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Tinnitus is the perception of a sound in the absence of an external sound source. It is
characterized by sensory components such as the perceived loudness, the lateralization,
the tinnitus type (pure tone, noise-like) and associated emotional components, such as
distress and mood changes. Source localization of quantitative electroencephalography
(qEEG) data demonstrate the involvement of auditory brain areas as well as several
non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual),
auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula,
supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus),
parahippocampus, posterior cingulate cortex and the precuneus, in different aspects
of tinnitus. Explaining these non-auditory brain areas as constituents of separable
subnetworks, each reflecting a specific aspect of the tinnitus percept increases the
explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified
percept of tinnitus can be considered an emergent property of multiple parallel dynamically
changing and partially overlapping subnetworks, each with a specific spontaneous
oscillatory pattern and functional connectivity signature.
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INTRODUCTION
Consciousness is a crucial aspect of being human. One specific
component of consciousness is the conscious perception of audi-
tory stimuli. Hearing is a crucial sensory domain that helps to
localize as well as recognize a sound source and is essential for
communication. Our auditory function helps us to understand
the world, maintain social contacts and to detect dangerous sit-
uations. In humans and other vertebrates, hearing is performed
primarily by the auditory system. Vibrations are detected by the
ear and translated into nerve impulses that are processed by the
auditory cortex. Recent research has shown, however, that activ-
ity in the primary auditory cortex is necessary, but not sufficient
condition for an auditory stimulus to gain access to conscious-
ness (Boly et al., 2004). It has recently become clear that in order
to perceive an auditory percept, hierarchically higher-order mul-
timodal association areas are required (Boly et al., 2004; Laureys,
2005), similarly to what has been proposed in the visual (Dehaene
et al., 2006) and somatosensory system (Laureys et al., 2002; Boly
et al., 2005).

Understanding the brain mechanisms involved in the simplest
forms of auditory conscious perception, such as noise and tones
from the environment (i.e., externally generated) is a crucial start
for gaining knowledge about auditory consciousness specifically
and consciousness at large. However, a sound can also be inter-
nally generated. That is, perceiving a sound in the absence of an
external sound source. This phenomenon is also known as tin-
nitus. In most cases this phantom sound resolves spontaneously
within seconds or minutes. However, tinnitus persists in 5–10%

of the population in western countries (Heller, 2003; Eggermont
and Roberts, 2004), and interferes severely with the quality of life
in 5–26% within this tinnitus population (Axelsson and Ringdahl,
1989; Heller, 2003). Moreover, the prevalence of chronic tinnitus
increases with age, peaking at 14.3% in people between 60 and 69
years of age (Shargorodsky et al., 2010).

Phenomenologically, tinnitus can be perceived unilaterally or
bilaterally and characterized as a pure tone, a narrow band noise
or polyphonic. Tinnitus is usually evaluated both for its perceived
loudness and annoyance or distress level. Yet, not everyone who
experiences tinnitus becomes chronically distressed and measures
of tinnitus loudness rarely correlate with experienced distress
(Andersson and Westin, 2008). Distress can play an important
part in the development of tinnitus, as distress might act as a
potential trigger for sudden hearing loss and onset of tinnitus, but
is not a necessity (Schmitt et al., 2000). Distress might unfavor-
ably influence habituation via hyperarousal processes, but is not a
requirement (Hallam, 1996). Tinnitus symptoms themselves can
act as a stressor resulting in higher physiological arousal and psy-
chological distress, but this is not always the case (Alpini and
Cesarani, 2006).

In this review we try to map and disentangle the different brain
areas generating an auditory phantom percept. We will only focus
on simple auditory phantom percepts such as tones and noise and
not on more complex sounds such as hearing voices or music.
Although very common, tinnitus is not well understood. Clinical
data indicate the involvement of peripheral auditory structures
in tinnitus (Nicolas-Puel et al., 2002). This is suggested by the
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fact that tinnitus is often related to damage of the cochlea or
the auditory nerve such as in presbyacusis, noise induced hear-
ing loss, drug-related hearing loss, Meniere’s disease, or other
inner ear pathologies (Lockwood et al., 2002). Furthermore it has
been demonstrated that psychoacoustic characteristics of tinnitus
like pitch overlap with the frequency spectrum of an individual’s
hearing loss (Norena et al., 2002; Norena and Eggermont, 2003,
2006). In addition in animal models it was revealed that a periph-
eral mechanism involving the N-methyl-D-aspartate (NMDA)
glutamatergic receptors in the cochlea can be generator of tin-
nitus (Guitton et al., 2003). On the other hand, an increasing
amount of data shows the role played by activation and remod-
eling of various central cortical or subcortical structures to cause
or to perpetuate tinnitus symptomatology (Muhlnickel et al.,
1998; Eggermont and Roberts, 2004; Eggermont, 2005; Weisz
et al., 2005). Investigating the neurophysiological differences in
the characteristics of tinnitus perception could lead to a better
understanding of pathological auditory neural activity. Therefore,
we first discuss the different auditory and non-auditory brain
areas involved in tinnitus and their potential function within the
tinnitus network. Secondly, we try to combine these different
brain areas involved in tinnitus in a multiple brain subnetworks.

THE AUDITORY AND NON-AUDITORY BRAIN AREAS
INVOLVED IN TINNITUS
Based on previous quantitative electroencephalography (qEEG)
research the following areas have been implicated in tinnitus:
the auditory cortex, the subgenual and dorsal anterior cingulate
cortex, the dorsolateral prefrontal cortex, the insula, the sup-
plementary motor area, the orbitofrontal cortex (including the
inferior frontal gyrus), the posterior cingulate cortex, the pre-
cuneus and the parahippocampus. Table 1 and Figure 1 give an
overview of the different brain areas obtained based on qEEG
research in tinnitus and their involvement in specific tinnitus
characteristics.

THE AUDITORY CORTEX
Animal experiments have demonstrated that the degree of behav-
ioral importance of an external sound is related to the repre-
sentational expansion of its frequency in the primary auditory
cortex (Rutkowski and Weinberger, 2005), and that the auditory
cortex is involved in tinnitus (Engineer et al., 2011). But also in
humans it was shown that the auditory cortex plays a role in
tinnitus (van der Loo et al., 2009). In comparison to a control
group both left and right-sided tinnitus patients had an increased
gamma band activity in both the left and right primary and
secondary auditory cortex (Vanneste et al., 2011a). This is the rea-
son why primary and secondary auditory cortices are considered
as important potential targets for the treatment of tinnitus (De
Ridder et al., 2006a, 2007a,b). The rationale is that this phantom
sound might be related to an increased neuronal activity within
the auditory cortex secondary to the imbalance between excita-
tory and inhibitory mechanisms or an adjustment of auditory
gain mechanisms (Norena, 2011). The difference could be trig-
gered by altered auditory inputs which may support functional
reorganization in synaptic connections. Neural hyperactivity has
been found in subcortical structures (cochlear nuclei, inferior

colliculi, medial geniculate bodies) and auditory cortical regions
(primary and secondary auditory cortex) in animal models of
tinnitus and hearing loss (Jastreboff and Sasaki, 1986; Jastreboff,
1990; Brozoski et al., 2002).

Based on MEG data, thalamocortical dysrhythmia has been
proposed as a pathophysiological model for the development of
gamma band activity related to the tinnitus percept (Llinás et al.,
1999). According to this model tinnitus is caused by an abnor-
mal, spontaneous, and constant gamma band activity (>30 Hz)
generated as a consequence of hyperpolarization of specific tha-
lamic nuclei, in casu the medial geniculate body. In normal
circumstances auditory stimuli increase thalamocortical rhythms
to gamma band activity (Joliot et al., 1994). In the deafferented
state, however, oscillatory activity decreases from resting state
alpha activity (8–12 Hz) to theta band activity (4–7 Hz) (Steriade,
2006). As a result, lateral inhibition is reduced inducing a sur-
rounding gamma band activity known as the “edge effect” (Llinás
et al., 1999, 2005). Lorenz et al. (Lorenz et al., 2009) reported
an inverse relationship between alpha and gamma activity over
subjects calculated for sources seeded in auditory regions. The
inverse relationship was presented for tinnitus and control tin-
nitus group. Synchronized gamma band activity in the auditory
cortex is proposed to bind auditory events into one coherent
conscious auditory percept (Ribary et al., 1991; Tiitinen et al.,
1993; Joliot et al., 1994; Llinas et al., 1994, 1998; Crone et al.,
2001). In addition it was found that tinnitus perceived loudness is
correlated to increased contralateral gamma band activity in the
auditory cortex indicating that gamma band activity is important
in tinnitus (van der Loo et al., 2009).

THE PARAHIPPOCAMPUS
The differences between uni- and bilateral tinnitus are reflected
by high frequency EEG activity (i.e., beta and gamma) in the
parahippocampus (Vanneste et al., 2011c). That is, unilateral tin-
nitus patients showed increased high frequency activity in the
right parahippocampal area. This same brain area is also involved
at an alpha rhythm in patients with a high distress and in non-
coping with tinnitus. In addition, based on a region of interest
analysis, whether tinnitus is perceived on the left side or right side
tinnitus is dependent on gamma-band activity of the contralat-
eral parahippocampal area (Vanneste et al., 2011c). In contrast
to expectation, for the auditory cortex no differences were found
between left-sided and right-sided tinnitus patients. In addition,
narrow band noise tinnitus patients have increased activity in
the parahippocampal area in comparison to pure tone tinnitus
patients at the gamma frequency band (Vanneste et al., 2010a).

The involvement of the parahippocampus in tinnitus might
be related to the constant updating of the tinnitus percept
from memory thereby preventing habituation (De Ridder et al.,
2006b). The posterior parahippocampal area is involved in audi-
tory habituation as demonstrated by electrophysiological studies
of auditory sensory gating both in animals (Bickford et al.,
1993) and humans implanted with electrodes in the parahip-
pocampus and hippocampus for epilepsy monitoring (Boutros
et al., 2008). The hippocampal involvement in tinnitus patho-
physiology is also demonstrated by histopathological findings
of posterior hippocampus lesions in patients, who experience
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Table 1 | Overview results based on resting-state EEG in tinnitus patients.

Brain region BA Function Frequency band Ref

Auditory cortex BA21 Control group < Left and Right-sided tinnitus gamma Vanneste et al., 2011a

BA22 Tinnitus with recent onset < Chronic tinnitus gamma Vanneste et al., 2011b

BA40 Control group < Left and Right-sided tinnitus gamma Vanneste et al., 2011a

BA41 Positive correlation with tinnitus intensity gamma van der Loo et al., 2009

Parahippocampus BA36 Low distress < High distress alpha1, alpha2 Vanneste et al., 2010b

BA37 Coping with tinnitus < Non-coping alpha1 alpha2 Vanneste et al., 2010b

BA19 Left-sided tinnitus > Right-sided Tinnitus (right) gamma Vanneste et al., 2011a

Left-sided tinnitus < Right-sided Tinnitus (left) gamma Vanneste et al., 2011a

Control group < Left and Right-sided tinnitus gamma Vanneste et al., 2011a

Pure tone < Narrow band noise tinnitus gamma Vanneste et al., 2010a

Control group < Narrow band noise tinnitus beta3, gamma Vanneste et al., 2011c

Unilateral tinnitus < Bilateral tinnitus

Anterior cingulate cortex

Dorsal BA24 Tinnitus with recent onset < Chronic tinnitus beta2, beta3 Vanneste et al., 2010b

BA32 Control group < High distress delta, theta Vanneste et al., 2010b

Control group > High distress alpha, beta Vanneste et al., 2010b

Correlation with distress alpha, beta De Ridder et al., 2011b

Subgenual BA25 Low distress < High distress alpha1, alpha2 Vanneste et al., 2010b

Coping with tinnitus < Non-coping alpha1, alpha2 Vanneste et al., 2010b

Correlation with TQ alpha, beta De Ridder et al., 2011b

DLPFC BA9 Low distress coping > High distress coping alpha1, alpha2 Vanneste et al., 2010b

BA46

Insula BA13 Tinnitus with recent onset < Chronic tinnitus beta3 Vanneste et al., 2011b

Coping with tinnitus < Non-coping with tinnitus alpha1, alpha2 Vanneste et al., 2010b

Correlation with TQ and activity (left) theta, alpha, gamma van der Loo et al., 2011

Correlation between TQ and activity (right) delta, gamma van der Loo et al., 2011

Supplementary motor area BA6 Tinnitus with recent onset < Chronic tinnitus theta Vanneste et al., 2011b

BA8 Low distress coping tinnitus > High distress coping alpha1, alpha2 Vanneste et al., 2010b

Unilateral tinnitus < Bilateral tinnitus delta Vanneste et al., 2011c

Control group < Unilateral tinnitus gamma Vanneste et al., 2011c

Control group < Bilateral tinnitus gamma Vanneste et al., 2011c

Orbitofrontal cortex BA10 Pure tone > Narrow band noise tinnitus delta Vanneste et al., 2010a

(Inferior frontal gyrus) BA11 Unilateral tinnitus > Bilateral tinnitus delta Vanneste et al., 2011c

BA47 Control group < Bilateral tinnitus beta3 Vanneste et al., 2011c

Posterior cingulate cortex BA23 Low distress > High distress alpha2 Vanneste et al., 2010b

Pure tone < Narrow band noise tinnitus beta3 Vanneste et al., 2010a

Control group < Narrow band noise tinnitus beta3 Vanneste et al., 2010a

Control group Pure tone tinnitus beta3, gamma Vanneste et al., 2010a

Precuneus BA7 Low distress > High distress alpha2 Vanneste et al., 2010b

Coping with tinnitus > Non-coping with tinnitus alpha1, alpha2 Vanneste et al., 2010b

Low distress coping tinnitus < High distress coping alpha2 Vanneste et al., 2010b

DLPFC, dorsal lateral prefrontal cortex; Ref, reference.

tinnitus as a symptom of methyltin intoxications (Rey et al.,
1984; Kreyberg et al., 1992). Furthermore, supraselective amytal
injection in the anterior choroidal artery that supplies the amyg-
dalohippocampal area is capable to suppress the pure tone com-
ponent of tinnitus transiently by suppressing local activity (De
Ridder et al., 2006b). The parahippocampal area together with
the posterior cingulate cortex activity might be load dependent,
as noise-like tinnitus constitutes multiple frequencies in contrast
to pure tone tinnitus (Vanneste et al., 2010a). Hence, it has been
proposed that a fundamental function of the (para)hippocampal

structures is the establishment of auditory memory for tinnitus
(Shulman, 1995).

THE DORSAL ANTERIOR CINGULATE CORTEX
A recent study, using source localization in EEG, revealed that
distress in tinnitus patients is related to increased beta activ-
ity in the dorsal part of the anterior cingulate cortex and the
amount of distress correlates with an alpha activity in several
brain areas such as the amygdala, anterior cingulate cortex, insula,
and parahippocampus (Vanneste et al., 2010b). A comparison
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FIGURE 1 | Overview the different brain areas based on resting state EEG in tinnitus patients.

between recent onset and chronic tinnitus is related to differential
activity and connectivity in a network comprising the auditory
cortices, insula, dorsal anterior cingulate cortex and premotor
cortex. Based on a blind source separation technique, tinnitus
can be characterized by at least four independent components,
two of which are posterior cingulate based, one based on the sub-
genual anterior cingulate and one based on the parahippocam-
pus (De Ridder et al., 2011b). Only the subgenual component
correlates with distress. When compared to a normative sam-
ple, group independent components analysis reveals that distress
is characterized by two anterior cingulate based components.
Spectral analysis of these components demonstrates that distress
in tinnitus is related to alpha and beta changes in a network
consisting of the subgenual anterior cingulate cortex extend-
ing to the pregenual and dorsal anterior cingulate cortex as
well as the ventromedial prefrontal cortex/orbitofrontal cortex,
insula, and parahippocampus. This network overlaps partially
with brain areas implicated in distress in patients suffering from
pain, functional somatic syndromes and, posttraumatic stress
disorder, and might, therefore, represents an aspecific distress
network. The dorsal part of the anterior cingulate cortex is one
of the possible generators of frontal midline theta (Asada et al.,
1999). Furthermore, it has been established that frontal midline
theta oscillations are involved in attentional processes (Inanaga,
1998), and that both sympathetic and parasympathetic indices are
increased during the appearance of frontal midline theta (Kubota
et al., 2001). Whenever new information is presented, activity lev-
els of the dorsal anterior cingulate cortex reflect the salience of
the new information for predicting future outcomes (Critchley,
2005; Behrens et al., 2007), guiding optimal decision-making in
an uncertain world (Kennerley et al., 2006). The human dorsal

anterior cingulate cortex has developed a parallel specialization
for motivational drive via a thalamocortical pathway relaying in
the mediodorsal thalamus (Craig, 2002). Thus, the dorsal anterior
cingulate might be involved in persisting attention to the tinnitus
(Vanneste et al., 2010b; De Ridder et al., 2011b).

THE SUBGENUAL ANTERIOR CINGULATE CORTEX
The subgenual anterior cingulate cortex extending into nucleus
accumbens-ventral tegmental area is involved in processing of
aversive sounds (Zald and Pardo, 2002) and unpleasant music
(Blood et al., 1999) as well as tinnitus (Muhlau et al., 2006). It has
been implicated as the key component of social distress (Masten
et al., 2009). This area in animals has been considered a viscero-
motor cortex, due to its connections with the parasympathetic
nucleus tractus solitaries (Frysztak and Neafsey, 1994) and the
sympathetic areas in the periaquaductal gray (Ongur and Price,
2000). Furthermore, it is functionally connected to the amygdala,
insula, parahippocampus, orbitofrontal cortex, and ventrolateral
prefrontal cortex and anticorrelated to the dorsal anterior cin-
gulate cortex and precuneus. As such the subgenual anterior
cingulate cortex could be important as an emotional component
for tinnitus.

THE DORSOLATERAL PREFRONTAL CORTEX
Recently the dorsolateral prefrontal cortex has been associated
with tinnitus-related distress (Vanneste et al., 2010b). It is known
that the dorsal lateral prefrontal cortex has a bilateral facilita-
tory effect on auditory memory storage (Alain et al., 1998) and
contains auditory memory cells (Bodner et al., 1996). The dorsal
lateral prefrontal cortex also exerts early inhibitory modulation
of input to primary auditory cortex in humans (Knight et al.,
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1989) and has been found to be associated with auditory attention
(Alain et al., 1998; Lewis et al., 2000; Voisin et al., 2006) resulting
in top-down modulation of auditory processing (Mitchell et al.,
2005). This was further confirmed by electrophysiological data
indicating that tinnitus might occur as the result of a dysfunc-
tion in the top-down inhibitory processes (Norena et al., 1999).
Interestingly, a recent study reported that coupling between dor-
sal anterior cingulate cortex and the right frontal lobe correlates
negatively with tinnitus intrusiveness, which is defined by the
authors as how bothersome and obtrusive the tinnitus is perceived
(Schlee et al., 2008). However, in the above mentioned study it is
not specified which part of the anterior cingulate cortex and pre-
frontal cortex is involved. Additionally, Jastreboff described the
prefrontal cortex as a “candidate for the integration of sensory
and emotional aspects of tinnitus” (Jastreboff, 1990). This is in
accordance with the idea that the dorsal lateral prefrontal cortex
in general could be considered as an area involved in the integra-
tion of emotion and cognition (Gray et al., 2002). Nevertheless,
further research is needed to clarify the role of the dorsolateral
prefrontal cortex in tinnitus.

INSULA
It was shown that the tinnitus questionnaire (TQ) scores are cor-
related to heart rate rariability markers, and related to neural
activity in left and right anterior insula (van der Loo et al., 2011).
It was shown that tinnitus distress is related to sympathetic activa-
tion, in part mediated via the right anterior insula. In addition the
insula is activated in non-coping tinnitus at the alpha frequency
band. The left insula is correlated with the TQ at theta, alpha, and
gamma frequency band, while the right insula is correlated with
delta and gamma frequency band.

The function of the dorsal anterior cingulate cortex and insula
might be to integrate motivationally important information with
appropriate bodily responses (Critchley et al., 2001) related to
the survival needs of the body (Craig, 2003). In addition the
insula together with the dorsal anterior cingulate cortex have also
been referred to as the salience network (Seeley et al., 2007).
This network has been implicated in bottom-up detection of
salient events and coordinating appropriate responses (Medford
and Critchley, 2010; Menon and Uddin, 2010). Activity in this
network is correlated with improved sound detection thresh-
olds, showing a role in the direction of attentional resources
toward audition (Sadaghiani et al., 2009). The activation of the
salience network suggests that the brain allocates an importance
to auditory stimulus and might as such also signify impor-
tance to the internally generated tinnitus sound. Activation of
the insula and dorsal anterior cingulate cortex during a phan-
tom percept might be considered maladaptive. Imaging studies
on the insula associated this area with subjective emotional and
bodily awareness (Craig, 2003), as well as interoception (Craig,
2003). The anterior insula has been implicated in autonomic ner-
vous system control (Oppenheimer et al., 1992; Oppenheimer,
1993; Critchley et al., 2004; Critchley, 2005) and might, there-
fore, be related to the autonomic components involved in dis-
tress (Critchley et al., 2000; Wang et al., 2005), induced by the
phantom sound. Tinnitus distress is indeed correlated to sympa-
thetic activation, in part mediated via the right anterior insula

(van der Loo et al., 2011). Furthermore alpha activity in both
the left and right anterior insula was also found for patients with
severe tinnitus-related distress who can or cannot cope with these
phantom sounds (Vanneste et al., 2010b). Although, the insula
seems like an important brain area involved in tinnitus, further
research is needed to elucidate what the exact role is of the insula
in tinnitus.

THE SUPPLEMENTARY MOTOR AREA
For a sensory stimulus to be consciously perceived, activation of
the early sensory areas is a prerequisite but not sufficient (Boly
et al., 2005; Dehaene et al., 2006). The (visual) global workspace
model suggests conscious perception of sensory events requires
sensory cortex activation embedded in a cortical network, the
global workspace, extending beyond the primary sensory regions
including prefrontal, parietal, and cingulate cortices. Similarly,
auditory stimuli need activation of the primary auditory cor-
tex to be consciously perceived. However, this is not sufficient
(Laureys et al., 2000; Boly et al., 2005). Studies performed on
patients in vegetative state who do not have conscious auditory
percepts reveal that auditory stimuli still activate the primary
auditory cortex but that there is no functional connectivity to
frontal areas in these patients. Primary auditory cortex activation
might be only related to loudness coding (Jancke et al., 1998) and
not the percept per se, similarly to what has been demonstrated
at a single-cell level for somatosensory stimuli in the primary
somatosensory cortex: stimulus intensity is encoded in the pri-
mary somatosensory cortex, while the conscious percept seems to
be located in the frontal cortex, more precisely within the supple-
mentary motor area (de Lafuente and Romo, 2005). In addition,
Melloni et al., found that theta oscillations in the frontal regions
including the supplementary motor area are essential for con-
scious perception during maintenance interval of visual stimuli
(Melloni et al., 2007). Taking these findings together, it can be
hypothesized that synchronized gamma activity in the auditory
cortex is responsible for the tinnitus loudness (van der Loo et al.,
2009), while synchronized theta activity in the supplementary
motor area might be accountable for part of the conscious percep-
tion of the phantom sound, similar to the conscious perception
for somatosensory stimuli.

THE ORBITOFRONTAL CORTEX (INCLUDING THE INFERIOR
FRONTAL GYRUS)
Previous research has already shown that orbitofrontal cortex is
important for emotional processing of sounds (Wheeler et al.,
1993; Damasio, 1996; Dias et al., 1996; Blood et al., 1999). For
example, it was revealed that patients with orbitofrontal cortex
lesions had reduced self-evaluated perception of the unpleas-
antness of the acoustic probe stimulus (Angrilli et al., 2008).
The orbitofrontal cortex has connections with other limbic areas
important for processing of emotion (Beauregard, 2007). Female
tinnitus patients have been found to be more emotionally respon-
sive to tinnitus-related distress (Dineen et al., 1997). They also
differ in physiological responses to negative emotional stimuli in
comparison to males (Bradley et al., 2001; Gard and Kring, 2007).
Koch et al. found that an interaction between negative emo-
tion and working memory in females involved activation of the
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orbitofrontal cortex, suggesting that during the cognitive control
of emotion, females mainly recruit the emotion-associated areas
(Koch et al., 2007).

The orbitofrontal cortex together with the insula plays a key
role in the top-down modulation of automatic or peripheral phys-
iological responses to emotional experiences (Craig, 2003; Phillips
et al., 2003; Critchley et al., 2004; Ohira et al., 2006). More syn-
chronized connectivity between the orbitofrontal cortex and the
insula is seen in tinnitus for females. It can, therefore, be hypoth-
esized that the orbitofrontal cortex becomes recruited more often
for female tinnitus patients in order to modulate the autonomic
physiological responses evoked by tinnitus.

THE POSTERIOR CINGULATE CORTEX AND PRECUNEUS
qEEG data indicate that the posterior cingulate cortex is impor-
tant in both pure tone and narrow band noise tinnitus (Vanneste
et al., 2010a) as well as tinnitus-related distress (Vanneste et al.,
2011c). In addition, the precuneus is active within the alpha fre-
quency in patients who can cope with their tinnitus and have a
low distress (Vanneste et al., 2011c). Together with the parahip-
pocampal area, activation in the posterior cingulate cortex and
precuneus has been associated with the brain’s “default” net-
work (Raichle et al., 2001). These regions deactivate when people
engage in controlled processing and thought processes. According
to this account, default activity is an inverse function of the task
demand, where higher demands reduce activity in the default
network because mental resources are used to perform a task
(Gusnard et al., 2001; McKiernan et al., 2006). As the parahip-
pocampal area as well as the posterior cingulate cortex and
precuneus become more active, instead of becoming deactivated
during the tinnitus perception, one can hypothesize the tinnitus
generators might become integrated in the default mode in tin-
nitus patients. In addition, the precuneus area is a highly integra-
tive structure, supposed to be involved in visuo-spatial imagery,
episodic memory, self-consciousness, and the shifting of atten-
tion (Le et al., 1998). The precuneus is also involved in unpleasant
music perception (Blood et al., 1999), auditory imagery (Yoo
et al., 2001), and auditory memory retrieval (Buckner et al.,
1996).

MULTIPLE PARALLEL DYNAMICALLY CHANGING AND PARTIALLY
OVERLAPPING SUBNETWORKS
Taking the results in previous sections together the same brain
areas occur in the different analyses for tinnitus that are related to
different acoustic characteristics such as the tonal nature, lateral-
ization, loudness level, tinnitus duration as well as for the affective
components such as distress and mood changes. As such, tinni-
tus can be seen as the consequence of multiple brain subnetworks
involved in the different aspects of tinnitus, both acoustic and
affective. Thus, the unified percept of tinnitus, as perceived by
the patient, e.g., a loud distressing left-sided pure tone tinnitus,
might be considered as an emergent property of multiple paral-
lel dynamically changing and partially overlapping subnetworks,
each with a specific spontaneous oscillatory pattern signature.
This interpretation casts doubts concerning the sole participation
of only one critical circuit in phantom perception. Phantom per-
cepts result from auditory deafferentation and reach awareness
only when increased neuronal activity in the primary auditory
cortex is connected to a larger network involving frontal and pari-
etal areas (De Ridder et al., 2011a). It is possible that different
brain subnetworks overlap and might all be involved in how a
patient perceives his/her tinnitus.

CONCLUSION
Source localization of qEEG data demonstrate the involvement
of auditory brain areas as well as several non-auditory brain areas
such as the anterior cingulate cortex (dorsal and subgenual), audi-
tory cortex (primary and secondary), dorsal lateral prefrontal
cortex, insula, supplementary motor area, orbitofrontal cortex
(including the inferior frontal gyrus), parahippocampus, poste-
rior cingulate cortex and the precuneus, in different aspects of
tinnitus. However, few conceptual explanations have been given
for all these regions. Evaluating these areas as parts of separable
subnetworks, each network representing a specific clinical aspect
of tinnitus might help to explain their involvement in tinnitus.
Thus, the unified percept of tinnitus can be considered an emer-
gent property of multiple parallel dynamically changing and par-
tially overlapping subnetworks, each with a specific spontaneous
oscillatory pattern and functional connectivity signature.

REFERENCES
Alain, C., Woods, D. L., and Knight,

R. T. (1998). A distributed corti-
cal network for auditory sensory
memory in humans. Brain Res. 812,
23–37.

Alpini, D., and Cesarani, A. (2006).
Tinnitus as an alarm bell: stress
reaction tinnitus model. ORL
J. Otorhinolaryngol. Relat. Spec. 68,
31–36. discussion 36–37.

Andersson, G., and Westin, V. (2008).
Understanding tinnitus distress:
introducing the concepts of moder-
ators and mediators. Int. J. Audiol.
(Suppl. 2), S106–S111.

Angrilli, A., Bianchin, M., Radaelli,
S., Bertagnoni, G., and Pertile,
M. (2008). Reduced startle reflex
and aversive noise perception in

patients with orbitofrontal cor-
tex lesions. Neuropsychologia 46,
1179–1184.

Asada, H., Fukuda, Y., Tsunoda, S.,
Yamaguchi, M., and Tonoike,
M. (1999). Frontal midline theta
rhythms reflect alternative acti-
vation of prefrontal cortex and
anterior cingulate cortex in humans.
Neurosci. Lett. 274, 29–32.

Axelsson, A., and Ringdahl, A. (1989).
Tinnitus–a study of its prevalence
and characteristics. Br. J. Audiol. 23,
53–62.

Beauregard, M. (2007). Mind does
really matter: evidence from neu-
roimaging studies of emotional
self-regulation, psychotherapy, and
placebo effect. Prog. Neurobiol. 81,
218–236.

Behrens, T. E., Woolrich, M. W.,
Walton, M. E., and Rushworth, M. F.
(2007). Learning the value of infor-
mation in an uncertain world. Nat.
Neurosci. 10, 1214–1221.

Bickford, P. C., Luntz-Leybman, V., and
Freedman, R. (1993). Auditory sen-
sory gating in the rat hippocampus:
modulation by brainstem activity.
Brain Res. 607, 33–38.

Blood, A. J., Zatorre, R. J., Bermudez, P.,
and Evans, A. C. (1999). Emotional
responses to pleasant and unpleas-
ant music correlate with activity
in paralimbic brain regions. Nat.
Neurosci. 2, 382–387.

Bodner, M., Kroger, J., and Fuster, J.
M. (1996). Auditory memory cells
in dorsolateral prefrontal cortex.
Neuroreport 7, 1905–1908.

Boly, M., Faymonville, M. E., Peigneux,
P., Lambermont, B., Damas, P., Del
Fiore, G., Degueldre, C., Franck,
G., Luxen, A., Lamy, M., Moonen,
G., Maquet, P., and Laureys, S.
(2004). Auditory processing in
severely brain injured patients:
differences between the minimally
conscious state and the persistent
vegetative state. Arch. Neurol. 61,
233–238.

Boly, M., Faymonville, M. E., Peigneux,
P., Lambermont, B., Damas, F.,
Luxen, A., Lamy, M., Moonen,
G., Maquet, P., and Laureys, S.
(2005). Cerebral processing of audi-
tory and noxious stimuli in severely
brain injured patients: differences
between VS and MCS. Neuropsychol.
Rehabil. 15, 283–289.

Frontiers in Systems Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 31 | 6

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Vanneste and De Ridder Brain areas involved in tinnitus

Boutros, N. N., Mears, R., Pflieger,
M. E., Moxon, K. A., Ludowig, E.,
and Rosburg, T. (2008). Sensory
gating in the human hippocam-
pal and rhinal regions: regional
differences. Hippocampus 18,
310–316.

Bradley, M. M., Codispoti, M.,
Sabatinelli, D., and Lang, P. J.
(2001). Emotion and motiva-
tion II: sex differences in picture
processing. Emotion 1, 300–319.

Brozoski, T. J., Bauer, C. A., and
Caspary, D. M. (2002). Elevated
fusiform cell activity in the dorsal
cochlear nucleus of chinchillas
with psychophysical evidence
of tinnitus. J. Neurosci. 22,
2383–2390.

Buckner, R. L., Raichle, M. E., Miezin,
F. M., and Petersen, S. E. (1996).
Functional anatomic studies
of memory retrieval for audi-
tory words and visual pictures.
J. Neurosci. 16, 6219–6235.

Craig, A. D. (2002). How do you feel?
Interoception: the sense of the phys-
iological condition of the body. Nat.
Rev. Neurosci. 3, 655–666.

Craig, A. D. (2003). Interoception: the
sense of the physiological condition
of the body. Curr. Opin. Neurobiol.
13, 500–505.

Critchley, H. D. (2005). Neural mech-
anisms of autonomic, affective,
and cognitive integration. J. Comp.
Neurol. 493, 154–166.

Critchley, H. D., Corfield, D. R.,
Chandler, M. P., Mathias, C. J., and
Dolan, R. J. (2000). Cerebral cor-
relates of autonomic cardiovascular
arousal: a functional neuroimaging
investigation in humans. J. Physiol.
523(Pt 1), 259–270.

Critchley, H. D., Mathias, C. J., and
Dolan, R. J. (2001). Neural activ-
ity in the human brain relat-
ing to uncertainty and arousal
during anticipation. Neuron 29,
537–545.

Critchley, H. D., Wiens, S., Rotshtein,
P., Ohman, A., and Dolan, R. J.
(2004). Neural systems support-
ing interoceptive awareness. Nat.
Neurosci. 7, 189–195.

Crone, N. E., Boatman, D., Gordon,
B., and Hao, L. (2001). Induced
electrocorticographic gamma activ-
ity during auditory perception.
Brazier Award-winning article,
2001. Clin. Neurophysiol. 112,
565–582.

Damasio, A. R. (1996). The somatic
marker hypothesis and the possible
functions of the prefrontal cortex.
Philos. Trans. R. Soc. Lond. B Biol.
Sci. 351, 1413–1420.

Dehaene, S., Changeux, J. P., Naccache,
L., Sackur, J., and Sergent, C.

(2006). Conscious, preconscious,
and subliminal processing: a testable
taxonomy. Trends Cogn. Sci. 10,
204–211.

de Lafuente, V., and Romo, R. (2005).
Neuronal correlates of subjective
sensory experience. Nat. Neurosci. 8,
1698–1703.

De Ridder, D., de Mulder, G.,
Verstraeten, E., Seidman, M.,
Elisevich, K., Sunaert, S., Kovacs,
S., K. van der Kelen, van de
Heyning, P., and Moller, A. (2007a).
Auditory cortex stimulation for
tinnitus. Acta Neurochir. Suppl. 97,
451–462.

De Ridder, D., de Mulder, G.,
Menovsky, T., Sunaert, S., and
Kovacs, S. (2007b). Electrical
stimulation of auditory and
somatosensory cortices for treat-
ment of tinnitus and pain. Prog.
Brain Res. 166, 377–388.

De Ridder, D., de Mulder, G.,
Verstraeten, E., van der Kelen,
K., Sunaert, S., Smits, M., Kovacs,
S., Verlooy, J., van de Heyning,
P., and Moller, A. R. (2006a).
Primary and secondary auditory
cortex stimulation for intractable
tinnitus. ORL J. Otorhinolaryngol.
Relat. Spec. 68, 48–54. discussion
54–55.

De Ridder, D., Fransen, H., Francois,
O., Sunaert, S., Kovacs, S., and
van de Heyning, P. (2006b).
Amygdalohippocampal involve-
ment in tinnitus and auditory
memory. Acta Otolaryngol. Suppl.
556, 50–53.

De Ridder, D., Elgoyhen, A. B., Romo,
R., and Langguth, B. (2011a).
Phantom percepts: tinnitus and
pain as persisting aversive memory
networks. Proc. Natl. Acad. Sci.
U.S.A. 108, 8075–8080.

De Ridder, D., Vanneste, S., and
Congedo, M. (2011b). The dis-
tressed brain: a group blind
source separation analysis on tin-
nitus. PLoS One 6:e24273. doi:
10.1371/journal.pone.0024273

Dias, R., Robbins, T. W., and Roberts,
A. C. (1996). Dissociation in
prefrontal cortex of affective and
attentional shifts. Nature 380,
69–72.

Dineen, R., Doyle, J., and Bench, J.
(1997). Audiological and psycho-
logical characteristics of a group of
tinnitus sufferers, prior to tinnitus
management training. Br. J. Audiol.
31, 27–38.

Eggermont, J. J. (2005). Tinnitus: neu-
robiological substrates. Drug Discov.
Today 10, 1283–1290.

Eggermont, J. J., and Roberts, L. E.
(2004). The neuroscience of tinni-
tus. Trends Neurosci. 27, 676–682.

Engineer, N. D., Riley, J. R., Seale,
J. D., Vrana, W. A., Shetake, J.
A., Sudanagunta, S. P., Borland,
M. S., and Kilgard, M. P. (2011).
Reversing pathological neural activ-
ity using targeted plasticity. Nature
470, 101–104.

Frysztak, R. J., and Neafsey, E. J.
(1994). The effect of medial
frontal cortex lesions on cardio-
vascular conditioned emotional
responses in the rat. Brain Res. 643,
181–193.

Gard, M. G., and Kring, A. M. (2007).
Sex differences in the time course of
emotion. Emotion 7, 429–437.

Gray, J. R., Braver, T. S., and Raichle,
M. E. (2002). Integration of emo-
tion and cognition in the lateral pre-
frontal cortex. Proc. Natl. Acad. Sci.
U.S.A. 99, 4115–4120.

Guitton, M. J., Caston, J., Ruel, J.,
Johnson, R. M., Pujol, R., and Puel,
J. L. (2003). Salicylate induces tin-
nitus through activation of cochlear
NMDA receptors. J. Neurosci. 23,
3944–3952.

Gusnard, D. A., Akbudak, E., Shulman,
G. L., and Raichle, M. E. (2001).
Medial prefrontal cortex and self-
referential mental activity: relation
to a default mode of brain func-
tion. Proc. Natl. Acad. Sci. U.S.A. 98,
4259–4264

Hallam, R. S. (1996). Correlates of sleep
disturbance in chronic distressing
tinnitus. Scand. Audiol. 25, 263–266.

Heller, A. J. (2003). Classification
and epidemiology of tinnitus.
Otolaryngol. Clin. North Am. 36,
239–248.

Inanaga, K. (1998). Frontal midline
theta rhythm and mental activ-
ity. Psychiatry Clin. Neurosci. 52,
555–566.

Jancke, L., Shah, N. J., Posse, S., Grosse-
Ryuken, M., and Muller-Gartner,
H. W. (1998). Intensity coding of
auditory stimuli: an fMRI study.
Neuropsychologia 36, 875–883.

Jastreboff, P. J. (1990). Phantom audi-
tory perception (tinnitus): mecha-
nisms of generation and perception.
Neurosci. Res. 8, 221–254.

Jastreboff, P. J., and Sasaki, C. T.
(1986). Salicylate-induced changes
in spontaneous activity of single
units in the inferior colliculus of the
guinea pig. J. Acoust. Soc. Am. 80,
1384–1391.

Joliot, M., Ribary, U., and Llinas,
R. (1994). Human oscillatory
brain activity near 40 Hz coexists
with cognitive temporal binding.
Proc. Natl. Acad. Sci. U.S.A. 91,
11748–11751.

Kennerley, S. W., Walton, M. E.,
Behrens, T. E., Buckley, M. J., and
Rushworth, M. F. (2006). Optimal

decision making and the anterior
cingulate cortex. Nat. Neurosci. 9,
940–947.

Knight, R. T., Scabini, D., and Woods,
D. L. (1989). Prefrontal cortex
gating of auditory transmis-
sion in humans. Brain Res. 504,
338–342.

Koch, K., Pauly, K., Kellermann, T.,
Seiferth, N. Y., Reske, M., Backes, V.,
Stocker, T., Shah, N. J., Amunts, K.,
Kircher, T., Schneider, F., and Habel,
U. (2007). Gender differences in
the cognitive control of emotion:
an fMRI study. Neuropsychologia 45,
2744–2754.

Kreyberg, S., Torvik, A., Bjorneboe,
A., Wiik-Larsen, W., and Jacobsen,
D. (1992). Trimethyltin poisoning:
report of a case with postmortem
examination. Clin. Neuropathol. 11,
256–259.

Kubota, Y., Sato, W., Toichi, M., Murai,
T., Okada, T., Hayashi, A., and
Sengoku, A. (2001). Frontal mid-
line theta rhythm is correlated with
cardiac autonomic activities dur-
ing the performance of an atten-
tion demanding meditation proce-
dure. Brain Res. Cogn. Brain Res. 11,
281–287.

Laureys, S. (2005). The neural correlate
of (un)awareness: lessons from the
vegetative state. Trends Cogn. Sci. 9,
556–559.

Laureys, S., Faymonville, M. E.,
Degueldre, C., Fiore, G. D., Damas,
P., Lambermont, B., Janssens,
N., Aerts, J., Franck, G., Luxen,
A., Moonen, G., Lamy, M., and
Maquet, P. (2000). Auditory pro-
cessing in the vegetative state. Brain
123(Pt 8), 1589–1601.

Laureys, S., Faymonville, M.
E., Peigneux, P., Damas, P.,
Lambermont, B., Del Fiore, G.,
Degueldre, C., Aerts, J., Luxen, A.,
Franck, G., Lamy, M., Moonen, G.,
and Maquet, P. (2002). Cortical
processing of noxious somatosen-
sory stimuli in the persistent
vegetative state. Neuroimage 17,
732–741.

Le, T. H., Pardo, J. V., and Hu,
X. (1998). 4 T-fMRI study of
nonspatial shifting of selective
attention: cerebellar and parietal
contributions. J. Neurophysiol. 79,
1535–1548.

Lewis, J. W., Beauchamp, M. S., and
deYoe, E. A. (2000). A comparison
of visual and auditory motion pro-
cessing in human cerebral cortex.
Cereb. Cortex 10, 873–888.

Llinás, R., Urbano, F. J., Leznik,
E., Ramirez, R. R., and van
Marle, H. J. (2005). Rhythmic
and dysrhythmic thalamocortical
dynamics: GABA systems and the

Frontiers in Systems Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 31 | 7

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Vanneste and De Ridder Brain areas involved in tinnitus

edge effect. Trends Neurosci. 28,
325–333.

Llinas, R., Ribary, U., Contreras, D., and
Pedroarena, C. (1998). The neu-
ronal basis for consciousness. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 353,
1841–1849.

Llinas, R., Ribary, U., Joliot, M., and
Wang, X. (1994). “Content and con-
text in temporal thalamocortical
binding,” in Temporal Coding in the
Brain, eds G. Buzsaki, R. Llinasand,
and W. Singer (Berlin: Springer-
Verlag), 251–272.

Llinás, R. R., Ribary, U., Jeanmonod,
D., Kronberg, E., and Mitra,
P. P. (1999). Thalamocortical
dysrhythmia: a neurological
and neuropsychiatric syndrome
characterized by magnetoen-
cephalography. Proc. Natl. Acad. Sci.
U.S.A. 96, 15222–15227.

Lockwood, A. H., Salvi, R. J., and
Burkard, R. F. (2002). Tinnitus. N.
Engl. J. Med. 347, 904–910.

Lorenz, I., Muller, N., Schlee, W.,
Hartmann, T., and Weisz, N. (2009).
Loss of alpha power is related to
increased gamma synchronization-
A marker of reduced inhibition
in tinnitus? Neurosci. Lett. 453,
225–228.

Masten, C. L., Eisenberger, N. I.,
Borofsky, L. A., Pfeifer, J. H.,
McNealy, K., Mazziotta, J. C.,
and Dapretto, M. (2009). Neural
correlates of social exclusion dur-
ing adolescence: understanding
the distress of peer rejection.
Soc. Cogn. Affect. Neurosci. 4,
143–157.

McKiernan, K. A., D’Angelo, B.
R., Kaufman, J. N., and Binder,
J. R. (2006). Interrupting the
“stream of consciousness”: an
fMRI investigation. Neuroimage 29,
1185–1191.

Medford, N., and Critchley, H.
D. (2010). Conjoint activity of
anterior insular and anterior
cingulate cortex: awareness and
response. Brain Struct. Funct. 214,
535–549.

Menon, V., and Uddin, L. Q. (2010).
Saliency, switching, attention and
control: a network model of insula
function. Brain Struct. Funct. 214,
655–667.

Melloni, L., Molina, C., Pena,
M., Torres, D., Singer, W.,
and Rodriguez, E. (2007).
Synchronization of neural activity
across cortical areas correlates with
conscious perception. J. Neurosci.
27, 2858–2865.

Mitchell, T. V., Morey, R. A., Inan, S.,
and Belger, A. (2005). Functional
magnetic resonance imaging mea-
sure of automatic and controlled

auditory processing. Neuroreport
16, 457–461.

Muhlau, M., Rauschecker, J. P.,
Oestreicher, E., Gaser, C., Rottinger,
M., Wohlschlager, A. M., Simon,
F., Etgen, T., Conrad, B., and
Sander, D. (2006). Structural brain
changes in tinnitus. Cereb. Cortex
16, 1283–1288.

Muhlnickel, W., Elbert, T., Taub, E.,
and Flor, H. (1998). Reorganization
of auditory cortex in tinnitus.
Proc. Natl. Acad. Sci. U.S.A. 95,
10340–10343.

Nicolas-Puel, C., Faulconbridge,
R. L., Guitton, M., Puel, J. L.,
Mondain, M., and Uziel, A. (2002).
Characteristics of tinnitus and
etiology of associated hearing loss: a
study of 123 patients. Int. Tinnitus
J. 8, 37–44.

Norena, A., Cransac, H., and Chery-
Croze, S. (1999). Towards an
objectification by classification of
tinnitus. Clin. Neurophysiol. 110,
666–675.

Norena, A., Micheyl, C., Chery-
Croze, S., and Collet, L. (2002).
Psychoacoustic characterization of
the tinnitus spectrum: implications
for the underlying mechanisms
of tinnitus. Audiol. Neurootol. 7,
358–369.

Norena, A. J. (2011). An integrative
model of tinnitus based on a cen-
tral gain controlling neural sensi-
tivity. Neurosci. Biobehav. Rev. 35,
1089–1109.

Norena, A. J., and Eggermont, J. J.
(2003). Changes in spontaneous
neural activity immediately after an
acoustic trauma: implications for
neural correlates of tinnitus. Hear.
Res. 183, 137–153.

Norena, A. J., and Eggermont, J. J.
(2006). Enriched acoustic environ-
ment after noise trauma abolishes
neural signs of tinnitus. Neuroreport
17, 559–563.

Ohira, H., Nomura, M., Ichikawa,
N., Isowa, T., Iidaka, T., Sato, A.,
Fukuyama, S., Nakajima, T., and
Yamada, J. (2006). Association
of neural and physiological
responses during voluntary emo-
tion suppression. Neuroimage 29,
721–733.

Ongur, D., and Price, J. L. (2000). The
organization of networks within the
orbital and medial prefrontal cor-
tex of rats, monkeys and humans.
Cereb. Cortex 10, 206–219.

Oppenheimer, S. (1993). The anatomy
and physiology of cortical mecha-
nisms of cardiac control. Stroke 24
(Suppl. 12), I3–I5.

Oppenheimer, S. M., Gelb, A.,
Girvin, J. P., and Hachinski, V.
C. (1992). Cardiovascular effects of

human insular cortex stimulation.
Neurology 42, 1727–1732.

Phillips, M. L., Drevets, W. C.,
Rauch, S. L., and Lane, R. (2003).
Neurobiology of emotion percep-
tion I: the neural basis of normal
emotion perception. Biol. Psychiatry
54, 504–514.

Raichle, M. E., MacLeod, A. M., Snyder,
A. Z., Powers, W. J., Gusnard, D.
A., and Shulman, G. L. (2001).
A default mode of brain function.
Proc. Natl. Acad. Sci. U.S.A. 98,
676–682.

Rey, C., Reinecke, H. J., and Besser,
R. (1984). Methyltin intoxication
in six men; toxicologic and clini-
cal aspects. Vet. Hum. Toxicol. 26,
121–122.

Ribary, U., Ioannides, A. A., Singh,
K. D., Hasson, R., Bolton, J. P.,
Lado, F., Mogilner, A., and Llinas, R.
(1991). Magnetic field tomography
of coherent thalamocortical 40-Hz
oscillations in humans. Proc. Natl.
Acad. Sci. U.S.A. 88, 11037–11041.

Rutkowski, R. G., and Weinberger, N.
M. (2005). Encoding of learned
importance of sound by magnitude
of representational area in primary
auditory cortex. Proc. Natl. Acad.
Sci. U.S.A. 102, 13664–13669.

Sadaghiani, S., Hesselmann, G.,
and Kleinschmidt, A. (2009).
Distributed and antagonistic con-
tributions of ongoing activity
fluctuations to auditory stim-
ulus detection. J. Neurosci. 29,
13410–13417.

Schlee, W., Weisz, N., Bertrand, O.,
Hartmann, T., and Elbert, T.
(2008). Using auditory steady state
responses to outline the func-
tional connectivity in the tinnitus
brain. PLoS One 3:e3720. doi:
10.1371/journal.pone.0003720

Schmitt, C., Patak, M., and Kroner-
Herwig, B. (2000). Stress and the
onset of sudden hearing loss and
tinnitus. Int. Tinnitus J. 6, 41–49.

Seeley, W. W., Menon, V., Schatzberg,
A. F., Keller, J., Glover, G. H.,
Kenna, H., Reiss, A. L., and Greicius,
M. D. (2007). Dissociable intrinsic
connectivity networks for salience
processing and executive control.
J. Neurosci. 27, 2349–2356.

Shargorodsky, J., Curhan, S. G.,
Curhan, G. C., and Eavey, R. (2010).
Change in prevalence of hearing
loss in US adolescents. JAMA 304,
772–778.

Shulman, A. (1995). A final common
pathway for tinnitus – the medial
temporal lobe system. Int. Tinnitus
J. 1, 115–126.

Steriade, M. (2006). Grouping of brain
rhythms in corticothalamic systems.
Neuroscience 137, 1087–1106.

Tiitinen, H., Sinkkonen, J., Reinikainen,
K., Alho, K., Lavikainen, J., and
Naatanen, R. (1993). Selective atten-
tion enhances the auditory 40-
Hz transient response in humans.
Nature 364, 59–60.

van der Loo, E., Congedo, M., Vanneste,
S., Van de Heyning, P., and De
Ridder, D. (2011). Insular lateral-
ization in tinnitus distress. Auton.
Neurosci. 165, 191–194.

van der Loo, E., Gais, S., Congedo,
M., Vanneste, S., Plazier, M.,
Menovsky, T., Van de Heyning, P.,
and De Ridder, D. (2009). Tinnitus
intensity dependent gamma oscil-
lations of the contralateral auditory
cortex. PLoS One 4:e7396. doi:
10.1371/journal.pone.0007396

Vanneste, S., Plazier, M., van der
Loo, E., Van de Heyning, P., and
De Ridder, D. (2010a). The dif-
ferences in brain activity between
narrow band noise and pure tone
tinnitus. PLoS One 5:e13618. doi:
10.1371/journal.pone.0013618

Vanneste, S., Plazier, M., der Loo,
E., de Heyning, P. V., Congedo,
M., and De Ridder, D. (2010b).
The neural correlates of tinnitus-
related distress. Neuroimage 52,
470–480.

Vanneste, S., Van de Heyning, P., and
De Ridder, D. (2011a). Contralateral
parahippocampal gamma-band
activity determines noise-like
tinnitus laterality: a region of
interest analysis. Neuroscience 199,
481–490.

Vanneste, S., Van de Heyning, P., and
De Ridder, D. (2011b). The neu-
ral network of phantom sound
changes over time: a comparison
between recent-onset and chronic
tinnitus patients. Eur. J. Neurosci.
34, 718–731.

Vanneste, S., Plazier, M., van der
Loo, E., Van de Heyning, P.,
and De Ridder, D. (2011c). The
difference between uni- and
bilateral auditory phantom per-
cept. Clin. Neurophysiol. 122,
578–587.

Voisin, J., Bidet-Caulet, A., Bertrand,
O., and Fonlupt, P. (2006). Listening
in silence activates auditory areas:
a functional magnetic resonance
imaging study. J. Neurosci. 26,
273–278.

Wang, J., Rao, H., Wetmore, G. S.,
Furlan, P. M., Korczykowski, M.,
Dinges, D. F., and Detre, J. A.
(2005). Perfusion functional MRI
reveals cerebral blood flow pat-
tern under psychological stress.
Proc. Natl. Acad. Sci. U.S.A. 102,
17804–17809.

Weisz, N., Moratti, S., Meinzer, M.,
Dohrmann, K., and Elbert, T.

Frontiers in Systems Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 31 | 8

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Vanneste and De Ridder Brain areas involved in tinnitus

(2005). Tinnitus perception and
distress is related to abnormal
spontaneous brain activity as
measured by magnetoencephalog-
raphy. PLoS Med. 2:e153. doi:
10.1371/journal.pmed.0020153

Wheeler, R. E., Davidson, R. J., and
Tomarken, A. J. (1993). Frontal
brain asymmetry and emotional
reactivity: a biological substrate of
affective style. Psychophysiology 30,
82–89.

Yoo, S. S., Lee, C. U., and Choi, B.
G. (2001). Human brain mapping
of auditory imagery: event-related
functional MRI study. Neuroreport
12, 3045–3049.

Zald, D. H., and Pardo, J. V. (2002).
The neural correlates of aversive
auditory stimulation. Neuroimage
16(3 Pt 1), 746–753.

Conflict of Interest Statement: The
authors declare that the research

was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 28 December 2011; accepted:
13 April 2012; published online: 08 May
2012.
Citation: Vanneste S and De Ridder D
(2012) The auditory and non-auditory
brain areas involved in tinnitus. An
emergent property of multiple parallel

overlapping subnetworks. Front. Syst.
Neurosci. 6:31. doi: 10.3389/fnsys.
2012.00031
Copyright © 2012 Vanneste and De
Ridder. This is an open-access article
distributed under the terms of the
Creative Commons Attribution Non
Commercial License, which permits
non-commercial use, distribution, and
reproduction in other forums, provided
the original authors and source are
credited.

Frontiers in Systems Neuroscience www.frontiersin.org May 2012 | Volume 6 | Article 31 | 9

http://dx.doi.org/10.3389/fnsys.2012.00031
http://dx.doi.org/10.3389/fnsys.2012.00031
http://dx.doi.org/10.3389/fnsys.2012.00031
http://dx.doi.org/10.3389/fnsys.2012.00031
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive

	The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks
	Introduction
	The Auditory and Non-Auditory Brain Areas Involved in Tinnitus
	The Auditory Cortex
	The Parahippocampus
	The Dorsal Anterior Cingulate Cortex
	The Subgenual Anterior Cingulate Cortex
	The Dorsolateral Prefrontal Cortex
	Insula
	The Supplementary Motor Area
	The Orbitofrontal Cortex (Including the Inferior Frontal Gyrus)
	The Posterior Cingulate Cortex AND Precuneus
	Multiple Parallel Dynamically Changing and Partially Overlapping Subnetworks

	Conclusion
	References


