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Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by
clinicians via subjective ADHD-specific behavioral instruments and by reports from the
parents and teachers. Considering its high prevalence and large economic and societal
costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology
would be extremely valuable. This provided motivation for the ADHD-200 machine learning
(ML) competition, a multisite collaborative effort to investigate imaging classifiers for
ADHD. Here we present our ML approach, which used structural and functional magnetic
resonance imaging data, combined with demographic information, to predict diagnostic
status of individuals with ADHD from typically developing (TD) children across eight
different research sites. Structural features included quantitative metrics from 113 cortical
and non-cortical regions. Functional features included Pearson correlation functional
connectivity matrices, nodal and global graph theoretical measures, nodal power spectra,
voxelwise global connectivity, and voxelwise regional homogeneity. We performed feature
ranking for each site and modality using the multiple support vector machine recursive
feature elimination (SVM-RFE) algorithm, and feature subset selection by optimizing the
expected generalization performance of a radial basis function kernel SVM (RBF-SVM)
trained across a range of the top features. Site-specific RBF-SVMs using these optimal
feature sets from each imaging modality were used to predict the class labels of an
independent hold-out test set. A voting approach was used to combine these multiple
predictions and assign final class labels. With this methodology we were able to predict
diagnosis of ADHD with 55% accuracy (versus a 39% chance level in this sample), 33%
sensitivity, and 80% specificity. This approach also allowed us to evaluate predictive
structural and functional features giving insight into abnormal brain circuitry in ADHD.

Keywords: attention deficit hyperactivity disorder, ADHD-200, machine learning, classification, feature selection,

fMRI, graph theory

INTRODUCTION
Attention deficit hyperactivity disorder (ADHD) is among the
most common child-onset neurodevelopmental disorders in
the world, with an estimated childhood prevalence of 5–10%
(Wolraich et al., 1996; Swanson et al., 1998), and an estimated
cost in the tens of billions of dollars per year (Pelham et al.,
2007) in addition to its large personal costs. Its broad spectrum
of clinical features affects cognitive, emotional, and motor pro-
cesses (Cortese, 2012), and clinical diagnosis typically is based on
integration of parent/teacher reports and assessment of ADHD
symptoms along a standardized scale (Goldman et al., 1998;
Brown et al., 2001; Power et al., 2001). ADHD diagnoses can
be further categorized into several different subtypes, includ-
ing persistent inattention (ADHD-I), hyperactivity-impulsivity
(ADHD-H), or a combination of both (ADHD-C). Like many
Axis I disorders, diagnosis of ADHD hinges also on the degree
to which these impairments actually interfere with daily life at
school, home, and/or work (American Psychiatric Association,
2000). Medical treatment includes pharmaceutical, behavioral
therapy, and/or educational interventions (Wolraich et al., 2011).

Investigations into the neurobiological basis of ADHD have
found that it is highly heritable (60–75%) (Nyman et al., 2007;
Faraone and Mick, 2010) and that it involves dopaminergic
pathways in both the disease manifestation and the response to
pharmaceutical treatment (Froehlich et al., 2011). This is consis-
tent with observations that ADHD subjects have altered levels of
dopamine (DA) transporter densities in striatal regions lateral-
ized to the right hemisphere (McGough, 2012). Still, a clear link
between genes and the heterogeneous clinical features of ADHD
remains elusive. Like many behaviorally-diagnosed neurodevel-
opmental disorders, it is likely that multiple factors influencing
several neural pathways can all lead to the ADHD phenotype
(Archer et al., 2011). Therefore, it is possible that an improved
understanding of the neural underpinnings of the disease may
allow us to better appreciate its variation among individuals, and
ultimately lead to better-targeted individual therapies.

Toward this aim, the ADHD-200 global competition chal-
lenged the neuroscientific and data mining communities to
develop pattern classification methods to predict ADHD diag-
nosis based on a combination of demographic information,
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structural MRI, and resting-state functional connectivity MRI
(rs-fcMRI) measurements. The data for this competition were
collected as part of the Functional Connectomes Project (FCP)
and the International Neuroimaging Data sharing Initiative
[INDI; (Biswal et al., 2010)] as part of a push for accelerated
sharing of data and analytic resources among imaging com-
munity members (Milham, 2012). The ADHD-200 initiative
included the public release of neuroimaging and demographic
information for nearly one thousand children and adolescents,
some of whom had ADHD diagnoses, and some of whom
were typically developing (TD) (Table 1). Data were included
from eight participating sites, including Brown University, the
Kennedy Krieger Institute at Johns Hopkins University (KKI),
the NeuroIMAGE collaboration in the Netherlands (NI), New
York University (NYU), Oregon Health and Science University
(OHSU), Peking University, University of Pittsburgh (Pitt), and
Washington University in St. Louis (WashU).

A major goal of neuroimaging research is to develop indi-
vidualized measures that aid in the diagnosis and treatment of
neuropsychiatric disorders. However, the robustness of differ-
ences at the individual subject level is not well established since
most studies typically report group level differences and do not
use independent replication samples. When neuroimaging data
are analyzed under the framework of machine learning (ML), the
focus is to develop a classifier that can be used to predict dis-
ease status for individual subjects. The top features contributing
to the classifier outcome can also be examined to better under-
stand alterations in the brain circuits of individuals with a given
disorder (O’Toole et al., 2007; Ecker et al., 2010; Hanke et al.,
2010). Over the past several years, classification methods have
been increasingly applied to neuroimaging data to identify indi-
viduals with Alzheimer’s disease (Klöppel et al., 2008; Supekar
et al., 2008), schizophrenia (Davatzikos et al., 2005), and autism
(Ecker et al., 2010; Ingalhalikar et al., 2011) from healthy controls.
The approaches taken, including data type (fMRI, functional
connectivity fMRI, diffusion tensor MRI, structural MRI) and
methods (feature selection and type of classifier) have varied con-
siderably. Although disease classification of neuroimaging data

Table 1 | Number of subjects in training set data, by site and

diagnosis.

TD ADHD-C ADHD-H ADHD-I Sum

Peking 116 29 0 49 194

KKI 61 16 1 5 83

NI 23 18 6 1 48

NYU 99 77 2 44 222

OHSU 42 23 2 12 79

Pitt 89 0 0 0 89

WashU 61 0 0 0 61

Sum 491 163 11 111 776

Site abbreviations: Peking University (Peking), Kennedy Krieger Institute (KKI),

NeuroIMAGE (NI), New York University (NYU), Oregon Health and Science

University (OHSU), University of Pittsburgh (Pitt), Washington University in

St. Louis (WashU).

has shown considerable promise, most studies have used relatively
small sample sizes without replication samples (Linden, 2012).
Since classifiers can perform better with larger training samples,
pooling data across multiple sites is an important direction for
the field and one that is being taken by the ADHD-200 global
competition.

In the present paper, we (1) briefly review some of the key
structural and functional neuroimaging findings that are thought
to differentiate ADHD from TD individuals, (2) present the ML
approach that we applied to the ADHD-200 competition, (3)
explore which feature modalities and brain regions proved to be
the most useful for classification, and (4) reflect on important
areas of broader insight and future directions that can be drawn
from the ADHD-200 initiative, due to its unique position as the
largest neuroimaging ML effort to date.

Converging evidence from both structural and functional
neuroimaging studies consistently have demonstrated that indi-
viduals with ADHD have alterations in fronto-striatal circuitry
(Emond et al., 2009). For example, structural studies using voxel-
based morphometry (VBM) have reported decreased gray matter
volume in the right inferior frontal gyrus in ADHD subjects
(Depue et al., 2010). Recent meta-analyses of structural differ-
ences also report less gray matter in the right hemisphere in
ADHD samples, specifically in basal ganglia regions including
the caudate, putamen, and globus pallidus (Ellison-Wright et al.,
2008). Thinner cortex has also been observed in ADHD subjects
(Narr et al., 2009), particularly in right frontal regions (Qiu et al.,
2011), and correlates with disease severity (Almeida et al., 2010).
Nonetheless, the results from quantitative structural studies have
varied (Castellanos and Proal, 2009), as morphological alterations
appear to resolve to some extent over the course of development
(Larisch et al., 2006), and after treatment with stimulants that
enhance DA signaling (Shaw et al., 2009).

Evidence from functional MRI studies has generally paral-
leled that of structural neuroimaging (Liston et al., 2011). For
example, task-based fMRI studies have found hypoactivity in
frontal and striatal regions characteristic of ADHD (Zametkin
et al., 1990; Christakou et al., 2012). Functional changes have
also been observed in cerebellar and parietal areas (Cherkasova
and Hechtman, 2009). Functional neuroimaging studies using
rs-fcMRI have implicated alterations in functional connectivity
between multiple brain regions in ADHD (Castellanos et al.,
2009; Fair et al., 2010; Bush, 2011). In particular, the brain’s
default mode network (DMN) has proven useful in understand-
ing the pathology of ADHD (Zang et al., 2007) and a number of
other mental disorders (Broyd et al., 2009). The DMN is one of
several “intrinsic” or “resting-state” networks that are composed
of distributed sets of brain regions (“nodes”) that vary coher-
ently at low frequency (Fox and Raichle, 2007; Buckner et al.,
2008). The DMN is generally activated when an individual is
not focusing on external stimuli, and, during goal-oriented tasks,
these low frequency fluctuations typically are attenuated (Raichle,
2001). One theory on the neurobiological basis of ADHD is
that these individuals may have diminished ability to inhibit
this default processing (Fassbender et al., 2009), and thus con-
sequently they have a diminished ability to focus on external
goal-oriented tasks. Rs-fcMRI studies in ADHD have revealed
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diminished coherence between the prefrontal cortex (PFC) and
posterior cingulate cortex (pCC; a major integration node of the
DMN) in individuals with ADHD (Castellanos et al., 2008; Fair
et al., 2010). An overall decreased network homogeneity, partic-
ularly with respect to precuneus functional connectivity, has also
been reported in resting state data from ADHD children (Uddin
et al., 2008). Finally, complex network modeling approaches [i.e.,
graph theory; (Bullmore and Sporns, 2009)], which character-
izes the brain as a set of “nodes” (brain regions) and “edges”
(connections between nodes), have reported differences in local
and global functional network properties in ADHD (Wang et al.,
2009).

Taken together, this evidence suggests that measures of struc-
tural brain morphology and rs-fcMRI may be useful in differen-
tiating ADHD from TD. However, given the heterogeneity of the
findings and methods, as well as small sample sizes used in previ-
ous studies, it is unclear which set of features or methods might
be the most useful for classification.

METHODS
OVERVIEW
Our method in brief is as follows: first, we quantified neu-
roimaging features from structural and functional data from all
subjects. Feature ranking for each site and imaging modality was
then performed using the linear support vector machine recur-
sive feature elimination (SVM-RFE) algorithm. After preliminary
explorations into the variability of the feature usefulness rankings
across sites, we chose to perform classification within site where
possible. Optimal feature subsets were then selected for each neu-
roimaging feature modality and for each site. The number of top
features to use was chosen based on maximizing the expected
generalization performance of a radial basis function kernel SVM
(RBF-SVM). These performance estimates were generated using
10-fold cross validation, which was external to the feature rank-
ing/selection so as to remain unbiased by spurious features, as
well as a standard layer of internal 10-fold cross validation to tune
the model hyperparameters. Site-specific RBF-SVMs were then
retrained on all observations in the training datasets, while using
only the optimal number of top features. These were used to pre-
dict the class labels of the test dataset using features from each
imaging modality independently. Lastly, simple voting was used
to combine these multiple predictions and assign final class labels.

FEATURES
As part of the ADHD-200 competition, a training dataset was
released first; it included structural and functional imaging data
from 776 individuals (491 TD and 285 ADHD), their diag-
nostic class labels (TD or ADHD subtype), and accompanying
demographic information (Table 1). Imaging data for all subjects
included one or more resting-state functional MRI scans, and a
high resolution T1-weighted anatomical scan. For our analysis of
the resting-state fMRI data, we utilized the already preprocessed
fMRI data provided by the Neuro Bureau, and made available to
all users at http://neurobureau.projects.nitrc.org.

Broadly, this fMRI preprocessing procedure involved slice tim-
ing correction, motion correction, registration of the fMRI data
into MNI152 standard space at 4 mm3 resolution, regression

of nuisance parameters for WM, CSF, and motion parameters,
band-pass filtering the timeseries data from 0.009–0.08 Hz,
and spatial smoothing with a 6 mm full width at half max-
imum Gaussian filter. For details of the preprocessing and
software use, see http://www.nitrc.org/plugins/mwiki/index.php/
neurobureau:AthenaPipeline.

Demographics
Demographic data from the training set included age, gender,
full-scale IQ, handedness, ADHD index measurements, hyperac-
tive/impulsivity and inattentive scores, secondary diagnosis, and
medication status. However, all of the ADHD-related information
was withheld from the test set. In our initial explorations with the
data, we created site-by-site distributions of the main remaining
features (age, gender, full-scale IQ) for both the training and test
data, in order to verify that they appeared to be drawn from the
same populations (Figure 1).

Structural and morphological features
Raw T1-weighted anatomical MRI scans were processed with
Freesurfer’s recon-all processing pipeline for whole brain segmen-
tation and parcellation (Fischl and Dale, 2000). This generates
segmentations of white matter, gray matter, and subcortical vol-
umes. A mesh model of the cortical surface is generated, which is
then subdivided into different cortical regions (e.g., precentral
gyrus, superior frontal gyrus, pars triangularis, etc.). For each
region, the program measured the number of surface vertices,
surface area, gray matter volume, average cortical thickness, corti-
cal thickness standard deviation, cortical mean curvature, cortical
Gaussian curvature, cortical folding index, and cortical curvature
index. These nine measures were calculated for 34 cortical regions
per hemisphere. We also calculated morphological measures from
45 non-cortical regions including subcortical regions, white mat-
ter, ventricles, and other non-gray matter entities (i.e., white
matter hyperintensities); these measurements included regional
volume, regional voxel intensity mean, and regional voxel intensity
standard deviation. A total of twenty subjects from the training
set were excluded on account of data quality/processing issues.

Functional neuroimaging features
Resting state functional connectivity matrices. For each subject,
we created rs-fcMRI matrices by calculating the Pearson pairwise
correlation between BOLD time-series extracted from the Athena
(Neuro Bureau) preprocessed unfiltered data, for brain regions
of interest (ROIs) as defined in standard atlases. Several atlases
were explored that ranged in mean ROI volume. First, we used
the Harvard–Oxford (HO) atlas, an anatomical atlas based on
gyral and sulcal tracing with ∼100 brain regions. We also used
the CC400 atlas (Craddock et al., 2011), a functionally-derived
atlas with ∼400 ROIs from the Athena pipeline. Time-series cor-
relations between each of the brain regions were measured, and
correlation coefficients were z-transformed in order to gener-
ate whole brain functional connectivity matrices for each subject
using MATLAB (The Mathworks, Natick, MA). These connectiv-
ity matrices are square and symmetric, so the lower triangle of
each was used as ML features. These matrices also were used to
calculate nodal and global graph network features, as described
below.
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FIGURE 1 | Comparison of demographics distributions in training

and test sets. Histograms are shown for age (A) and IQ (B). Gender
is encoded by color. Plots are facetted by Site and training/test set.
Site abbreviations: Peking University (Peking), Kennedy Krieger

Institute (KKI), NeuroIMAGE (NI), New York University (NYU), Oregon
Health and Science University (OHSU), University of Pittsburgh
(Pitt), Washington University in St. Louis (WashU), Brown University
(Brown).

Nodal and global graph measures. We used the Brain
Connectivity Toolbox in MATLAB (Rubinov and Sporns,
2010) to compute weighted global and nodal graph theoretical
metrics on rs-fcMRI connectivity matrices based on three atlases:
the HO, CC400, and 90 functional ROIs from the Stanford
FIND lab (http://findlab.stanford.edu/functional_ROIs.html).
We normalized network sparsity across subjects by taking the
same percentage of each subject’s strongest positive connections
before calculating graph theoretical metrics. Global and local
and network properties were calculated at 10, 15, 20, 25, and 30
percent sparsity and averaged across these sparsity levels.

We computed eight global graph theoretical metrics (Rubinov
and Sporns, 2010). Global metrics were clustering coefficient (CC)
and local efficiency, which measure the degree to which neighbors
of a node are connected to each other; characteristic path length
(CPL), which represents the average number of edges needed
to get from any node in the network to any other node in the
network; global efficiency, which is similar to the inverse of CPL
but can be computed for networks that are not fully connected,
normalized CC and CPL (gamma and lambda), which are cal-
culated as a ratio of CC or CPL to the average CC or CPL,
respectively, of 100 simulated random networks with equivalent
numbers of nodes and edges; small worldness, which is the ratio
of gamma to lambda (Watts and Strogatz, 1998); and modularity,
a measure of the degree to which the network can be subdivided
into nonoverlapping subnetworks that are maximally connected
within and minimally connected without. We also computed five
nodal metrics for each node: strength (number of connections),
CC, local efficiency, regional efficiency (the inverse of average
path length from the node to any other node in the network),
and between-ness centrality (the fraction of shortest paths in the

entire network that traverse through a given node). These were
calculated for each subject and compared between groups. The
eight global metrics and nodal metrics for each node were used
as features in classification. Nodal and global metrics were com-
puted for both binarized and weighted networks to test which
method would perform better in classification for each site.

Renderings were generated using the UCLA Multimodal
Connectivity Package (http://github.com/jbrown81/umcp) and
through the UCLA Multimodal Connectivity Database (http://
umcd.humanconnectomeproject.org), which use the Python
libraries networkX (http://networkx.lanl.gov) and matplotlib
(http://matplotlib.sourceforge.net). All connectivity matrices
from the CC atlas are publicly shared and available for download
and analysis at http://umcd.humanconnectomeproject.org.

Nodal power spectrum. For each participant, we used R (http://
www.r-project.org) to obtain the power spectrum for each of
the CC400 ROIs. We converted each ROI’s time-series into the
frequency domain using the Fourier transform. The power spec-
trum was then obtained by taking the modulus of the real and

imaginary portions of the data (
√

Re2 + Im2).

Voxelwise global connectivity. For each participant, we obtained
a measure of each voxel’s global connectivity using AFNI’s
3dTcorrMap (Cole and Schneider, 2007; Buckner et al., 2009).
This involved two steps. First, for each voxel, we calculated the
correlation between that voxel’s time-series and that of every
other voxel in gray matter. Second, the average was taken for
each voxel’s Fischer-z transformed correlation with every other
gray-matter voxel.
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Voxelwise regional homogeneity. For each participant and each
voxel, we used R to calculate the consistency of a voxel’s time-
series with its 26 spatially adjacent neighboring voxels using
Kendall’s W (Zang et al., 2004).

MACHINE LEARNING
Our general approach to classification included (1) feature rank-
ing and optimal subset selection, (2) training site- and modality-
specific classifiers using these optimal feature lists, (3) predicting
the unknown class labels for the test set, and (4) final outcome
voting to combine modalities. All analyses were performed using
R, and the tools we developed are freely available at http://github.

com/johncolby/SVM-RFE.

Feature ranking
Given the accelerating rate of data being collected across different
fields such as genetics and neuroimaging, one of the key chal-
lenges is in mining these data effectively to distill large numbers
of features into more useful summaries (Guyon, 2003). Therefore,
when considering the vast ADHD-200 dataset, a crucial compo-
nent was determining how to limit which features to include in
the final classification vector. While the task of feature selection
is difficult for any dataset, it becomes even more complex when
classification is performed on multimodal data, where the fea-
tures themselves are represented in different spaces and may vary
in number over many orders of magnitude.

It is known that both redundant and extraneous features can
degrade the performance of a given classifier, even with a small
number of “noise” features (Kohavi and John, 1997; Farahat et al.,
2011). Furthermore, when the number of features is large com-
pared to the number of observations in the training dataset,
there are a large number of ML parameters to solve. This can
decrease interpretability and the capability of the model to gener-
alize to new datasets. It is therefore useful to perform some sort of
dimensionality reduction or feature selection, particularly when
there are many features present (e.g., the CC400 rs-fcMRI matrix
begins with 160,000 initial elements, and produces 79,800 features
after duplicates and self-correlations are removed).

We chose to apply the linear SVM-RFE algorithm (Guyon
et al., 2002) to obtain a ranked list of features. The decision
was driven by the established theory of both SVM and RFE,
and the long history and successful application of SVM-RFE to
microarray-based diagnostic classification (Johannes et al., 2010;
Shi et al., 2011). This is a similarly medical application, which
also involves a large number of strongly correlated features. More
recently, SVM-RFE has also been applied successfully in several
neuroimaging applications for feature selection across functional
connectivity data (De Martino et al., 2008; Craddock et al., 2009;
Deshpande et al., 2010), which is even more directly relatable to
the ADHD-200 challenge. SVM-RFE, as its name would suggest,
works backwards from the initial full set of features and elimi-
nates the least “useful” feature on each recursive pass. In contrast
to optimization methods that can revisit locations in feature space
[e.g., genetic/evolutionary algorithms (Vafaie and Imam, 1994)],
in SVM-RFE once a feature is removed, it will not be reconsidered
on subsequent passes of the algorithm. The criterion used to judge
feature usefulness in SVM-RFE is the absolute value of the feature

weight from a linear SVM fit to the dataset. Linear SVM is a linear
discriminant, in that it seeks to find a linear combination of the
features that allows for the best classification of groups. Whereas
the classical Linear Discriminant Analysis (LDA) interpretation
seeks to maximize the ratio of the between-class variance to the
within-class variance in the standard ANOVA sense, SVM seeks a
discriminant function that maximizes the distance (the “margin”)
to the nearest training set observations of either class (the “sup-
port vectors”). The theory was described originally by Vapnik and
Lerner (1963), and later extended to accommodate the exceed-
ingly common situation where the classes are not completely
separable, requiring some training examples to remain misla-
beled in the solution (Cortes and Vapnik, 1995). This decision
boundary ends up as a line in two dimensional feature space
and as a higher dimensional hyperplane when more features are
present. Because linear SVM assigns multivariate weights to all
remaining features at once, it has the ability to accommodate
highly correlated features, as well as potential mutual informa-
tion between features that might not be very useful on their own.
This approach contrasts with univariate correlation-based feature
ranking, where features are ordered, for example, by conducting
simple between-group t-tests for each (Guyon et al., 2002).

To demonstrate the idea of linear SVM-RFE, consider the sim-
plified 2-dimensional, 2-class, case of distinguishing ADHD from
TD subjects from the male Peking subjects based on age and IQ
alone (Figure 2A). This corresponds to the bottom-left panel in
Figure 6. If we plot the results of the linear SVM fit, we can see
that the decision boundary cuts more along the IQ axis. This
means that the IQ feature has a higher weight than age, and that
age would be dropped first in the recursive elimination algorithm.

We also chose to apply two modifications to the original SVM-
RFE algorithm: (1) Due in part to its multivariate nature, as well
as simple sampling variability, some of the feature rankings out-
put from the SVM-RFE algorithm can be unstable (Craddock
et al., 2009). Because of the large number of training cases in
this study however, resampling methods provide a simple route
to improving the stability of these rankings. We chose to use the
multiple SVM-RFE (mSVM-RFE) extension described by Duan
et al. (2005), which imposes a resampling layer on each recur-
sion pass such that the weights used for feature ranking/dropping
are stabilized by averaging across results for multiple subsamples.
(2) For computational considerations, we chose to drop half of
the features on each pass until the remaining number of features
dropped below 5000, at which point the algorithm switched to a
one-by-one mode to give the most accurate rankings of the top
features.

Main classifier
Based on initial exploration of the demographic data, we were
able to identify early on that these features would be highly
useful compared to the types of effects we expected to see
across the imaging feature set. Therefore, since we knew these
features would form the core of our classifier, we compared
different classification approaches on these features alone as a
foundation for building up the rest of our classifier. We inves-
tigated several common ML approaches, including: linear SVM,
SVM with a RBF-SVM, decision stumps as a base classifier in
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FIGURE 2 | Support vector machines (SVM). Support vector machines
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maximizes the margin (i.e., Euclidean distance) to the nearest training cases of
either class, subject to a misclassification penalty. In linear SVM (A), this

boundary is a line in two dimensions and a hyperplane in higher dimensions.
Kernel transformations [for example, using a radial basis function (RBF)] can be
applied to allow for a non-linear decision boundary in the original feature space
(B). Example data were drawn from the male participants at the Peking site.

adaboost, random forests, and C4.5 decision trees. RBF-SVM
gave the best expected generalization performance (See Section
“Expected classifier performance”), so we continued with that
approach as our main classifier. RBF-SVM is similar to the
linear SVM approach previously discussed as part of the fea-
ture ranking algorithm, but employs a kernel transformation to
allow for a non-linear decision boundary in the original fea-
ture space (Figure 2B). The radius of the kernel parameter and
the soft margin misclassification penalty were both tuned using
standard methods for nested 10-fold cross validation and grid
search. This maximizes accuracy and lowers the chance of over-
fitting.

Because of the large and site-specific skews in ADHD sub-
type prevalence (See results in Section “Diagnosis and site” and
discussion of these site-specific effects in Sections “Site” and
“Classification across sites”), we decided to focus our ML efforts
on the 2-class problem of TD vs. ADHD, and assign ADHD
subtypes in a site-specific manner based on the most common
subtype present in the training data.

Optimal feature subset selection
Once we obtained ranked lists of the features for each imaging
modality using SVM-RFE, the next step was to select the optimal
subsets of these top features for use in our final classifier. This is an
important step in optimizing many types of ML classifiers, as it is
desirable to keep enough features to capture the most important
aspects of the data with respect to classification, but not so many
as to lead to overfitting and poor generalization performance.

Estimated generalization performance was determined using
a layer of 10-fold cross validation. Within each fold, the classifi-
cation accuracy on the hold-out samples was repeatedly gauged,
while varying the number of the top features used as input.
Averaging across all 10 folds allowed us to generate plots of gen-
eralization performance vs. number of features (Figure 3). The
minimum along the curve was selected as the optimal subset of
features to use in our final classifier. Importantly, this estimation

of generalization performance and 10-fold cross validation was
external to the feature ranking step. In other words, the features
were ranked 10 times, each time independent of the hold-out
samples for that given fold. This ensures that the estimated gener-
alization performance is unbiased by spurious features that might
nicely explain the training class labels but don’t generalize to the
population (Ambroise and McLachlan, 2002).

Patterns among top features
The feature selection stage returns a ranked list of all the fea-
tures for each site and imaging modality, as well as the number
of top features that were expected to give the best generalization
performance. These were used primarily to choose which fea-
tures should be included in the final site-specific classifiers, as
discussed next in Section “Site-specific classifiers”. Additionally,
however, patterns among the most useful features can be investi-
gated directly, as a multivariate alternative to traditional voxelwise
univariate hypothesis testing. In this manuscript we focus on
the NYU site as a representative example, and generate back-
projected plots of feature rankings in the space of the original
imaging modalities (i.e., color coded onto the brain surface for the
morphological features, and as graph theoretical, regional homo-
geneity, global connectivity, and power spectra visualizations for
the rs-fcMRI analysis).

Site-specific classifiers
To address the multisite aspect of the ADHD-200 dataset, we
employed a collection of site-specific classifiers, rather than a sin-
gle classifier with site as a feature. This allowed us to tailor feature
selection to each site, while also accommodating the unique site-
specific aspects of the data set (See Sections “Demographics” and
“Classification across sites”). Site-specific classification was also
chosen based on initial findings of heterogeneity of top features
and above chance prediction accuracies between different sites.
For example, because of differences in study inclusion criteria or
varying T1-weighted scan qualities and acquisition parameters,
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FIGURE 3 | Optimal feature subset selection. Feature subsets were
chosen to optimize the expected generalization performance of the
classifier. Performance was estimated using a 10-fold cross validation
procedure that was external to the feature ranking (Ambroise and
McLachlan, 2002). This process was repeated over a range of the top

features. Example performance vs. number-of-features curves are shown
for raw rs-fcMRI connectivity matrix data (A) and Freesurfer morphological
data (B). Example data were drawn from the NYU site. Plots are
annotated with the optimal number of features and the associated
expected generalization performance.

the morphological features might be very useful at one site, but
not at another. Additionally, this approach is able to handle miss-
ing features (e.g., IQ is not reported from the NI site), since
the classifier for that site can simply be trained without them.
For the Pitt site, although there were no ADHD subjects in the
training data, the available TD subjects were used to align TD
feature means across sites, and thus allowed us to tap into the dis-
criminating aspects of the data from the other sites (Figure 4).
For the Brown site, which was the most challenging because it
lacked any training data, a similar across-site classifier was used.
However, its feature-wise bias adjustment was cruder than the Pitt
site’s, because the unknown class labels required that the align-
ment be based on both ADHD and TD subjects together. The
WashU site was excluded altogether from our final classification
approach, since it was not part of the test set, and we reasoned that
any explanatory benefit from including the training data would
be outweighed by the simultaneous increase in the between-site
variance.

Combining modalities
Feature ranking and optimal feature subset selection were per-
formed independently for each imaging modality. We chose this
approach so that the tens of thousands of fMRI features would not
swamp the much fewer number of morphological features, and so
that we could choose the most effective processing options (e.g.,
200 nodes, vs. 400 nodes for extracting graph theory metrics from
the fMRI time-series data) among different preprocessing runs
for the same modality. For each site, a set of RBF-SVMs were then
trained: once for each imaging modality, once for the demograph-
ics alone, and once with all the top features from all modalities
together. These were used to generate a list of class predictions for
each test set subject.

To assign the final class labels, we combined the individual
class predictions from the different feature sets with a higher level
voting procedure (Figure 5). For each test subject in the ADHD-
200 competition, the most common class in the set of predictions
determined the final class label.

RESULTS
DEMOGRAPHICS
Diagnosis and site
The prevalence of ADHD across the entire training set was 37%.
Ignoring the two sites without any ADHD subjects in their
training data, the prevalence was 46%. We also observed promi-
nent differences in ADHD prevalence and ADHD subtype ratios
between sites (Table 1). The ADHD-H subtype was the lowest
represented among the three subtypes, and prior information
from the ADHD-200 contest indicated that no subjects with this
diagnosis would be included in the test set. We therefore excluded
these subjects, and constrained our diagnostic predictions to
three classes. Of the remaining subjects, the highest prevalence
of ADHD was 55% at the NYU site, and the lowest was 27% at
the KKI site. For the two main ADHD subtypes, ratios varied
widely between sites—from 18:1 ADHD-C:ADHD-I at the NI site
to nearly 3:5 at the Peking site.

Gender
In aggregate across the training set, ADHD diagnoses were far
less common in females than in males. Ignoring the sites with no
ADHD subjects, the prevalence of ADHD in females was 27%,
but in males it was 54% (Table 2). These numbers also varied
strongly by site. For example, at Peking, only 13% of female
training subjects were ADHD, while at NYU 64% of males were
ADHD.

Age and IQ
Beyond looking at prevalence rates across sites and genders, the
two main continuous-valued demographic features made avail-
able were age and a full-scale IQ score. The relationships between
age, IQ, and diagnosis—together with how these vary by site and
gender—can all be visualized simultaneously (Figure 6).

Expected classifier performance
As a baseline reference for building our imaging-based classi-
fier, we explored the generalization performance we could expect
from training a classifier on only the demographics features. Age,
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FIGURE 4 | Across-site alignment. For sites without complete training data (e.g., Pittsburgh), sites were aligned by their available subgroups (here, TD) and
then an across-group classifier was trained. This schematic uses artificial data to demonstrate the procedure.

gender, site, and IQ features were included from the four sites
with complete data (Peking, KKI, NYU, and OHSU), and used to
train an RBF-SVM classifier (e.g., Figure 2B). Using these features
alone, predicted 3-class generalization accuracy was 62.7%, sensi-
tivity was 30%, and specificity was 92%. Taking into account the
fact that greater emphasis was placed on correct TD diagnoses,
this would correspond to achieving 65% of the total possible
points in the competition.

FEATURE SELECTION
We investigated patterns among the top features to see whether
they localized to regions previously reported to be affected in
individuals with ADHD. Note: These analyses are only showing
data from the NYU site, which was chosen as a representative
example.

Highly ranked cortical structural features used to generate
output votes are listed in Table 3. For the NYU cohort, the
optimal feature set included 13 cortical morphological mea-
sures, including cortical thickness, curvature, and surface area
(Figure 7).

The group-average functional connectivity matrix from the
HO atlas from the NYU cohort is shown in Figure 8A. This same
matrix is rendered as a 3D network in Figure 8B. In this represen-
tation, nodes are shown as spheres at the center of mass of each
ROI, with color corresponding to module membership based on
the Louvain modularity algorithm (Blondel et al., 2008). The
strongest 1% of connections are shown as bars connecting nodes.
Specific edges colored in red and graph theory-based nodal fea-
tures that were included in the classification vector for the NYU
site are shown in Figure 8C.

The voxelwise group-average global connectivity measure is
shown in Figure 9A. It is accompanied by the feature rankings
for all voxels (Figure 9B) and the top 500 voxels (Figure 9C).
Similarly, the voxelwise group-average regional homogeneity
measure is shown in Figure 10A. It is also accompanied by the

feature rankings for all voxels (Figure 10B) and the top 500 voxels
(Figure 10C).

The average feature rankings across the power spectra for each
of the CC400 ROIs are shown in Figure 11. Areas with prominent
feature rankings include ROIs in the left IFG/insula, left DLPFC,
and subcortical areas.

ADHD-200 COMPETITION RESULTS
The performance of our ML approach was judged on an inde-
pendent hold-out test set of 197 individuals as part of the
ADHD-200 Global Competition. Classifier performance metrics
were reported to us by the competition organizers (http://fcon_
1000.projects.nitrc.org/indi/adhd200/results.html). Considering
all three classes (TD, ADHD-I, ADHD-C), our overall accuracy
was 55%. The chance level associated with blindly guessing one
of the three diagnostic classes was 33%. The chance level associ-
ated with hierarchical coin-flipping (i.e., flip once to guess ADHD
vs. TD, and again for those ADHD in order to guess subtype) was
reported by the organizers to be 39%. The chance level associ-
ated with predicting the entire test set to be members of the most
common training set class (TD) was 55%. Considering only the
two main classes (TD, ADHD), the sensitivity (i.e., percent cor-
rect ADHD) of our approach was 33%, and the specificity (i.e.,
percent correct TD) was 79%. We correctly predicted the ADHD
subtype in 76% of those subjects correctly classified as ADHD.

This corresponded to receiving 110.5 out of a possible 195
points, 4th place out of 21 total entries in the competition,
and 3rd place among the teams that used the imaging data for
classification.

CLASSIFIER STATISTICS BY SITE AND MODALITY
After the ADHD-200 competition was finished, the true class
labels for the test set were released to the community. This allowed
us to perform post-hoc analyses to determine which imaging
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FIGURE 5 | Voting method for combining modalities. Optimal feature
subsetswerederived foreachsiteandimagingmodality,andusedto trainasetof
RBF-SVM classifiers. Class predictions from these modality-specific classifiers

were then used as inputs for final voting. ADHD subtypes were assigned based
on the site-specific pretest probabilities in the training set. This schematic
demonstrates the class assignment procedure for a single example subject.

modalities were the most useful across sites for the classifica-
tion of ADHD. Keeping in line with the official results, 3-class
overall accuracy, 2-class sensitivity and specificity, and ADHD
subtype accuracy were calculated for each combination of fea-
ture modality and site (Table 4). However, it should be noted
that these values are not quantitatively comparable to the offi-
cial competition results because not all of the test set labels have
been released. Of the combinations investigated, the best per-
formance was achieved using the combination of imaging and
demographics features that we actually implemented during the
competition. Out of the individual imaging modalities, however,
the fMRI power spectrum features appear to have been the most
useful. Based on feature ranking and optimal feature subset selec-
tion on the training set, these features were predicted to be useful
at 4 out of the 5 sites with available data. On the test set, these fea-
tures delivered an average 57% accuracy, which was the highest of

the common imaging modalities. For these power spectrum fea-
tures, their sensitivity of 25% for detecting ADHD was toward the
bottom of the list of modalities, their specificity of 83% was near
the top, and their ADHD subtype accuracy of 75% was near the
middle.

DISCUSSION
In the current work, we presented our method for classifying
the ADHD-200 dataset based on structural and functional neu-
roimaging data, feature selection with SVM-RFE, individual site-
and modality-specific classifiers, and voting to assign final class
labels. This approach outperformed all measures of chance-level
performance, and was competitive among the other entries in
the ADHD-200 Global Competition. Looking forward, this vast
neuroimaging dataset provides an excellent resource for study-
ing ADHD. Machine learning and classification tools may provide
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new means for exploring these data, and may help to determine
which underlying neural features are related and perhaps give rise
to ADHD.

DEMOGRAPHICS
Even without exploring the imaging data or applying more
advanced ML approaches, the demographics data alone were able
to provide valuable insight into ADHD classification. The use-
fulness of these features is clear from examining Figure 6, where
prominent site, gender, and IQ effects are all visible. However,
no age effect on ADHD diagnosis was present, and this was
not a useful feature. The fact that the team with the best accu-
racy in this competition used only demographic measures raises
two important points. First, demographic variables may currently
provide more clinical utility than neuroimaging features, partic-
ularly for heterogenic neuropsychiatric disorders like ADHD or

Table 2 | Number of subjects by site, diagnosis, and gender.

TD ADHD-C ADHD-I Sum

(A) FEMALES

Peking 45 (86.5) 0 (0.0) 7 (13.5) 52 (100.0)

KKI 27 (73.0) 9 (24.3) 1 (2.7) 37 (100.0)

NI 12 (75.0) 4 (25.0) 0 (0.0) 16 (100.0)

NYU 52 (65.8) 12 (15.2) 15 (19.0) 79 (100.0)

OHSU 24 (70.6) 4 (11.8) 6 (17.6) 34 (100.0)

Sum 160 (73.4) 29 (13.3) 29 (13.3) 218 (100.0)

(B) MALES

Peking 71 (50.0) 29 (20.4) 42 (29.6) 142 (100.0)

KKI 34 (75.6) 7 (15.6) 4 (8.9) 45 (100.0)

NI 11 (42.3) 14 (53.8) 1 (3.8) 26 (100.0)

NYU 47 (33.6) 64 (45.7) 29 (20.7) 140 (100.0)

OHSU 18 (41.9) 19 (44.2) 6 (14.0) 43 (100.0)

Sum 181 (45.7) 133 (33.6) 82 (20.7) 396 (100.0)

Females (A) and males (B) are shown separately. Percentages of row totals are

given in parentheses.

Autism Spectrum Disorders. Second, the composition of sub-
ject pools at different sites is an important factor for designers
of future ML competitions to consider, as site-specific biases in
subject inclusion may bias results to favor a demographic-only
classifier.

Overall ADHD prevalence
The most basic observation on the training and test datasets was
that there were more TD subjects than ADHD subjects. However,
the prevalence of ADHD in the sample was still much higher than
what would be found in a real community population. This sim-
ple fact is critical to appreciate because it lays down the general
pretest probability for whatever final classifier is developed. For
example, given a test subject with equivocal imaging features, we
would like a classifier that does not simply assign diagnosis based
on 50/50 chance, but would favor a moderately higher probability

Table 3 | Top-ranked Freesurfer cortical features (NYU site).

Ranking Cortical Region Measure

1 Posterior cingulate ThickStd

2 Bank of superior temporal sulcus ThickAvg

3 Superior temporal MeanCurv

4 Frontal pole SurfArea

5 Lateral orbitofrontal MeanCurv

6 Rostral middle frontal GausCurv

7 Parahippocampal ThickAvg

8 Parahippocampal ThickStd

9 Temporal pole SurfArea

10 Middle temporal CurvInd

11 Transverse temporal GausCurv

12 Pars triangularis CurvInd

Regions from the Freesurfer structural analysis for the NYU site that were

included in the classification. ThickStd: cortical region thickness standard devi-

ation, ThickAvg: cortical region thickness average, SurfArea: cortical region

surface area, MeanCurv: cortical region mean curvature, GausCurv: cortical

region Gaussian curvature, CurvInd: cortical region curvature index.
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FIGURE 6 | IQ vs. age, by diagnosis, site, and gender. Demographics data are plotted for the training set. The NeuroIMAGE site had no IQ data, and the
Pittsburgh and Washington University sites only had TD cases. The bottom left panel corresponds to the example data used in Figure 2.
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FIGURE 7 | Cortical features (NYU site). Twelve cortical morphological
measures were optimally discriminative of class, including cortical thickness
(posterior cingulate, parahippocampal, bank of superior temporal sulcus),

cortical curvature (superior temporal, lateral orbitofrontal, rostral middle
frontal, middle temporal, transverse temporal, pars triangularis, and insula),
and cortical surface area (frontal pole and temporal pole).

diagnosis of TD based on the higher representation of TD subjects
across the training set.

In diagnostic testing terms, the lower the pretest probability of
ADHD, the lower the positive predictive value of our test. After
all, even if we develop a test that is 99.99% accurate at diagnos-
ing some disease, if we know for a fact that the prevalence of the
disease in the population is 0%, than all of the positive test results
are still going to be false positive type I errors. Consequently, the
barrier to developing a useful diagnostic test is higher in the real
world, where the disease prevalence is typically lower than in con-
trolled studies, and there are additional factors to consider such as
cost and potential treatment risks.

Site
The large variation in ADHD prevalence and subtype ratios
between sites is also important to explore. While these spe-
cific numbers are of course artifacts of sampling bias across the
individually-designed studies that joined ADHD-200, they again
highlight the importance of tuning our classifier to the variable
prevalence within sub-groups in our population. Similar diver-
sity also exists in the real world, as, perhaps, some regions of
the country have a higher prevalence of a certain disease due to
differing demographic, genetic, or environmental factors. In the
ADHD-200 sample, these observations helped build an intuitive
understanding of how our classifier should perform. We already
knew that designing a classifier to resolve a behaviorally diag-
nosed disease like ADHD from TD, based on brain imaging data
alone, would be challenging. On top of that, it seemed unlikely
that imaging features would outperform the very strong base-
line expectations about which subtype to expect at which site.
Therefore, we decided early on that we would concentrate our
effort on classifying ADHD from TD, generally, and would default
to these prior expectations for assigning subtypes to the ADHD
subjects.

Gender
ADHD is more common in males than in females, so we expected
this feature would be very useful as well. Indeed, across the whole
dataset, the ADHD prevalence among males was roughly twice as
high as females. This substantial effect is inline with what has been
observed in the general population (Morbidity and Mortality

Weekly Report, 2010), and suggested that our pretest expecta-
tions about ADHD diagnosis should vary prominently based on
whether a given test set subject is male or female. This effect also
varied by site, which again reiterates the need to address site, and
any other influential demographic subpopulations/factors, when
designing clinical diagnostic aids.

IQ
Considering the strong relationships between cognitive mea-
sures and ADHD diagnosis that have been previously reported,
it came as no surprise that the full-scale IQ measure was also
a highly informative feature. For example, Kuntsi et al. (2004)
observed that individuals with ADHD scored nine points lower
than TD controls, and that the co-occurance of low IQ and
ADHD likely has a common genetic origin. When the IQ vs.
age plots in Figure 6 were examined, several findings were clear.
First, considering the marginal distributions, there was no strik-
ing gender effect on age or IQ (i.e., age and IQ were relatively
well-matched across genders), but there was a strong site effect
on both age and IQ. At the extremes, OHSU didn’t have any
subjects older than 12 years old, and Pitt didn’t have any sub-
jects younger than 10. Similarly, OHSU females had exception-
ally high IQs. Secondly, considering main effects, there was a
strong correlation between lower IQ and ADHD diagnosis, but
no appreciable age effect was present. Lastly, considering the
joint usefulness of age and IQ for predicting diagnosis, one can
see a large degree of variability between sites and genders. For
example, whereas Peking subjects separate nicely based on these
features, NYU subjects do not. When IQ was placed in the same
lists as functional neuroimaging features for feature ranking, it
repeatedly rose to the top of our ranked feature lists even when
many thousands of features were present. This not only quan-
titatively highlights the usefulness of the IQ features, which we
have previously discussed only qualitatively, but also demon-
strates the effectiveness of the SVM-RFE algorithm on very large
feature sets.

CLASSIFIER DESIGN
The robustness of our feature selection approach is one of the
main positive aspects to take away from our effort. The mSVM-
RFE method was able to handle large feature sets (e.g., the
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FIGURE 8 | Functional connectivity and graph theory features (NYU

site). (A) Average NYU functional connectivity matrix using 111 cortical
and subcortical regions from the Harvard Oxford atlas reorganized by
modular organization as detected by the Louvain modularity algorithm.
(B) Group-averaged functional connections from the NYU cohort, shown from
right and top views. Spheres correspond to the center of mass for the 111

and white cylinders correspond to connections in the top 2% of functional
connectivity strength, based on Pearson correlation. (C) Nodes whose graph
theory-based measures were used to classify ADHD vs. TD are shown in
light blue (clustering coefficient), magenta (local efficiency), and yellow
(regional efficiency). Edges whose connection weights were used in the
classification are shown in red.

CC400 atlas provides 79,800 unique features after duplicates and
self-correlations are removed) in a reasonable amount of time,
and consistently returned useful ranked lists of the top features.
When examining the plots of expected generalization perfor-
mance versus the number of top features used as input, it was
interesting to see that the shape of these curves varied by imag-
ing modality. For example, in Figure 3B we can see that only
a few of the most highly ranked features were enough to effi-
ciently summarize the useful morphological aspects of the data.
Conversely, in Figure 3A, the rs-fcMRI correlation matrices typi-
cally gave poor performance when only a few of the top features
were used, and instead required more features to be included
in order to reach optimal performance. This variation suggests
that the true intrinsic features of the rs-fcMRI data are more

distributed network-type properties, rather than specific isolated
effects. For all types of imaging modalities, adding extraneous fea-
tures beyond the optimal zones caused expected performance to
drop off toward chance. For many types of classifiers, this is due
to the “curse of dimensionality” that arises when the amount of
available data becomes sparse in a higher dimensional parameter
space (Hughes, 1968). However, SVMs are actually less susceptible
to this common problem since they do not require accurate mod-
els of class distributions throughout the entire multidimensional
space, but rather rely on data exemplars only in the neighbor-
hood of the decision boundary between the classes (Melgani and
Bruzzone, 2004). Still, many of the neuroimaging features will be
useless, and adding these will only contribute noise to the data
and decrease overall classifier performance.
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FIGURE 9 | Global connectivity feature rankings (NYU site). For each voxel present in all participants (across all sites), (A) the group-averaged correlation with
every other voxel, (B) the average feature rankings from the within-site classification, and (C) the top 500 features from the within-site classification are shown.
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FIGURE 10 | Regional homogeneity feature rankings (NYU site). For each voxel present in all participants (across all sites), (A) the group-averaged
consistency of each voxel with its (26) nearest neighbors, (B) the average feature rankings from the within-site classification, and (C) the top 500 features
from the within-site classification are shown.

Interestingly, while there are non-linear methods for doing
feature selection (e.g., wrapping the whole classifier and using
the predicted generalization accuracy as the objective func-
tion), simpler linear methods have been advocated in this type
of preprocessing role because of their speed and ability to
reduce dimensionality with less risk of overfitting (Guyon, 2003).
However, one potential limitation of this design is that it could
miss features that appear useless at the linear stage, but are actu-
ally highly useful when used with a non-linear classifier (e.g.,
imagine a U- or doughnut-shaped decision boundary). While this
is an interesting theoretical consideration, in practice many bio-
logical and imaging based relationships—although non-linear—
are still generally monotonic and therefore effectively identified
by this type of linear feature selection method. Indeed, the

winning entries in large ML competitions across diverse datasets
often use the simplest of feature selection approaches—including
univariate correlation based ranking, or principal component
analysis (Guyon et al., 2005).

INTERPRETATION OF NEUROIMAGING FEATURES
A reasonable criticism of ML in neuroscience is that it is entirely
possible to develop algorithmic classifiers that distinguish states
or pathologies with high accuracy based on features that do lit-
tle to inform basic understanding. Neuroimaging data display a
nearly unbounded set of possible features. Ideally, the dimensions
used to describe the data are themselves interpretable. In such
cases, the class boundaries calculated by the classifier in its train-
ing phase form a “hidden layer” that can also be informative. Our
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FIGURE 11 | Power spectrum feature rankings (NYU site). For each
ROI in the CC400 atlas, the average feature rankings across each
frequency bin of the power-spectrum are displayed. Warmer colors
indicate more useful features.

method for optimal feature subset selection pared down the vast
number of neuroimaging features to a more tractable, parsimo-
nious number—typically on the order of 10 to several hundred
features.

Although the total number and specific informative features
used for generating a categorical vote varied across sites, a num-
ber of highly ranked features were consistent across sites. From
the subcortical features, regional voxel intensity means in left
caudate and right thalamus were ranked highly, consistent with
previous structural studies in ADHD (Ellison-Wright et al., 2008;
Ivanov et al., 2010). Even highly ranked morphological features
of non-gray matter regions, such as the volume of left inferior lat-
eral ventricle volume, have previous precedence in the literature
(Verkhliutov et al., 2009). Structural cortical measures that were
highly diagnostic were located primarily in frontal, temporal, and
cingulate regions, again demonstrating partial correspondence
with previous reports of altered frontal circuitry in the context
of ADHD (Shaw et al., 2006; Qiu et al., 2011). Importantly,
our detection of structural differences in the dorsolateral PFC,
a region critical for attentional control, aligns with the primary
affected cognitive process in ADHD. For the functional connec-
tivity matrices we found that a variety of connections distributed
across the brain were informative, which is not surprising con-
sidering that behavioral disorders affect aspects of behavior and
multiple brain networks. However, we did find more informative
features were more lateralized to the right hemisphere and graph
theoretical nodal features were more specific to frontal and tem-
poral regions. Features from the voxelwise measures of regional
homogeneity and global connectivity also pointed toward multi-
ple brain regions including regions known to be part of the default
mode and attention networks. In both voxelwise results, it is also
interesting to note that the voxels with the highest group-average
global connectivity or regional homogeneity measure were not
necessarily the same voxels with the highest feature rankings.

CLASSIFICATION ACROSS SITES
Although the ADHD-200 multisite dataset has been utilized
already in the neuroscience community to further our models

of ADHD and motivation (Tomasi and Volkow, 2012), proto-
col variations between sites led to large inter-site differences in
measurement. This highlights the need for consistency in pro-
cedures to make data sharing efforts most effective, which will
allow for an enhanced ability to replicate results (or compare dif-
ferences) between different analyses. For example, the IQ scores
across the ADHD-200 sample were derived from different raters
and different test instruments, depending on site, and the NI site
didn’t provide any IQ data at all. This posed the challenge of
how to best utilize this useful feature at most sites, but not all,
and also while accommodating potential site effects. Even more
extreme, the Pitt site only included TD subjects in its training
data, and the Brown site did not provide any training data. The
challenge with these sites was how to design an across-site classi-
fier, without inadvertently biasing the predictions due to nuisance
site effects (e.g., scanner-specific signal biases, varying baseline
ADHD prevalence, etc.).

As described, our general approach to address all of these issues
was to use a series of site-specific classifiers and, where across-site
classifiers were required (Pitt, Brown), a feature- and site-wise bias
correction. We chose this site-specific approach after initial anal-
yses suggested that top features were quite different between sites
and classifiers trained across sites performed worse than within-
site classifiers. While this approach was useful, in effect it largely
forgoes the potential benefits of a true multisite study, and instead
may be better described as a meta-analysis of ADHD classifi-
cation. It is likely that cross-site uniformity in multisite studies
should improve classification accuracy, as it is easy for uncon-
trolled parameters to swamp out biological signal. Conversely, for
a biomarker to be clinically relevant, it should also be consistent
across sites and robust to variations in imaging parameters. This
suggests that there is currently not a strong neuroimaging signal
or biomarker for ADHD, or at least that any signal is smaller than
the variability introduced by including multiple sites with dif-
ferent scanning parameters and samples that are unmatched for
demographics.

PERFORMANCE ON TEST DATA
The most surprising result to come out of the ADHD-200 compe-
tition was that, although imaging features were moderately useful
for classifying ADHD from TD subjects, including these features
failed to provide any additional benefit over using demographic
features alone. There were 195 possible points (two of the 197
original test subjects were excluded), which would have required
correctly predicting all ADHD subjects as well as all ADHD sub-
types. The winning imaging-based classifier scored 119 points.
For reference, our approach scored 110.5 points. However, the
best overall score of 124 points was reached by ignoring the imag-
ing features completely and relying solely on the demographics
information. Interestingly, this is close to the 127 points we pre-
dicted early on based on our own analysis of a subset of the
demographics features in the training set (Section “Expected clas-
sifier performance”). Nevertheless, we had decided to continue
investigating the imaging features for two reasons: (1) those were
the main focus of the ADHD-200 project, and (2) we reasoned
the imaging features would be more generalizable, as we sus-
pected some of the demographics effects were simply artifacts
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Table 4 | Classifier performance on the test dataset, by site and imaging modality.

Modality Metric Site

KKI NI NYU OHSU Peking All

Combined Accuracy 0.73 0.68 0.37 0.76 0.57 0.59

Sensitivity 0 0.45 0.34 0 0.25 0.24

Specificity 1 0.86 0.58 0.93 0.96 0.85

Subtype – 1 0.8 – 0.5 0.71

Combined (no IQ) Accuracy 0.73 0.41 0.76 0.47 0.55

Sensitivity 0 0.41 0 0.21 0.2

Specificity 1 0.58 0.93 0.82 0.79

Subtype – 0.83 – 0.4 0.59

Global connectivity Accuracy 0.73 0.49 0.53

Sensitivity 0 0.33 0.27

Specificity 1 0.82 0.85

Subtype – 0.38 0.38

Regional homogeneity Accuracy 0.55 0.34 0.71 0.49 0.5

Sensitivity 0 0.41 0 0.21 0.2

Specificity 0.75 0.5 0.86 0.85 0.74

Subtype – 0.67 – 0.4 0.52

Raw rs-fcMRI connectivity matrices Accuracy 0.6 0.37 0.49 0.47

Sensitivity 0.27 0.28 0.33 0.3

Specificity 0.86 0.58 0.74 0.71

Subtype 1 1 0.63 0.84

Nodal/global graph metrics Accuracy 0.52 0.39 0.56 0.48

Sensitivity 0.45 0.17 0.33 0.3

Specificity 0.57 0.92 0.68 0.75

Subtype 1 1 0 0.66

Power spectra Accuracy 0.52 0.44 0.82 0.53 0.57

Sensitivity 0.18 0.55 0.17 0.08 0.25

Specificity 0.79 0.58 0.96 0.96 0.83

Subtype 1 0.69 1 0.5 0.75

Freesurfer subcortical Accuracy 0.8 0.8

Sensitivity 0.55 0.55

Specificity 1 1

Subtype 1 1

Freesurfer cortical Accuracy 0.51 0.62 0.56

Sensitivity 0.41 0.33 0.38

Specificity 0.75 0.71 0.73

Subtype 1 0.5 0.77

Classifier metrics include 3-class accuracy, 2-class sensitivity/specificity, and ADHD subtype accuracy. Data for Pittsburgh and Brown sites were not available.

Blank cells indicate modalities that were omitted from a particular final classifier due to feature ranking/selection predicting they were not expected to improve

performance over chance.

of study design. Still, this finding is a good reminder that when
we see claims like “Feature X is useful for classifying disease
Y,” we should ask the question, “Relative to what baseline?” In
this case, the imaging features were useful—just not above and
beyond the much simpler demographic information. Similarly,
it is also important to consider the performance we could have
expected based on chance alone. Based on hierarchical coin flip-
ping, the chance level was 39% (corresponding to 86.5 points).
It is also useful to examine the “no-information rate,” which is

the performance we would attain by predicting that all of the test
set cases belong to the most common training set class. Seeing
as TD was the most common overall diagnosis in the training
set, one would have achieved 55% accuracy (corresponding to
108 points) just by predicting all of the test subjects as TD. With
respect to the performance of the imaging-based classifiers, this
number is just as striking as the demographics-only performance.
It suggests that around half of the imaging-based competition
entries would have performed better—and certainly expended
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less effort—by simply classifying everyone as TD. This rela-
tively modest performance challenges us to question whether
the imaging features present in the data are the “right” ones
from which to reach a clinical finding. It is possible that the
abnormalities in morphology and resting-state signal fluctua-
tions considered at present are associated only weakly with the
disease, and that a different set of features or imaging modal-
ity might be needed for neuroimaging to have a large impact
on the clinical management of ADHD. Considering the large
individual variability that accompanies even real group effects,
and the relatively low prevalence of many diseases in community
populations (compared to research studies), this also highlights
the more general challenge of attempting to use neuroimag-
ing features for true diagnostic classification of behaviorally-
diagnosed neurological syndromes like ADHD. While this is
still an excellent long-term goal, imaging-based classifiers of
ADHD and other such disorders show their biggest short-term
promise in populations where the pretest probability is high or
diagnosis is already assumed. For example, in a scientific con-
text toward further understanding the neurobiological basis of
the disorder, these techniques can be used to map regions of
the brain that are most useful for classification (Uddin et al.,
2011), thereby providing a complementary tool to standard uni-
variate hypothesis testing. Similarly, in a clinical context, they
may be more useful in predicting diagnostic subtypes among
individuals who have already been screened from the popu-
lation at large, or for predicting later treatment response and
prognosis.

FUTURE DIRECTIONS AND CONCLUSION
Overall, this competition provided one of the largest and poten-
tially most valuable public neuroimaging resources for studying
any neurodevelopmental disorder, and the largest ML collabora-
tion in the medical community to date. This was only possible
through the strong cooperation between the organizing sites,

together with their progressive open-access philosophy toward
data sharing. Even more exciting is the response that the com-
munity has had in building on this foundation, including the
preprocessed versions of the original fMRI dataset that were con-
tributed back to the community by the Neuro Bureau. These
types of efforts lower the entry barrier to the field, and promote a
collaborative synergism that accelerates research discovery.

Although imaging features have showed only modest classifi-
cation performance thus far, improved classification accuracy will
likely come with advances in imaging acquisition and modeling
methods, standardization of protocols across sites, larger sample
sizes, as well as a better understanding of genetic factors influenc-
ing these circuits. Nevertheless, our optimism for the future must
be tempered by realistic expectations for what neuroimaging data
can and cannot do for us (Logothetis, 2008), and the appreciation
that there will always be a large degree of heterogeneity due to
normal individual variation in cognitive profiles and neural cir-
cuitry (Fair et al., 2012). Ultimately, the ADHD-200 initiative is
leading the way toward a productive new era of neuroscience col-
laboration, but it still remains to be seen if and when our growing
understanding of the neural basis of ADHD will eventually begin
to lead to improved clinical outcomes over the current standard
of care.
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