spent in the exposure odor
field was interpreted as a reduced sensitivity of bees after passive
exposure. Several processes may explain this effect. For example,
constant passive exposure could have induced sensory adaptation
of the bees’ olfactory system. This would decrease a spontaneous
avoidance by bees of the pure compound in the olfactometer, and
make it a less salient compound to be learnt in a PER conditioning
procedure. As sensory neurons continue to mature until 8 days
after emergence (Masson and Arnold, 1984; Allan et al., 1987),
exposure at an early age may permanently alter bees’ olfactory
sensitivity.

In another series of experiments, odors were provided mixed
with a sucrose solution for different periods during young adult-
hood (Arenas and Farina, 2008). Bees clearly associated the odor
with the sucrose reward and showed long-term memory perfor-
mance in a PER test at a later stage (17 days). Interestingly, the odor
associated with sucrose reward when bees are 5–8 days old resulted
in better olfactory retention at the adult stage than when the same
exposure was performed before (1–4 days old) or – more surpris-
ing – after this critical period (9–12 days old; Arenas and Farina,
2008). In vivo calcium imaging showed that precocious olfactory
experience increased general odor-induced activity as well as the
number of glomeruli activated by the learned odor in the adult AL,
but also affected qualitative odor representations (Arenas et al.,
2009b). Thus early olfactory experiences inside the hive may have
long-lasting effects, reflected in behavioral responses to odorants
and concomitant neural activity in the adult olfactory system. Fit-
ting with the idea of developmental plasticity, bees were found to
memorize novel odor-sucrose associations more efficiently after
such early experience than controls (Arenas et al., 2009a).

NEURAL CORRELATES OF OLFACTORY LEARNING
During the adult stage, honeybee foragers experience odors in the
context of food search, and learn to associate floral odorants with

sucrose reward (see above). A number of studies have searched
for possible structural and functional plasticity of the olfactory
pathway during or at different moments after the formation of an
odor-sucrose association. Usually, in such experiments, differen-
tial conditioning is used so that changes in neural responses to a
reinforced odorant (CS+) can be compared to changes observed
to a non-reinforced odorant (CS−). Doing so, several studies
found learning-correlated changes in odor-evoked patterns in the
AL, taking place either shortly (10–30 min) after differential con-
ditioning (Faber et al., 1999) or later (2–5 h, Rath et al., 2011;
24 h, Sandoz et al., 2003; Fernandez et al., 2009). At short-term,
the amplitude of calcium responses to the CS+ were found to
increase (Faber et al., 1999). Electrophysiologically, increases and
decreases in PN spike rates were found in response to odors after
conditioning, with a strongest effect for the CS+ (Denker et al.,
2010). Later, between 2 and 6 h after training, differential increases
and decreases in the responses of individual glomeruli were found
(Rath et al., 2011), which was not the case at shorter-term (Peele
et al., 2006). Lastly, at 24 h, PN calcium signals were found to
increase to the CS+ (Fernandez et al., 2009). A general observa-
tion of these studies was that the similarity between the patterns of
the CS+ and of the CS− was decreased after learning, suggesting
that olfactory learning improves the discrimination of the learned
odorant from other ones (Faber et al., 1999; Fernandez et al., 2009;
Rath et al., 2011).

On a structural level, olfactory experience during foraging was
shown to induce glomerular volume and structure changes (Sigg
et al., 1997; Brown et al., 2002). It was long unclear whether such
changes were actually due to olfactory experience per se. Recently,
however, a specific glomerular volume increase was demonstrated
in a subset of glomeruli as a result of the formation of a long-term
appetitive olfactory memory after 72 h (Figures 5A,B; Hourcade
et al., 2009). It thus seems that in the AL, learning-induced plastic-
ity takes different forms at different moments after the associative
event.

Likewise, modified odor-evoked responses to a learned odor
were found in the MB calyces shortly after conditioning (10–
30 min, Faber and Menzel, 2001; Szyszka et al., 2008). In particular,
specific imaging of KC activity showed that repeated presen-
tation of an odor induces a reduction of the evoked response
(interpreted as habituation), while appetitive training induced a
recovery from this decrease (Szyszka et al., 2008). On a struc-
tural level, a long-term olfactory memory trace 72 h after training
was revealed as an increase in the density of microglomeruli in
the MB lips (Figures 5A,C, Hourcade et al., 2010). MB output
neurons are also subject to changes through associative learn-
ing, as exemplified by the Pe-1 neuron (Okada et al., 2007),
by recurrent PCT neurons (Hähnel and Menzel, 2010) or by
other ENs (Strube-Bloss et al., 2011). In some cases too, specific
changes are found in responses to the CS+ and response differ-
ences between CS+ and CS− were increased (Strube-Bloss et al.,
2011).

Thus many electrophysiological, functional imaging, or neu-
roanatomical studies find strong neural plasticity within olfac-
tory circuits, especially after associative conditioning. However,
it is often difficult to relate such neural plasticity to its exact
function. Are the observed changes related to modifications of
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FIGURE 5 | Structural plasticity related to olfactory long-term

memory. (A) Structural changes in olfactory circuits of the bee brain were
evaluated as a result of the formation of a long-term appetitive olfactory
memory. Bees conditioned to an odor CS (paired bees) are compared to bees
subjected to pseudoconditioning in which CS and US are presented explicitly
without temporal association (unpaired bees). After 72 h, paired but not
unpaired bees show strong behavioral olfactory long-term memory. At that
time, the brains were prepared and either the volume of olfactory glomeruli in
the antennal lobe (B) or the number of microglomeruli in the mushroom body
calyx (C) were measured. (B) Volumetric analysis of 17 identified glomeruli in
the antennal lobe, based on neutral red staining and 3D reconstruction. A

global increase in glomerular volume was found in paired bees relative to
unpaired bees. For each of the learned odors (here 1-hexanol), three glomeruli
showed a significant volume increase (data from Hourcade et al., 2009). (C)

Counts of microglomeruli numbers in the MB calyx, based on
synapsin/phalloidin double staining. Olfactory long-term memory induced an
increase in microglomeruli numbers in the lip region (olfactory) compared to
unpaired or naive bees. This long-term plasticity relies on transcription as
injection of Actinomycin D blocked the effect. This structural plasticity related
to olfactory long-term memory was logically found only in the calyx lip
(olfactory input region) and not in the collar (visual input region). (Data from
Hourcade et al., 2010).

odor processing, modulating the neural representation of the
learned odors so that it can be better distinguished from envi-
ronmental background? Or are they related to an “engram,”
revealing the storage of odor-reinforcement associations in the
brain? Currently we think that the AL is mostly responsible
for the former, while the MB would be crucial for the latter,
but considerable work is still needed to confirm this hypothe-
sis. Future neurobiological studies will need a combination of
approaches, asking in particular whether the observed cells (and
their plasticity) are necessary and/or sufficient for the expres-
sion of olfactory plasticity at the behavioral level (Gerber et al.,
2004).

CONCLUSION
One century of experiments have provided extensive data on
the olfactory behavior of honeybees, on the neuroanatomical
organization of their olfactory pathway as well as on the neural
representation of odors within these circuits. All these exper-
iments concur to show that the honeybee olfactory system is
tuned for performing a number of operations that are crucial

for meeting the demands of social life, food search, and mat-
ing. This system thus allows to (1) detect and identify odor
stimuli, allowing graded responses to increasingly similar odors;
(2) measure stimulus concentration allowing both concentration
invariant and concentration-specific odor recognition; (3) detect
components within a mixture as well as extract mixture-unique
properties; (4) constantly adapt to the odorous environment; and
(5) learn relationships between almost any odor and appetitive
or aversive outcomes. Although our understanding of odor rep-
resentation at the different levels of the bee brain has greatly
improved in the last years thanks to state-of-the-art recording
techniques, entire brain regions have yet to be explored. The most
prominent are the m-APT dependent parts of AL and MBs, as
well as the utterly unstudied LH. Thanks to optical imaging, our
understanding of the spatial representation of odors has greatly
improved, but temporal aspects are still poorly understood. Even
in such a simple system, as compared to vertebrates, olfactory
coding involves complex interactions between different neuron
types, so that only computational approaches feeding on com-
prehensive sets of experimental data may help understanding the
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dynamics and processing rules of the olfactory system. Lastly, plas-
ticity appears in multiple regions of the olfactory pathway,but their
respective implications for tuning the olfactory system or for stor-
ing outcome-related memories is still unknown. It shall be the goal
of future research to progress in these questions, so that a com-
prehensive model of olfactory detection, processing, and learning
in the honeybee can be constructed, the ultimate goal of sensory
neuroscience.
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