
SYSTEMS NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 07 December 2011
doi: 10.3389/fnsys.2011.00100

Organization of anti-phase synchronization pattern in
neural networks: what are the key factors?
Dong Li and Changsong Zhou*

Department of Physics, Centre for Nonlinear Studies and The Beijing-Hong Kong-Singapore Joint Centre for Non-linear and Complex Systems (Hong Kong), Hong
Kong Baptist University, Hong Kong, China

Edited by:

Claus Hilgetag, Jacobs University
Bremen, Germany

Reviewed by:

Huo Lu, Philadelphia College of
Osteopathic Medicine, USA
Marc Huett, Jacobs University,
Germany

*Correspondence:

Changsong Zhou, Department of
Physics, Hong Kong Baptist
University, Kowloon Tong, Hong Kong,
China.
e-mail: cszhou@hkbu.edu.hk

Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the
mechanism underlying the organization of anti-phase pattern is of significance for better
understanding more complicated pattern formations in brain networks. In dynamical sys-
tems theory, the organization of anti-phase oscillation pattern has usually been considered
to relate to time delay in coupling. This is consistent to conduction delays in real neural
networks in the brain due to finite propagation velocity of action potentials. However, other
structural factors in cortical neural network, such as modular organization (connection den-
sity) and the coupling types (excitatory or inhibitory), could also play an important role.
In this work, we investigate the anti-phase oscillation pattern organized on a two-module
network of either neuronal cell model or neural mass model, and analyze the impact of the
conduction delay times, the connection densities, and coupling types. Our results show
that delay times and coupling types can play key roles in this organization. The connection
densities may have an influence on the stability if an anti-phase pattern exists due to the
other factors. Furthermore, we show that anti-phase synchronization of slow oscillations
can be achieved with small delay times if there is interaction between slow and fast oscilla-
tions. These results are significant for further understanding more realistic spatiotemporal
dynamics of cortico-cortical communications.

Keywords: anti-phase, delay time, modular network, connection density, excitatory and inhibitory couplings

1. INTRODUCTION
Dynamical activity of the neural systems in the brain is char-
acterized by collective oscillatory activity over a broad range of
frequencies, showing complex spatiotemporal pattern formations
(Gusnard and Raichle,2001; Corbetta and Shulman,2002; Buzsáki,
2006). These complicated patterns are related to cognitive process
(Engel et al., 2001; Fries, 2005), so as to provide wonderful objects
for research in order to properly understand the information
processing in the brain. The mechanisms underlying these spa-
tiotemporal patterns are consist of at least two components. One
component refers to the background, which is a type of spon-
taneous pattern formation, not necessarily related to a state of
cognition in evidence. This pattern is organized basing on the fact
that in the absence of cognitive tasks, neurons still keep on firing
and sending information to their neighbors. The other compo-
nent refers to the pattern induced by some cognitive tasks, which is
organized basing on the background one (Dosenbach et al., 2006;
Ouyang et al., 2011). It is therefore of fundamental importance
to gain insight into the organization of the background pattern
formation for better understanding how brain realize its cognitive
functioning.

The neuronal networks in the brain are very complex in topo-
logical structure (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004;
Sporns et al., 2004; Bassett and Bullmore, 2006; Hagmann et al.,
2008; Bonifazi et al., 2009; Bullmore and Sporns, 2009). On such
complex networks, even if in the absence of any external stim-
uli, the dynamical patterns could be very complicated under the

condition of spontaneous communications among the dynami-
cal nodes (Newman, 2003; Boccaletti et al., 2006; Arenas et al.,
2008; Yuan et al., 2008). The two simplest patterns are in-phase
(zero time lag) and anti-phase oscillations. In-phase pattern means
that the neurons fire simultaneously. Long-distance in-phase syn-
chronization is believed to benefit for the integration of separated
functions performed in different regions, which has been a topic
of great interests (Engel et al., 1991b; Roelfsema et al., 1997;
Rodriguez et al., 1999; Varela et al., 2001; Wang et al., 2006; Vicente
et al., 2008). Differently, anti-phase pattern means that certain
areas of the brain normally increase activity, when others decrease
activity. Anti-phase pattern can be considered as the simplest case,
where two regions can be distinguished from each other from
the viewpoint of dynamics, so that the mechanism underlying
the anti-phase patterns is quite useful for deeper understanding
the formation of functional regions. In neuronal networks, such
anti-phase patterns have been widely observed in experiments
(Greicius et al., 2003; Fox et al., 2005; Fox and Raichle, 2007;
Mantini et al., 2007; Shmueli et al., 2007; Vincent et al., 2007;
Lewis et al., 2009). Actually, during attentional tasks, the pattern
of different areas of functional networks can usually show two
opposite types of responses that increase (Cabeza and Nyberg,
2000; Corbetta and Shulman, 2002) or decreases activity (Gus-
nard and Raichle, 2001; Simpson et al., 2001), so as to organize
a type of anti-phase pattern. An anti-phase oscillation is also
observed during the rest state (Greicius et al., 2003; Fox et al.,
2005; Mantini et al., 2007). For example, it was demonstrated by
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using functional magnetic resonance imaging (fMRI) method that
spontaneous blood oxygen level-dependent signal during rest fluc-
tuates slowly with a small frequency and is highly organized into
anti-phase pattern (Fox et al., 2005). Even during sleep, similar
phenomena have also been observed that some regions increase
activities meanwhile some other regions decrease activities (Kauf-
mann et al., 2006; Horovitz et al., 2009). Anti-phase oscillation
patterns have also been found in anesthetized monkeys (Vin-
cent et al., 2007), meaning that they do not necessarily reflect a
state of consciousness. These patterns are experimentally found
to oscillate at various bands of frequencies, e.g., the cardiac rate
(Shmueli et al., 2007) or even much slower (<0.1 Hz; Mantini
et al., 2007). The anti-phase pattern in the absence of task is a type
of background one organized by the spontaneous cortico-cortical
communication dynamics, and the intrinsic dynamical reasons for
the organization of the anti-phase pattern in the absence of overt
task performance may have some relationship to that typically seen
during attentional tasks.

In dynamical systems, the organization of anti-phase oscilla-
tion pattern has usually been considered relating to the time-delays
in coupling, which is consistent with the real neuronal networks
in the brain, where communication between neurons are carried
out by propagation of action potentials from one neuron to the
network neighbors through neuronal axons, with finite velocity
(Swadlow, 1985, 2000). This finite velocity leads to conduction
delays, which can reach up to many tens of milliseconds. Some
of the unmyelinated axons can generate a delay time as large as
300 ms. Furthermore,cortical architectures are hierarchical modu-
lar networks with several characteristics: (1) The distances between
neurons within a module are usually shorter than that in differ-
ent modules (Achard and Bullmore, 2007; Bullmore and Sporns,
2009); Consequently, the delay time is most likely smaller within
modules. (2) The connection densities are usually larger within
modules (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004; Achard
and Bullmore, 2007; da F Costa et al., 2007), which may impact on
synchronization within and between the modules. (3) Inhibitory
couplings usually form local connections (Albus and Wahle, 1994;
Bosking et al., 1997; Battaglia et al., 2007). As a result, inhibitory
coupling likely exists more within modules.

These important structural factors may influence the pattern
formation of neural networks significantly. In a recent theoretical
study (Deco et al., 2009), it is shown that the anti-phase pat-
terns can emerge from noise-driven transitions between different
multistable cluster synchronization states, with a two-community
network structure. In the study, impact of different factors of the
time delay and the modularity is mixed. However, to elucidate
which characteristics is crucial for the origin of anti-phase patterns
is actually a significant problem.

In this work, we investigate the anti-phase oscillation pattern
organized on a two-module network of either neuron cell model
or neural mass model and study the key factors among the conduc-
tion delay times, the connection densities, and the coupling types
(excitatory or inhibitory). Our results show that delay times and
coupling types can play key roles in this organization, but connec-
tion densities cannot. In an excitatory coupled neuronal systems,
the role of delay time is similar to a classical case of coupled phase
oscillators. A delay time close to half-period can induce anti-phase

pattern between two neuronal modules. However, this is not a
necessary condition, since we further reveal that if there exist an
interaction between low and fast oscillations, small delay time can
contribute to the organization of anti-phase pattern in slow oscil-
lation, which could be especially relevant to those experimentally
observed anti-phase synchronization of very small frequencies.
The investigation is significant for understanding more compli-
cated spatiotemporal pattern formations in the brains organized
by cortico-cortical communication dynamics.

2. MATERIALS AND METHODS
To study the key factors for the organization of an anti-phase
pattern between cortices, we analyze the dynamical behaviors of
both coupled neuron cells model and coupled neural mass model
on a two-module network. As schematically demonstrated in
Figure 1A, a part of cortex is modeled by a module, and the com-
munication between cortices is represented by the time-delayed
interaction between modules. By changing several important fac-
tors, we aim to elucidate the conditions for supporting an anti-
phase oscillation between modules, as illustrated in Figure 1B.
Within each module, the collective behaviors of the oscillators
should show a macroscopic rhythmic oscillation. In the simplest
case, these oscillators within each module arrive at a relatively high
degree of coherence with small phase shifts (approximate in-phase
oscillation).

The factors we will study in the following include conduction
delay times, connection densities, and coupling types (excitatory
or inhibitory). In the brain, the nodes (nerve cells or cortices) are
connected in different distances. Generally speaking, long-distance
connections contribute to integrating the functions of different
areas and short-distance connections can save the connection
costs. According to experimental results, the nodes within-module
usually have much shorter distance than those between modules
(Achard and Bullmore, 2007; Bullmore and Sporns, 2009), so that

FIGURE 1 | A schematic demonstration of an anti-phase oscillation

organized on a two-module network. (A) The network is divided into two
modules. Several factors are different within-module and between
modules, including conduction delays, connection densities, and coupling
types (excitatory or inhibitory). (B) Illustration of anti-phase oscillation
between modules. The lines stand for some kinds of collective behaviors
within each module, e.g., total firing rate, total synaptic current, etc.
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we can suppose that the conduction delays are usually smaller
within modules. On the other hand, it has been reported that
some long-distance conduction delays may not be too large in
myelinated axons (Waxman, 1980), which is also believed to be
significant for the integration of the functions. We will study sys-
tematically how the synchronization pattern changes when the
delays within and between modules are varied.

The second factor is the connection densities. In the brain
networks, there are much more short-distance connections than
long-distance ones. In this work, the word module is used with
broader meanings to allow us change various factors within and
between modules, however, in the usual sense, the concept of mod-
ule is based on the connection densities (Hilgetag et al., 2000;
Clauset et al., 2004; Hilgetag and Kaiser, 2004; Newman and Gir-
van, 2004; Newman, 2006; Achard and Bullmore, 2007; da F Costa
et al., 2007). Denser connections within a module and sparser con-
nections between modules may be significant for performing some
particular functions by the modules while maintaining commu-
nication between modules, allowing both functional segregation
and integration. The modularity has been shown to impact on
synchronization of oscillators without considering delays (Arenas
et al., 2006, 2008; Gómez-Gardeñes et al., 2010; Zhao et al., 2011).
However, its role in organizing the anti-phase pattern between
modules in the presence of heterogeneous delays is not known.
This issue is a very important open problem. In experiments, func-
tional networks are usually detected by some coherent activities
(Scannell et al., 1999; Hilgetag and Kaiser, 2004), and anti-phase
pattern could be the simplest case that the coherent activity within
one module can be distinguished from another. A deep under-
standing of the impact of connection densities in organizing
anti-phase pattern is useful to elucidate the role of modularity
in organizing functional networks in the brain.

The third factor refers to the coupling types. In the brain, there
coexist excitatory and inhibitory neurons. They have different
numbers, distributions, and connected distances in brains (Albus
and Wahle, 1994; Bosking et al., 1997; Battaglia et al., 2007), so
that the distributions of excitatory and inhibitory connections are
also different within-module and between modules. The competi-
tion and balance of excitation and inhibition has profound effects
on the collective dynamics of neural network, such as the emer-
gence of slow oscillations (Wang et al., 2011). Therefore, the type
of coupling may also contribute to the organization of anti-phase
patterns in cortical communication.

When these factors are taken into consideration, we can sim-
plify some other settings in our model. We consider a directed
random network of N /2 nodes for each module. We assume that
the connection probability k in and time-delays τ in are uniform for
connections within the modules. Likewise, they are also uniform
for the connections between modules and are denoted as kout and
τ out, respectively. The ratios of the number of excitatory links to
the number of all links within and between modules are repre-
sented as�in and�out, respectively. In the brain, the overall ratio
is about �= 0.8, while in our model we assume it is a tunable
parameter.

After the analysis of this simplified model, we will also study
the impact of distributed delay times using a realistic cortical
network of visual system of macaque monkey, where the delay

time is assumed to depend on the distance between the functional
regions.

2.1. NEURON CELL MODEL
We first study the dynamical behaviors with pulse-coupled
integrate-and-fire (IAF) neuron model on each node. Each mod-
ule may represent a local neuronal circuit from two distant, but
connected cortical regions. The IAF model is described as

dVj

dt
= Id − Vj +

∑
i

Kijδ
(
t − t s

i,k − τij
)

, (1)

where V j is the membrane potential of the jth neuron. Whenever
the membrane potential of a neuron crosses a spiking threshold
Vth, an action potential is generated and the membrane potential
is reset to the resting potential Vr. t s

i,k is the time of the kth spike
sent by neuron i. It takes a delay time τ ij for the spike to prop-
agate to the neuron j. τ ij = τ in when the two neurons are from
the same module and τ ij = τ out otherwise. Kij is the connectivity
matrix, and Kij = 0 means there is no link from neuron i to neuron
j. Otherwise, Kij are given a value common for all i and a positive
(negative) Kij represents that the presynaptic neuron i is excita-
tory (inhibitory). The dc current Id is set that the neurons keep on
spontaneous firing.

While investigating the aforementioned three factors, we
respectively change the conduction delays (τ in �= τ out; kin = kout;
and �in =�out = 100%), connection densities (kin �= kout;
τ in = τ out; and �in =�out = 100%), and nerve type. In the third
case, where we investigate the factor of coupling types, we change
20% neurons to inhibitory ones in each module. The output links
of these inhibitory neurons only link to the neighbors within each
module, so that we get�in = 80% �=�out = 100%, τ in = τ out, and
kin = kout.

2.2. NEURAL MASS MODEL
We can consider a model representing the cortical network of
higher hierarchy compared to the neuronal networks in subsec-
tion 2.1. In almost all cortical regions, there is a basic neural
circuit composed of a pyramidal cell receiving excitatory input
from extrinsic afferent systems and spiny cells and inhibitory input
from interneurons. Neural mass model (Wendling et al., 2000;
Zhou et al., 2007) has been developed based on such basic micro-
circuits to describe mean activity of the cortical networks. The
dynamics are described by average membrane potential v and spike
density S of three subpopulations: excitatory pyramidal cells, exci-
tatory and inhibitory interneurons. A network of coupled neural
mass oscillators is described by the following equations,

v̈ i
0 (t ) = AaS

[
vi

1 (t )− vi
2 (t )

]
− 2av̇i

0 (t )− a2vi
0 (t ) , (2)

v̈ i
1 (t ) = Aa

⎧⎨
⎩I0 +

∑
j=1,...,N

gij S
[

v
j
1

(
t − τij

) − v
j
2

(
t − τij

)]

+ C2S
(

C1vi
0(t )

)⎫⎬
⎭ − 2av̇i

1 (t )− a2vi
1 (t )+ ηi (t ) , (3)

v̈ i
2 (t ) = Bb

{
C4S

[
C3vi

0 (t )
]}

− 2bv̇i
2 (t )− b2vi

2 (t ) , (4)

Frontiers in Systems Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 100 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Li and Zhou Anti-phase synchronization in neural networks

where the spike density is related to the potential by the sigmoid
function

S (v) = 2e0

/ (
1 + er(v0−v)

)
, (5)

where 2e0 is the maximum firing rate, r0 is the post-synaptic
potential corresponding to a firing rate of e0 and r is the steepness
of the sigmoid. Here C1 and C2, C3 and C4 are the average num-
ber of synaptic contacts, for the excitatory and inhibitory synapses,
respectively. The superscript i is the serial number of the popula-
tion. ηi(t ) represents independent background white noise. τ ij is
the time delay from the population j to the population i. When
the population i and j belong to the same module, τ ij = τ in; oth-
erwise, τ ij = τ out. gij Is the coupling strength, where a positive gij

is equivalent to an average excitatory effect and a negative gij to
an average inhibitory effect. In numerical simulations, we use very
small gij, so that the frequency of coupled oscillators does not have
a big difference from that of a single oscillator.

This model can generate either delta or alpha oscillation,
depending on the injected dc current I 0. The spatiotemporal
patterns are very complicated, depending not only on system para-
meters but also on initial states, so that we use an anti-phase pattern
with some noise perturbation as the initial state for numerical
simulations in order to investigate the role of important factors in
persisting this pattern.

We use a set of typical system parameters as in Wendling
et al. (2000): A = 3.25 mV, B = 22 mV, a = 100 s−1, b = 50 s−1,
C1 = 135, C2 = 108, C3 = 33.75, C4 = 33.75, r0 = 6 mV, e0 =
2.5 s−1, and r = 0.56 mV −1. In our simulation, we set I 0 = 115 mA
for the delta oscillation and I 0 = 180 mA for the alpha oscillation.

2.3. SYNCHRONIZATION INDEX
In the following, we define the in-phase and anti-phase synchro-
nization index in order to evaluate the anti-phase patterns. First
we define the oscillatory phaseψ of a single neural mass oscillator
j. Here we use a definition generalized from Pikovsky et al. (2001):

ψ j (t ) = 2π
t − t

j
0

T
, (6)

where T is the oscillation period and t
j
0 is the first time that the

output of the jth oscillator v
j
1 − v

j
2 arrives at its maximum value.

Such a definition can also be applied to the oscillations in the neu-
ron cell model. The order parameter within modules, Z1,2, can be
defined as

Z1,2 =
〈
eiψ j (t )

〉
N/2

, (7)

where the subscripts 1,2 denote the two modules, and 〈·〉N/2 means
averaging within a module and over long time.

The in-phase index ϑ in within modules can be defined as

ϑin = |Z1| + |Z2|
2

, (8)

so that ϑ in = 1 when an ideal in-phase pattern is achieved within
modules and ϑ in = 0 when it is a zero-coherence state.

The anti-phase index ϑan between modules is defined as

ϑan = 1 − |Z1 + Z2|
|Z1| + |Z2| , (9)

so that ϑan = 1 when a perfect anti-phase pattern is achieved
between modules and ϑan = 0 vise verse. If within a module, the
oscillations are incoherence,ϑ in ≈ 0, and the collective behavior is
merely some fluctuations. In order to avoid such irrelevant case,
we only define ϑan when ϑ in> 0.1.

3. RESULTS
3.1. EFFECT OF DELAY TIME
In the neuron cell model, when we select reasonably different delay
times for the connections within-module and between modules,
anti-phase pattern can be achieved between the two modules. The
precondition is that in-phase pattern has to be achieved within
each module. An example can be seen in Figure 2A, where the
delay time between module is τ out = 100 ms, and the delay time
within each module is τ in = 2 ms. The other two parameters, the
density and ratio of excitatory coupling, is the same within and
between modules. The existence of an anti-phase synchronization
is robust to these parameters. Therefore, the delay time can be a
key factor in organizing the anti-phase pattern.

In the neural mass model, we can get similar conclusion. With
I 0 = 115 mA, a single oscillator oscillates at about 1.5 Hz in the

FIGURE 2 | Dynamics of two-module networks with neuron cell

models. (A) Delay times are different within-module τ in = 2 ms and
between modules τ out = 100 ms; kin = kout = 0.6; and �in =�out = 100%. (B)

Connection densities are different within-module kin = 1 and between
modules kout = 0.2; τ in = τ out = 100 ms; and �in =�out = 100%. (C) 20%
neurons are changed to be inhibitory and the outputs of them only link to
the neighbors within modules; �in = 80%, �out = 100%, τ in = τ out = 150 ms,
and kin = kout = 0.3.
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delta band. We use excitatory couplings, i.e., positive gij. Numer-
ical results show that conduction delays also play a key role in
the persistence of the anti-phase patterns between modules and
in-phase patterns within modules, as shown in Figures 3A–H,
where the pronounced anti-phase pattern mainly persists in two
regions: the delays within a module τ in ∼ 0 and the delays between
modules τ out are around 200 ms, and τ in are around 500 ms and
τ out are around 200 ms. The latter one has a larger region than
the former one. This situation, i.e., the delay time between distant
modules can be significantly smaller than those within the module,
is unlikely to be realistic, though we can simulate it in the model.
When we change the input current to I 0 = 180 mA, the frequency
of a single oscillator comes to the alpha band, around 11 Hz. The
numerical results are shown in Figures 3I–P, which are similar

to those in Figures 3A–H. The most prominent difference is that
the time scale is only about 1/7 of the Figures 3A–H, noting the
frequency in Figures 3I–P is about 7 times of that in Figures 3A–H.

3.2. EFFECT OF CONNECTION DENSITY
In neuron cell model, no matter how we change the connection
densities within-module and between modules, if other factors are
homogeneous, the anti-phase pattern never emerges. An example
is shown in Figure 2B. Therefore, the connection density is not a
key factor in organizing the anti-phase pattern. However, in the
neural mass model, we can see that, though anti-phase pattern
cannot be found when delay times are homogeneous (τ in = τ out,
the diagonal of each panel of Figure 3) the parameter region of
τ in and τ out for anti-phase pattern are different, depending on

FIGURE 3 |The in-phase synchronization index ϑ in within a module and

the anti-phase synchronization index ϑan between the modules as

functions of the delay times τ in and τ out at different connection densities

in networks of coupled neural mass oscillators (Eqs 2–4). (A–D) and (I–L):
the in-phase synchronization index ϑ in in color scale. (E–H) and (M–P): the
anti-phase synchronization index ϑ an in color scale. ϑ an is not defined when

ϑ in <0.1, represented by black region. Upper panel (A–H): I0 = 110 mA, the
neural mass oscillators oscillate at about 1.5 Hz in the delta band. Lower panel
(I–P): I0 = 180 mA, the neural mass models oscillate at about 11 Hz in the
alpha band. The connections densities of the networks are: (A,E,I,M),
kin = kout = 0.3; (B,F,J,N), kin = 0.6, kout = 0.3; (C,G,K,O), kin = 0.9, kout = 0.3;
(D,H,L,P), kin = kout = 0.6.
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connection densities. It means that the connection density also
play an important role in maintaining the stability of the anti-
phase pattern in the presence of noise perturbation, if τ in and τ out

are different.
Previously, it has been found that the connection densities have

impacts on the synchronization properties of a network (Arenas
et al., 2006, 2008; Gómez-Gardeñes et al., 2010; Zhao et al., 2011).
The collective behaviors of nodes within a module are easier to be
established since the interactions within a module is stronger (con-
nection density is higher) than that between modules. Intuitively,
the connection density probably has an impact on the organization
of anti-phase pattern. In this work, we clarify that the connection
density actually impact on the stability rather than the existence
of an anti-phase pattern. With higher connection densities within
or between the modules, the anti-phase attractors are stabilized in
a broader parameter region of the delay time.

3.3. EFFECT OF INHIBITORY COUPLING
At last, when we change 20% neurons to inhibitory type in
each module, anti-phase oscillation may also be observed if
the inhibitory synaptic current is sufficient large, as shown in
Figure 2C. This result also depends on the coupling strength
(synaptic current). Under the condition τ in = τ out and kin = kout,
in order to achieve the anti-phase pattern between modules, a
good match of coupling strength with τ in,out, kin,out and �in,out is
required. In the example we show in Figure 2C, τ in,out = 150 ms,
kin,out = 0.3,�in = 80%,�out = 100%, and the inhibitory coupling
strength is ten times of the excitatory coupling strength. The bal-
ance of excitation and inhibition in neural network with large
inhibitory coupling is realistic in biological neural networks, since
inhibitory synapses are in general closer to the neuron cell body
(soma; Buzsáki, 2006). These results also indicate that in the orga-
nization of an anti-phase oscillation pattern in cortex, the coupling
types can be a key factor. The mechanism is that the inclusion
of inhibitory coupling may generate slow oscillations within the
module, which will be discussed in more detail later.

3.4. ANALYSIS
Given a pair of oscillators φ1(t ) and φ2(t ), with time-delayed
coupling, their phase difference is defined as 
φ=φ1 −φ2. The
stability of in-phase and anti-phase patterns versus delay time
becomes clear when the evolution of 
φ can be approximately
written in the following linearized form:

d
φ

dt
=

{
G (2πγ τ)
φ, 
φ ∼ 0

G (2πγ τ + π) (
φ − π) , 
φ ∼ π
, (10)

where γ is the oscillatory frequency, τ is the delay time of the
coupling and G is a periodic function with period 2π . In such a
case, stability analysis theory can give the conclusion that when
G(2πγ τ )< 0, the in-phase pattern (
φ= 0) is stable and when
G(2πγ τ +π)< 0, the anti-phase pattern (
φ=π) is stable. Fur-
thermore, for some given values of delay time τ , if both G(2πγ τ )
and G(2πγ τ +π) are negative, the in-phase and the anti-phase
pattern coexist in this parameter region; and whether the in-
phase or anti-phase pattern will be achieved depends on the initial
conditions.

For example, in the case of classical coupled phase oscillators:

dϕ1,2(t ) /dt = 2πγ + K sin
[
ϕ2,1 (t − τ)− ϕ1,2 (t )

]
, (11)

where K is the coupling strength, G(2πγ τ ) takes the form
G(2πγ τ ) = −2K cos(2πγ τ ). The function −2K cos(2πγ τ )
(K > 0) versus 2πγ τ is shown in Figure 4A. When 2πγ τ <π /2
or 2πγ τ > 3π /2, G(2πγ τ )< 0, and G(2πγ τ +π)> 0, so that
the in-phase pattern is stable. When π /2< 2πγ τ < 3π /2,
G(2πγ τ )> 0, and G(2πγ τ +π)< 0, the anti-phase pattern is
stable.

In the following, we show that anti-phase synchronization in
coupled neuron systems can be understood using coupled phase
oscillators, with mathematical details presented in Appendix. The
collective behaviors of coupled neuron cells are basis for the spa-
tiotemporal pattern formations in neuron networks. In the sim-
plest case where a pair of neuron cells are pulse-coupled together
(K12 = K21 = K̃ ), the phase shift between them is determined by
the delay time, coupling strength, and the initial conditions (Ernst
et al., 1998). We can define the phase of an IAF cell as:

ϕj (t ) = 2π
t − t

j
0

T
, (12)

where t
j
0 is the time when the jth neuron fires for the first time.

The membrane potential V (t ) then can be expressed as a function
of the phase V (ϕ). Actually, from Mirollo and Strogatz (1990), an
IAF cell is usually described as a phase oscillator in this way. In
the case of a pair of cells with small excitatory coupling, the phase
difference |
ϕ| = |ϕ1 −ϕ2| equals to the time delay τ or 2π − τ
(Ernst et al., 1998), so that a delay time approximated to half of the
period can induce an apparent anti-phase oscillation pattern. This
case in shown in Figure 5A. It looks different when compared to
the classical phase oscillator in Figure 5B. However, there is sim-
ilarity between a pair of pulse-coupled IAF model and a pair of
coupled phase oscillators model: when τ approximates to 0 or 1/γ ,
the phase difference is small (in-phase or approximate in-phase),

FIGURE 4 | Comparison of function G(2πγ τ ) between (A) coupled

phase oscillators (K > 0) and (B) coupled neuron cells systems.

Frontiers in Systems Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 100 | 6

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Li and Zhou Anti-phase synchronization in neural networks

FIGURE 5 | In-phase and anti-phase attractors. (A) A pair of coupled IAF
oscillators described by Eq. 1 (green lines); (B) a pair of coupled phase
oscillators described by Eq. 11 (K >0); (C) a pair of coupled neuron mass
oscillators described by Eqs 2–4.

whereas when τ approximates to 1/2γ , the phase difference is big
(anti-phase or approximate anti-phase). This similarity actually
has deeper significance in understanding key role of delay time in
organizing the anti-phase pattern in neuron networks, as we will
show shortly.

Let us consider a system with two populations of cells. Within
each population, neurons are coupled together so that they
fire orderly; and between the populations, the phase difference
between pairs of neurons corresponds to the phase difference of
the oscillations of the two populations. This is the simplest case
where the interaction between neuron cells can map to the inter-
action between neuron populations. In this case, we can show
(see Appendix) that the phase difference can be described by the
same form as in Eq. 10, where the function G(2πγ τ ) is piece-wise,
satisfying:

G (2πγ τ)

⎧⎪⎨
⎪⎩
< 0, 2πγ τ ∈ refractory period

> 0, 2πγ τ ∈ integrationperiod

< 0, 2πγ τ ∈ firing period

, (13)

as shown in Figure 4B. When the neuron receives a spike, if V (ϕ)
increases to a new value V (ϕ)+K̃ , the neuron is in the integration
period, (ϕ ∈ integration period); if V (ϕ) increases to Vth where the
neuron fires a spike, it is in the firing period, (ϕ ∈ firing period);
and if V (ϕ) remains at the value Vr, it is in the refractory period,
(ϕ ∈ refractory period). More details about the function G can be
obtained in the Appendix. These three periods are qualitatively

similar to the three regions I, II, and III in coupled phase oscillators
with K > 0 in Figure 4A. The above analysis can therefore explains
the relationship of the organizations of anti-phase pattern between
coupled neuronal systems and coupled phase oscillators, so as to
understand the key role of the delay time.

In a pair of coupled neural mass oscillators, the dynamical
behaviors versus delay time will be more similar to the case of
coupled phase oscillators. We show an example in Figure 5C.
Compared to the coupled phase oscillators, the region for anti-
phase pattern is smaller and shifts to smaller τ in coupled neural
mass oscillators. This result has influence on the organization of
the anti-phase pattern on the two-module networks. For exam-
ple, in each panel of Figure 3, the region with high values of the
in-phase index ϑ in and anti-phase index ϑan is smaller in size at
small τ in than that of large τ in.

To organize the anti-phase oscillation pattern between mod-
ules, highly coherent oscillation (approximate in-phase synchro-
nization) has to be achieved within modules, or otherwise there
would not be macroscopic oscillations of the population except
for some fluctuations. From the above analysis, we know that a
suitable delay time between modules τ out is very important. The
delay time within modules τ in should be small enough (or close
an integer times of the period) to allow the oscillators within mod-
ules have small phase difference, so that the oscillators within each
module may exhibit the approximate in-phase pattern. For pulse-
coupled neuron networks, in the extreme case, all the neurons
within a module fire simultaneously, and the interaction between
modules is equal to the interaction between a pair of neurons as
analyzed by Ernst et al. (1998). The delay time between modules
approximating to half of the period can induce this anti-phase
pattern. In network of neural mass models, the dynamics is more
similar to the coupled phase oscillators, though the attractors are
more complex, depending on the initial conditions. Therefore, dif-
ferent delay times within and between modules can be a key factor
for anti-phase synchronization.

The connection density does not play an important role as the
delay times. In the network of coupled neuron cells with homo-
geneous delay time τ and excitatory coupling, high-coherence
collective oscillation can only be achieved when τ = nT where
T is the firing period of the neurons (e.g., n = 4 in Figure 2B).
Supposing that the neurons in the first module fire, after time τ ,
the signal transfer to the second module, inducing firing of the
neurons in the second module. At the same time, the neurons in
the first module also fire because of the relationship between the
delay time and the firing period, so that only in-phase oscillation is
observed. In this case, changing the connection density within and
between modules cannot organize an anti-phase pattern. However,
connection densities also have impact on the anti-phase pattern.
Neuronal network is complicated in dynamics, where multiple
attractors usually coexist, and network connection matrix is very
important for the stability of an attractor (Memmesheimer and
Timme, 2006). Connection densities play a very important role
in the stability of an existing anti-phase pattern, though changing
connection densities cannot influence the existence of an anti-
phase pattern. Specially, in the network of neuron cell model,
under the condition of suitable delay times and other parameters
for anti-phase pattern, if the connection density is not suitable
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to stabilize this pattern robustly, this pattern is still difficult to
achieve. For example, if kin is small, anti-phase pattern can be only
achieved by using the initial condition very close to this attrac-
tor. Otherwise, with random initial conditions, the neurons will
fire randomly without achieving in-phase and anti-phase synchro-
nization. For the network of neural mass model, other attractors
can also coexist with the anti-phase synchronization. Compar-
ing the Figures 3E–H or the Figures 3M–P, one can notice that,
even in these simulations we use the same initial conditions, under
the noise perturbations, the parameter regions of anti-phase pat-
tern are not the same with different kin or kout. In this case, the
connection density can play an important role in preserving the
anti-phase pattern.

The other key factor is the inhibitory coupling. When inhibitory
couplings are added within modules, the firing patterns can be
altered. Compared to the case of totally excitatory coupling,
Brunel and Wang (2003) have ever shown that in the presence
of inhibitory coupling, an oscillatory behavior at the popula-
tion level can happen among the neurons. The period of the
collective oscillations is determined by several parameters of the
excitatory and inhibitory synapses. Given an oscillation period,
a suitable delay time τ approximating to half of the period can
induce an anti-phase pattern, similar to the case of a pair of cou-
pled neuron cells when the oscillations within-module is highly
coherent. In the example we show in Figure 2C, the period is
about 320 ms, and the delay time is 150 ms. Therefore, the role
of inhibitory couplings in anti-phase synchronization is that they
induce emergent oscillations with periods fitting to delay times
between modules.

3.5. INTERACTION BETWEEN HIGH AND LOW FREQUENCIES
The analysis in the previous section shows that the time delay
approximating to 1/4γ < τ < 3/4γ contributes to the anti-phase
patterns for oscillations with frequency γ for dominant excitatory
couplings between modules. Collective activity in the brain oscil-
lates in a quite wide range of frequencies. The conduction delays
between neurons in different cortex are usually tens of milliseconds
which can support anti-phase synchronization of oscillations with
a period of hundreds milliseconds if the oscillations are narrow-
banded. In reality, the anti-phase oscillations can be much slower
(sometime slower than 0.1 Hz), corresponding to the delay times
several orders of magnitude larger than the conduction delays.
A crucial question is whether the relatively small delay times of
neuronal communications can contribute to the slow anti-phase
patterns? Our analysis using a simple mathematical model show
that this is possible if there exists an interaction between slow and
fast oscillations.

Supposing the signal measured from a cortical region is a func-
tion of two variables δ and α as H (δ,α), where δ and α respectively
denote the phase of slow and fast oscillations. We describe the
evolution of them as coupled phase oscillators

δ̇1,2 (t ) = 2πγδ

+ Iδ
[
δ1,2 (t ) , δ2,1 (t − τ) ,α1,2 (t ) ,α2,1 (t − τ)

]
, (14)

α̇1,2 (t ) = 2πγα

+ Iα
[
δ1,2 (t ) , δ2,1 (t − τ) ,α1,2 (t ) ,α2,1 (t − τ)

]
, (15)

where γ δ and γ α represent their intrinsic frequencies and the
subscripts 1 and 2 indicate two cortical regions. The question now
can be specified as: can the anti-correlated population activities be
observed between these two regions in δ band, if the conduction
delay τ has the same order as 1/γ α , and τ < 1/4γ δ .

If there is no interaction between high-frequency and low-
frequency oscillations, the system will be reduced to two cou-
pled oscillators in the δ and α bands separately, very similar to
that of Eq. 11. In this case, anti-phase synchronization cannot
be realized for the slow oscillations with τ < 1/4γ δ . Therefore,
if the anti-correlation pattern organized in low-frequency band
is induced by small time-delays, there must be an interaction
between high-frequency and low-frequency oscillations.

We use an example in the following to demonstrate this
mechanism, where we take the interaction terms as

Iδ1,2 = K sin
(
δ2,1(t − τ)− δ1,2(t )

)
cos

(
α2,1(t − τ)−α1,2(t )

)
,

(16)

Iα1,2 = K sin
(
α2,1(t − τ)−α1,2(t )

)
cos

(
δ2,1(t − τ)− δ1,2(t )

)
,

(17)

with positive coupling strength K > 0. This is one of the
simplest cases where the interaction between high-frequency
[cos(α2,1(t − τ ) −α1,2(t ))] has influence on the interaction
between low-frequency oscillations [sin(δ2,1(t − τ ) − δ1,2(t ))],
and vise versa. Using new variables u = δ+α and v = δ−α, we
can separate the system into two pairs of coupled phase oscillators
with frequencies γ δ + γ α and γ δ − γ α , respectively,

u̇1,2 (t ) = 2π (γδ + γα)+ K sin
(
u2,1(t − τ)− u1,2(t )

)
, (18)

v̇1,2 (t ) = 2π (γδ − γα)+ K sin
(
v2,1(t − τ)− v1,2(t )

)
. (19)

Now the conditions for in-phase and anti-phase synchronization
of these new oscillators become clear. Since δ= (u + v)/2 and
α= (u − v)/2, we can obtain the phase differences of the original
fast oscillations α1,2 and slow oscillations δ1,2. We can identify sev-
eral important values of the delay τ . The results are summarized in
Table 1. All of τ 0,1,2,3,4 have the same order of 1/γ α , and are smaller
than 1/4γ δ when γ δ is much smaller than γ α . Notably, there is a
region (τ 2, τ 3), the slow oscillations δ1 and δ2 can show anti-
phase oscillation. Examples of numerical simulation are shown in
Figure 6.

In the real cortex system, the interactions between high and
low-frequency oscillations will not be as simple as the model
shown in Eqs. (16) and (17). Furthermore, some of the anti-phase
patterns of cortical dynamics are investigated by using indirect
methods, e.g., fMRI studies (Fox et al., 2005), where the under-
lying mechanism of slow oscillation is quite complicated and

Table 1 | Phase difference of α1,2 and δ1,2.

�φ\τ (τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4)

α1 −α2 0 π /2 0 −π /2

δ1 − δ2 0 π /2 π π /2

τ 0 = 0; τ 1 = 1/4(γ δ + γ α ); τ 2 = 1/4(γ δ − γ α ); τ 3 = 3/4(γ δ + γ α ); τ 4 = 3/4(γ δ + γ α ).
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is not yet clearly understood. Nevertheless, this part of discus-
sion provides an understanding of principle that it is possible
to obtain anti-phase pattern in very slow-frequency band with
a relative smaller delay time if there is the interaction between
high and low frequencies oscillations. Moreover, in the pres-
ence of these interactions, more types of patterns can emerge in
addition to in-phase and anti-phase oscillations, e.g., the pattern
of π /2 phase difference (see Table 1; Figure 6). It is therefore
expected that more complex pattern formations can organize in
the time delay environments when the interactions among differ-
ent frequency bands are entangled in a complicated manner. Our
research is of fundamental meaning for further understanding
the complex pattern formations organized within cortico-cortical
communications.

4. DISCUSSIONS
4.1. IN-PHASE SYNCHRONIZATION WITHIN MODULES
When we show the organization of an pattern which is anti-phase
between modules and in-phase synchronization within modules,
the analysis is made basing on that in-phase has been organized
within modules. The dynamics between modules is then similar to

FIGURE 6 |The pattern of slow and fast oscillations in the presence of

time-delays, described by Eqs. (16) and (17). Parameters are K = 0.02,
γ α = 10, γ δ = 1, so that τ 1 = 0.025 × 10/11, τ 2 = 0.025 × 10/9,
τ 3 = 0.075 × 10/11, τ 4 = 0.075 × 10/9. (A) τ = 0.005 ∈ (τ 0, τ 1),
α1 −α2 = δ1 − δ2 = 0; (B) τ = 0.025 ∈ (τ 1, τ 2), α1 −α2 = δ1 − δ2 =π /2; (C)

τ = 0.05 ∈ (τ 2, τ 3), α1 −α2 = 0, δ1 − δ2 =π ; (D) τ = 0.075 ∈ (τ 3, τ 4),
α1 −α2 = −π /2, δ1 − δ2 =π /2.

a pair of coupled neuron cells or coupled phase oscillators (Eq. 11).
In other words, in our analysis, in-phase pattern within-module is
a precondition for the organization of anti-phase pattern between
modules.

However, when two neurons without direct connections are
coupled to the third intermediary one, each fires in anti-phase
with the third one, the two neurons can achieve in-phase fir-
ing. Such a case can be also observed on a neuronal network. As
shown in Figure 7, the network is divided into two populations;
within each population, there is no connection among neurons,
but between populations, neurons are randomly coupled with suit-
able delay times for anti-phase firings. On this network, neuron
A and B can achieve in-phase because they have common input
from neuron D and both of them are anti-phase to neuron D. The
neurons D and E can achieve in-phase because of the common
input from neuron B. This mechanism can finally make all the
neurons within one population fire in-phase, even for those with-
out a common input, like the neurons A and C. In such a case,
anti-phase between the two populations forms a precondition for
the organization of in-phase pattern within each population in
the presence of delay times. This case is therefore different from
what we have analyzed where the connection density is usually
higher within modules than between modules. In a real neuronal
network, the two populations presented in Figure 7 will not be
defined as a module in term of connectivity. Including interaction
within such a population does not necessarily enhance in-phase
synchronization, so that if there exist interactions within popu-
lations, especially when the delay time and coupling type are the
same as those between the populations, the in-phase pattern could
be destroyed.

Generally speaking, the mechanism, where anti-phase between
populations is precondition for in-phase within populations, is
more appropriate to describe the case where two populations
are indirectly coupled by the third intermediary one. This sit-
uation is perhaps relevant for understanding in-phase synchro-
nization between distant cortical regions (Vicente et al., 2008);
the mechanism, where in-phase within modules is precondition

FIGURE 7 | A network structure where in-phase pattern within

population can be induced by anti-phase between populations when

there is no interaction between neurons within the populations.
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for anti-phase between modules, is more relevant for understand-
ing the organization of anti-phase pattern between two coupled
cortical regions.

4.2. UNDER TASKS
We have analyzed important factors in the spontaneous organi-
zation of anti-phase patterns without external stimuli. Actually,
this kind of anti-phase pattern can also be organized under tasks.
From the traditional viewpoint, the task-induced anti-phase pat-
tern often referrs the coexistence of both the areas of task-increased
activity and task-decreased activity (Broyd et al., 2009). Our analy-
sis can also shed some lights on this task-induced anti-phase
pattern phenomenon.

If we suppose that one of the modules is forced to be in-
phase synchronization by external signal, rather than spontaneous
organized, a suitable delay time may also be a key factor in
inducing an anti-phase pattern between modules. We give a sim-
ple example in Figure 8. A number (N = 1000) of IAF neurons
are coupled together with excitatory synapses. In the absence of
external input, these neurons fire randomly, with a set of parame-
ters kin = kout = 0.05 and τ in = τ out = 100 ms. We add an external
input to the first module (1 → N /2), to force the neurons in
this modules fire nearly simultaneously every 200 ms, mimick-
ing a firing pattern induced by some tasks. Since the delay time
τ out = 100 ms, after 100 ms, the membrane potentials of the neu-
rons in the second module are increased, so that a large fraction
of them fire simultaneously at that time. Even though the neurons
in the second module still show a relatively random firing pattern,
anti-phase oscillation can be observed between modules. However,
if the delay time does not approximate to half of the period of the
external input, such an anti-phase pattern cannot be observed.

This simple mathematical mechanism can help us under-
stand some observations in neuron systems. Previous studies
showed that approximate in-phase patterns (or long-distance
spatial coherence) can be observed in slow-wave sleeping states,
anesthetized states, or under tasks. Anti-phase patterns are also

FIGURE 8 | Anti-phase pattern when the neurons in the first module

are forced to fire every 200 ms. τ out = 100 ms.

found in these states. Regardless whether the in-phase pattern in
each module is self-organized (e.g., resting state) or induced by
external signals (under some tasks), the in-phase patterns within
cortex make the cortico-cortical communication dynamics much
similar to the time-delayed coupled phase oscillators, showing
anti-phase pattern with suitable delay times. There is a precondi-
tion that the in-phase synchronization is achieved within modules,
which may bridge the understanding of the common characteris-
tics of cortical dynamics in slow-wave sleeping states, anesthetized
states, or under tasks.

4.3. DIVERSITY IN NETWORK CONNECTIVITY AND DELAYS
All the above analysis is made basing on the conditions that the
delay times and connection densities are uniform within each
module or between modules. However, in the real cortical net-
works, none of them is uniform. In the following, we discuss some
results on network with diverse connectivity and delays, and show
that delay time is still a key factor but the connected density is not
as important in organizing in-phase and anti-phase patterns.

We use the cortico-cortical network among the visual areas of
monkey (Kötter, 2004; Kaiser and Hilgetag, 2006). Basing on net-
work connectivity, this network can be put into two modules (da
F Costa et al., 2007), and the connection densities are much higher
within each module than that between modules. The spatial posi-
tion of the mass-center of these cortical areas (network nodes)
are shown in Figure 9A, where the black and red colors represent
different modules. We simulate the dynamics of the network by
putting a neural mass oscillator on each node. The delay times are
introduced by a conduction velocity assumed to be common for
all the links. Therefore, the delay times are non-uniform, propor-
tional to the Euclidean distances between different pairs of areas.
In the simulations we cannot find anti-phase synchronization

FIGURE 9 | Dynamical pattern on the cortical network of Macaque

visual system. (A) The spatial positions of the network nodes. (B) The
distributions of the delay time τ when the conduction velocity is set as a
biological reasonable value 2.4 mm/ms. (C) The average values of the
output v j

1 − v j
2 within each modules.
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between the two modules. Even if we start with an anti-phase
pattern with some noise perturbation as the initial conditions,
this pattern cannot be preserved on this network. For very large
velocity, the delay times approximate to zero, and the whole net-
work can preserve a highly coherent (in-phase) state. On the other
hand, when the velocity is in the biologically reasonable range, the
delay times have a broad distribution from zero to a value compa-
rable to the period of the neural mass oscillator (Figure 9B), the
phase differences among oscillators distribute randomly in (−π ,
π). Even though the average values of the output from each mod-
ule show some small macroscopic oscillation, they do not show
anti-phase pattern between the two modules (Figure 9C). These
results confirm again that the formation of densely connected
modules cannot induce an anti-phase pattern between them. In
the real visual cortex, cells tend to fire simultaneously when acti-
vated by related features of a visual stimulus (Gray et al., 1989;
Engel et al., 1991a; Castelo-Branco et al., 2000; Tiesinga et al.,
2008), though this network has two modules.

ANTI-PHASE INDUCED BY INHIBITORY COUPLING
The above analysis is basing on the case that the coupling between
modules is dominantly excitatory. If the coupling is inhibitory, the
results of coupled neural mass oscillators can be roughly predicted
from Eq. 11, where a negative K stands for a negative coupling, so
that we can expect that anti-phase pattern emerges when the delay
time τ is around zero. Our simulations of a pair of coupled neuron
mass oscillators confirmed that, anti-phase pattern emerges with
zero τ , whereas in-phase pattern emerges when the delay is close
to half of the oscillation period.

In neuronal systems, the inhibitory neurons and the non-
symmetry of the inhibitory connections can induce pronounced
competition of activity among neuron pools. Competition
dynamics broadly exists in neuronal system (Laurent et al., 2001;
Levi et al., 2005; Mazor and Laurent, 2005; Moldakarimov et al.,
2005; Rollenhagen and Olson, 2005; Komarov et al., 2009a; Szücs
et al., 2009), which may play important roles in neuronal functions,
e.g., the integration between low-frequency and high-frequency
oscillations (Rabinovich et al., 2006). This type of dynamics
also has a relationship to anti-phase pattern from a generalized
viewpoint. For example, in the well-known n-competitor neu-
ronal system (Komarov et al., 2009a,b), each population activity
may achieve its peak value sequently. If in this case, n can be
degenerated to 2, the dynamics degenerates to the anti-phase
oscillation pattern. Therefore, it is significant to get insight into

the organization of anti-phase pattern for better understanding
the organization of more complicated competition dynamics in
the brain.

To summarize this part of discussion, when the coupling is
inhibitory between modules, delay time can also be a key factor
in the organization of anti-phase oscillation. The difference from
the case of excitatory coupling is that anti-phase between modules
require a small delay (or close to a period) between modules.

CONCLUSION
We investigate the anti-phase oscillation pattern organized on two-
module networks with both neuron cell model and neuron mass
model in time delay environments, among other factors. The time-
delays and the coupling types (excitatory and inhibitory) can be
key factors for organizing the patterns of in-phase within modules
and anti-phase between modules, but the connection densities are
not as crucial though the stability is influenced by the network
connectivity. Our analysis shows that important understanding of
the anti-phase synchronization in neural networks can be obtained
by the classical coupled phase oscillators. The anti-phase patterns
organized in real cortical networks are more complicated. Further-
more, some of them are investigated by using indirect methods,
e.g., fMRI studies. It is possible that anti-phase pattern in the
signals of these indirect measurements can reflect some kinds of
anti-phase pattern in cortical dynamics. However, it is still an open
problem how they are related. Our analysis in this work provides
a clear understanding of the key factors in the organization of the
anti-phase pattern on a two-module neuronal network, which is
of importance for gaining insight into the mechanisms underlying
the dynamics, no matter how this anti-phase pattern is expressed in
the measurement signals. These results are significant for further
understanding the formation of more complex spatiotemporal
patterns and functional networks in the brain, and the bridge
between the anti-phase patten in the measurement signals and
the anti-phase pattern organized on the neuronal network need to
be meticulously constructed in the further studies.
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APPENDIX
ANALYSIS OF PHASE DIFFERENCE IN PULSE-COUPLED NEURONAL
NETWORK
The phase of an IAF cell can be defined as:

ϕj (t ) = 2π
t − t

j
0

T
, (A1)

where t
j
0 is the time when the jth neuron fires for the first

time. The potential V then have the properties V (ϕ= 0) =Vr,
V (ϕ= 2π) =Vth, dV/dϕ > 0, and d2V/dϕ2< 0. For two coupled
neurons, when a neuron receives an action potential from the other
one, its phase will has an increment ϕ̃,

ϕ̃ = g
(
ϕ1,2

) − ϕ1,2, (A2)

where the function g (ϕ) is

g (ϕ) = V −1 (
min

[
V (ϕ)+ K̃ , Vth

])
, (A3)

and V −1 is the inverse function of V (ϕ). The phase difference of
these two neurons
ϕ=ϕ1 −ϕ2 therefore follows

d
ϕ

dt
=

⎧⎪⎪⎨
⎪⎪⎩

g (2πγ τ +
ϕ)− 2πγ τ −
ϕ, ϕ2 = 2πγ τ

−g (2πγ τ −
ϕ)+ 2πγ τ −
ϕ, ϕ1 = 2πγ τ

0, otherwise

.

(A4)

It means that only when ϕ2 = 2πγ τ or ϕ1 = 2πγ τ , its value is
non-zero. In the following, we assume it has non-zero values all
the time, which means that the coupling effect always takes place.
We can write this evolution of 
ϕ in the following form:

d
ϕ

dt
= g (2πγ τ +
ϕ)− 2πγ τ −
ϕ − g (2πγ τ −
ϕ)

+ 2πγ τ −
ϕ. (A5)

This situation describes such a system that the neuron system is
divided into two populations; within each population, nerve cells
are coupled together so that they fire orderly; and between these
populations, the phase difference between the paired nerve cells
corresponds to the phase difference of the oscillations of the two
populations. In this case, the evolution of 
ϕ can be written as

d
ϕ

dt
≈

{
2g ′ [(2πγ τ)− 1]
ϕ, 
ϕ ∼ 0

2g ′ [(2πγ τ + π))− 1] (
ϕ − π) , 
ϕ ∼ π
, (A6)

where g ′(ϕ) = dg (ϕ)/dϕ. We therefore get G(2πγ τ ) = 2g ′[(2πγ τ )
− 1], so that one can understand the role of delay time τ in coupled
neuronal systems as in the coupled phase oscillators.

In the following we will show that the expression of g (ϕ) in Eq.
A2 can generate a similar performance of G(2πγ τ ) versus τ to the
case in coupled phase oscillators when we consider another factor
existing in real neuronal systems, the refractory period.

The properties dV /dϕ > 0 and d2V /dϕ2< 0 (Figure A1A) are
the basis for the analysis in the following. When the neuron receives

FIGURE A1 | Comparison of function G(ϕ) in coupled neuron systems

and G(ϕ) in coupled phase oscillators. When analyzing the role of delay
time τ in the stability of in-phase pattern, the value of G(2πγ τ ) is vital;
when referring to anti-phase pattern the value of G(2πγ τ +π ) is vital. (A) In
IAF oscillator V(ϕ) versus ϕ; (B) min[V (ϕ)+ K̃ , Vth] versus ϕ; (C) g(ϕ) versus
ϕ; (D) 2[g ′(ϕ) − 1] versus ϕ; (E) 2[g ′(ϕ) − 1] versus ϕ when refractory period
is defined (the same form as Figure 4B); (F) in coupled phase oscillators,
−2K cosφ versus φ when K >0 (the same form as Figure 4A).

a spike, if V (ϕ) increases to V (ϕ) + K̃ , we call that the neuron
is located in the integration period; if V (ϕ) increases to Vth, it is
located in the firing period, as shown in Figure A1B. Therefore,
we get

g (ϕ) =
{

V −1
[
V (ϕ)+ K̃

]
, integrationperiod

2π , firing period
, (A7)

as shown in Figure A1C. Since K̃ > 0, we get

g ′ (ϕ)
{
> 1, integrationperiod

= 0, firing period
, (A8)

as shown in Figure A1D. On the other hand, if the refractory
period is taken into consideration, V (ϕ) + K̃ = Vr is a con-
stant during this period, so that g (ϕ) = 0 and g ′(ϕ) = 0. We can
therefore express 2[g ′(ϕ) − 1] as

2
[
g ′ (ϕ)− 1

]
⎧⎪⎨
⎪⎩
< 0, refractory period

> 0, integrationperiod

< 0, firing period

, (A9)

as shown in Figure A1E. These three periods are similar to the three
cases labeled as I, II, and III in Figure A1F for coupled phase oscil-
lators with K > 0. The above analysis can therefore explain the
relationship of the organizations of anti-phase pattern between
coupled neuronal systems and coupled phase oscillators, so as to
understand the key role of the delay time.
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