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Attention deficit/hyperactivity disorder (ADHD) is one of the most common diseases in
school-age children. To date, the diagnosis of ADHD is mainly subjective and studies of
objective diagnostic method are of great importance. Although many efforts have been
made recently to investigate the use of structural and functional brain images for the
diagnosis purpose, few of them are related to ADHD. In this paper, we introduce an
automatic classification framework based on brain imaging features of ADHD patients and
present in detail the feature extraction, feature selection, and classifier training methods.
The effects of using different features are compared against each other. In addition, we
integrate multimodal image features using multi-kernel learning (MKL). The performance
of our framework has been validated in the ADHD-200 Global Competition, which is a
world-wide classification contest on the ADHD-200 datasets. In this competition, our
classification framework using features of resting-state functional connectivity (FC) was
ranked the 6th out of 21 participants under the competition scoring policy and performed
the best in terms of sensitivity and J-statistic.

Keywords: attention deficit/hyperactivity disorder, ADHD-200 competition, resting-state functional connectivity,

support vector machine, multi-kernel learning

INTRODUCTION
Attention deficit/hyperactivity disorder (ADHD), one of the most
commonly diagnosed childhood behavioral disorders, is charac-
terized by inappropriate inattention, impulsivity, and hyperactiv-
ity. ADHD affects at least 5% of school-age children, making them
difficult to control their behaviors or focus their attentions. These
symptoms may persist into adulthood and result in a lifelong
impairment (Biederman et al., 2000). In spite of a large amount
of research efforts, the community has not yet comprehensively
understood the pathology of ADHD. Moreover, the current prac-
tice in the diagnosis of ADHD is mainly according to the levels of
symptoms listed in DSM-IV (American Psychiatric Association,
1994), and the diagnosis is usually conducted by the parents or
teachers, which is unfortunately subjective. In fact, it is very dif-
ficult to draw a line between the normal levels of the ADHD
symptoms and the clinically significant levels that require inter-
ventions. Thus, further studies on objective diagnosis of ADHD
are of great significance.

Recently, structural MRI (sMRI) and functional MRI (fMRI)
have been widely used to examine the brain of ADHD patients,
and various abnormalities have been reported. Studies using
sMRI showed a totally decreased cerebral volume of 3–5%
(Seidman et al., 2005; Valera et al., 2007), and abnormalities in
several specific brain regions such as lateral prefrontal cortex,
cingulate cortex, striatum, cerebellum, and callosum (Semrud-
Clikeman et al., 2000; Overmeyer et al., 2001; Kates et al., 2002;

Seidman et al., 2005; Valera et al., 2007). As for fMRI studies,
abnormal brain activations were found in task-related experi-
ments on the dorsal anterior cingulate cortex (dACC), the ventro-
lateral prefrontal cortex (VLPFC), and the putamen (Bush et al.,
1999; Teicher et al., 2000; Durston et al., 2003). Resting-state fMRI
(rs-fMRI) was also used in ADHD studies and abnormalities
were found in prefrontal cortex, inferior frontal cortex, senso-
rimotor cortex, anterior cingulated cortex, putamen, temporal
cortex, and cerebellum (Cao et al., 2006; Tian et al., 2006; Zang
et al., 2007; Liu et al., 2010). In addition, Castellanos et al. (2008)
found ADHD-related decreases of functional connectivity (FC)
between anterior cingulate and precuneus/posterior cingulate
cortex regions, as well as between precuneus and other default-
mode network components, including ventromedial prefrontal
cortex and portions of posterior cingulate cortex.

Although studies using between-group statistics may indicate
the abnormal regions of ADHD patients, it has been argued
that between-group analysis might be less useful for automatic
diagnosis (Seidman et al., 2004). The wide utilization of mod-
ern machine learning techniques in neuroimaging community
makes it possible for researchers to discover clinical biomark-
ers of the diseases and develop automatic diagnosis systems.
Many efforts have been made to use sMRI or fMRI to predict
patients of Alzheimer’s disease and schizophrenia (Fan et al.,
2007; Hinrichs et al., 2009, 2011). However, few studies have been
conducted to make prediction of ADHD. Zhu et al. (2008) trained
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a classifier of principal-components-analysis-based (PCA-based)
fisher-discriminant-analysis (FDA) using features of regional
homogeneity (ReHo) in their study. They obtained as high as
85% leave-one-out cross validation (LOOCV) accuracy, but the
samples for experiments were quite small (only 24 subjects).

In order to accelerate the understanding of ADHD and to
obtain objective diagnosis methods, the ADHD-200 Consortium
publically released the ADHD-200 Samples and held the ADHD-
200 Global Competition in 2011. The aim of the contest was
to have participants develop and train an image-based diag-
nosis classifier to predict ADHD-Combined type (ADHD-C),
ADHD-Inattention type (ADHD-I) and typically developing
control (TDC), based on the 776 samples in the ADHD-200
datasets. Then a test set of 195 unlabeled samples will be
used to evaluate the performance of the classifiers developed
by the participants. Please refer to the ADHD-200 website
(fcon_1000.projects.nitrc.org/indi/adhd200/) for the scoring pol-
icy and more details.

In our work, we conducted extensive experiments on the fea-
tures which were extracted from sMRI and rs-fMRI, as well
as the combination of both, namely, multi-modal features. We
finally selected the FC as the feature to train a support vector
machine (SVM) in the contest, because the best cross valida-
tion (CV) accuracy was achieved when using this feature. In
the final results released by ADHD-200 consortium, we were
ranked the 6th out of 21 participants under the competition
scoring policy, and our method performed the best in terms
of sensitivity and J-statistic. In this paper, we list and com-
pare the performances of all kinds of features to provide a
comprehensive understanding of potential useful information
related to ADHD diagnosis. The main contribution of this
work is that we proposed an automatic classification frame-
work for ADHD and achieved good results in ADHD-200 Global
Competition, which constituted a useful exploration for ADHD
classification.

The remainder of this paper is organized as follows. The
subject selection, feature extraction, feature selection, and clas-
sification methods are introduced in “Materials and Methods”
section. “Results” section shows the performance and results of
the proposed methods. The discussion and conclusion of this
paper are given in “Discussion” section.

MATERIALS AND METHODS
DATASETS AND SUBJECTS
The datasets for the competition consist of structural and rs-fMRI
of 776 labeled subjects for training and 195 unlabeled sub-
jects for testing. The labeled training set contains 285 individ-
uals diagnosed with ADHD and 491 typical developed children
(TDC). These samples are collected from eight sites, using dif-
ferent scanners and scanning parameters. Not all the subjects
in ADHD-200 datasets are available or suitable for the stud-
ies, e.g., images of some subjects are of low quality, making
them prone to fail in the preprocessing procedure and produce
unconvincing features for classification. Thus, we exclude sev-
eral subjects before our experiments according to the following
schemes: (1) All the images are examined after the scanning and
marked with a label of quality control in the phenotypic key.

We only retain subjects whose images have a quality control of
1; (2) The subjects of ADHD-Hyperactive type (ADHD-HI) do
not contribute to the classifier due to the small number of sam-
ples and no requirement to distinguish them from others in the
contest. Thus, we exclude all subjects of ADHD-HI type; (3)
We exclude subjects whose images fail in preprocessing or fea-
ture extraction procedure. In total, 152 subjects out of 776 are
excluded and 624 remain. The number of subjects from each site
is listed in Table 1, and the demographic information is shown in
Table 2.

IMAGE PREPROCESSING AND ORIGINAL FEATURE EXTRACTION
In order to obtain potential features related to ADHD, we employ
different image processing techniques to extract multimodal fea-
tures. For sMRI, cortical thickness (CT), and gray matter proba-
bility (GMP) are extracted while for rs-fMRI, ReHo, and FC are
extracted. The preprocessing steps and extraction of features are
detailed in the following.

Cortical thickness
Cortical surface is reconstructed by FreeSurfer (v5.0.0,
surfer.nmr.mgh.harvard.edu/) using the methods proposed
by Dale et al. (1999) and Fischl et al. (1999), and CT on
each vertex is measured. First, all T1-weighted images are
corrected for intensity non-uniformity and registered into
a template. Then the gray matter (GM) and white matter
(WM) and subcortical tissues are segmented. A smoothly
tessellated cortical surface is constructed for each hemisphere
and automatic correction is preformed to remove topological
defects. After that, the pial surface and GM/WM surface are
built and the shortest distances from pial surface to GM/WM
surface and from GM/WM surface to pial surface are calcu-
lated, respectively, on each vertex. Finally, CT on each vertex
is obtained as the mean value of these two distances and a
surface-based diffusion smoothing with 20 mm full-width-at-
half-maximum (FWHM) is conducted to enhance the statistical
performance.

Table 1 | Subjects selected from different sites.

Total TDC ADHD-C ADHD-I

PEKING 181 108 27 46

KKI 77 57 15 5

NI 32 22 10 0

NYU 179 87 60 32

OHSU 60 33 15 12

Pittsburgh 59 59 0 0

WashU 36 36 0 0

Total 624 402 127 95

Table 2 | The demographic information of selected subjects.

Total TDC ADHD-C ADHD-I

Sex(M/F) 381/242 208/194 104/22 69/26

Age 12.16 ± 3.20 12.47s ± 3.36 11.32 ± 2.98 12.02 ± 2.52
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Gray matter probability
All the structural images are preprocessed using voxel-based
morphometry (VBM) toolbox in Statistical Parametric Mapping
(SPM8, www.fil.ion.ucl.ac.uk/spm). First the original anatom-
ical images are segmented into GM, WM, and cerebrospinal
fluid images (CSF). Then the segmented images are registered
to the Montreal Neurological Institute (MNI) template using
12-parameter affine transformation and non-linear deformation
with a warp frequency cutoff at 25. A modulation process is also
employed, which scales the final GM images by the amount of
contraction required to warp the images to the template. The
final result is GM volume maps for each subject, where the total
amount of GM remains the same as in the original images. Finally,
the normalized maps are smoothed using an 8 mm isotropic
Gaussian kernel to improve signal-to-noise ratio and facilitate
comparison across subjects. We use only GMP as the features.

Regional homogeneity
Some image preprocessing steps should be conducted before fea-
tures of rs-fMRI are extracted. The first 10 volumes of each
functional time series are discarded for participant adaptation to
the scanning. Then the image data are temporally realigned to
remove time delay between different slices, and spatially realigned
to remove head motions. If the head motions of a session are over
the threshold of 2 mm (Power et al., 2012), this session of the sub-
ject will be abandoned and other sessions are used. We further
spatially normalize the realigned images to the MNI template.
Considering the sMRI images of subjects are offered, T1 image
unified segmentation (Ashburner and Frison, 2005) is applied
to normalize the realigned images. Then the normalized images
are resampled to voxels of 3 × 3 × 3 mm3. At last, linear drift
detrend and temporal band-pass filtering (0.01 < f < 0.08 Hz)
(Fox et al., 2005; Liang et al., 2006) are performed to reduce low-
frequency drift and high-frequency noise using the rs-fMRI data
analysis toolkit (Song et al., 2011) (REST V1.6, www.restfmri.
net/).

ReHo was originally proposed by Zang et al. (2004). It
uses Kendall’s coefficient of concordance (KCC) to measure the
regional synchrony for the given voxel and its K-1 nearest neigh-
bors, and is calculated as

W =
∑

i R2
i − n · R

2

1
12 K2

(
n3 − n

) (1)

where W is the KCC of the given voxel, ranging from 0 to 1;
K = 27 is the number of neighborhood voxels and n is the num-
ber of time points; Ri is the sum of K voxels on the i-th time point;
R is the mean of the Ri’s. ReHo is calculated on each voxel of the
whole brain to form a ReHo map using REST toolkit. A smooth-
ing process (8 mm FWHM of Gaussian kernel) is conducted on
the ReHo map to reduce noise.

Functional connectivity
FC is measured as the correlation coefficient of time courses of
any two voxels or ROIs. In this study, we mainly use ROI-based FC
due to the low computational complexity. We utilize the CC400
atlas Craddock et al. (2012), which is used in Athena pipeline

of ADHD preprocessed data (neurobureau.projects.nitrc.org/
ADHD200/Introduction.html), to extract time courses of
351 ROIs. Then ROI-based FC is calculated for each subject as
follow

FC
(
i, j

) =
∑ (

Xi − Xi
) (

Xj − Xj
)

√∑ (
Xi − Xi

)∑ (
Xj − Xj

) (2)

where Xi is the time courses of the i-th ROI; Xi is the average
time courses of the i-th ROI; and FC

(
i, j

)
presents the connec-

tion weight between the i-th and the j-th ROI. The calculated FC
is pruned using an absolute threshold of 0.05 in order to reduce
noise.

FEATURE SELECTION
The dimensionality of original brain features is usually much
higher than the number of samples, which cannot be directly used
to train classifier considering overfitting problem and computa-
tional complexity. Thus, dimensionality reduction is required to
improve the performance of the classifier. Feature selection is a
kind of commonly used dimensionality reduction methods, as
opposed to feature extraction such as PCA, in which new low-
dimensional embedding is produced using the original features.
In this study, we use a hybrid feature selection method which
combines filter-based and wrapper-based methods (Kohavi and
John, 1997).

The discriminative power of a feature can be estimated using
within-class sum of squares (WSS) and between-class sum of
squares (BSS). A smaller WSS and a larger BSS usually mean that
a feature is more prone to be distinguished. Thus, the ratio of BSS
to WSS is used to rank features. Specifically, donating fij as the
value of the i-th feature of the j-th sample and c is the group label
(+1 or − 1), the ranking score of the i-th feature is defined as

ri = BSSi

WSSi
=

∑
j

∑
c I

(
yj = c

) (
fic − fi

)2

∑
j

∑
c I

(
yj = c

) (
fij − fic

)2
(3)

where fic is the mean value of the i-th feature across subjects
in class c and fi is the mean value of the i-th feature across all
subjects; the index function I

(
yj = c

)
equals 1 if the j-th subject

belongs to group c and equals 0 otherwise.
However, the above filter method computes the ranking scores

independently for each feature, which does not take into account
the relationship (redundant or complementary) between features.
In other words, it does not optimize the feature subset as a whole
for a specific classification problem. Thus, the selected features
might not be the optimal feature subset for the classification of
ADHD. In fact, features with weak discriminative power may
contribute to the performance of classification if they are com-
plementary to others, while those with strong power may affects
the performance if they are redundant.

To avoid this problem, we employ a wrapper-based method
for feature subset selection utilizing SVM based on recursive fea-
ture elimination which is named SVM-RFE (Guyon et al., 2002).
In this algorithm, SVM is trained iteratively using selected fea-
ture subset. In each iteration, the ranking score for each feature in
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the selected feature subset is calculated during the SVM training
process (e.g., for linear SVM we can simply consider the rank-
ing score of features as the w that satisfies y = w · x + b, however,
the SVM-RFE algorithm uses the radial basis function kernel,
which is slightly complicated for estimation of the score). A por-
tion of features with small score are eliminated in each iteration
of SVM training until the classification accuracy is over a set
threshold, or the number of remaining features in the selected
subset is smaller than a set value. Note that SVM-RFE uses the
accuracy of CV to estimate the goodness of feature subset, which
may avoid the overfitting problem. Thus, we first use the ratio of
BSS/WSS to filter most features with little discriminative power,
and then use SVM-RFE for further refined feature selection. This
will ensure the selection optimal feature subset at relatively low
computational cost.

CLASSIFICATION METHODS
In our framework, SVMs with radial basis function (RBF) kernel
are used for classification. Let x1, x2 be the feature vectors, and
RBF kernel is defined as

K (x1, x2) = exp

(
−‖x1 − x2‖2

2σ2

)
(4)

where σ is the width of the kernel. The hyper-parameters of SVM
such as the penalized coefficient and the kernel width should
be carefully tuned to obtain the optimal SVM model. We apply
an automatic searching method which uses grid search to tune
parameters and CV to evaluate the goodness of them. Usually,
this CV for parameter tuning is named inner CV because it is
nested in another CV called outer CV, which is used for evalu-
ating the generalization of the method (see Wilson et al., 2009
for more details of nested CV). We use a 10-fold outer CV in
this study, that is, in each fold of outer CV, one tenth samples

from each class are kept out for validation and the remainder are
used for selecting features and training classifier (including select-
ing hyper-parameters). Then the held-out samples are validated
using the selected features and parameters which are obtained in
the training process. After all samples have been validated once,
we calculate the average CV accuracy and consider it as the esti-
mation of generalization. This nested CV method can yield an
unbiased assessment of the classification method and prevent
overestimation. Figure 1 shows the flow chart of the evaluation
method we used for nested CV.

In addition to using SVM as classifier, we also attempt to apply
multi-kernel learning (MKL) to integrate multi-modal features
(Sonnenburg et al., 2006; Hinrichs et al., 2011). In MKL frame-
work, each kind of feature is assigned an independent kernel and
different parameters, and the MLK algorithm can automatically
search the optimal combination of the kernel matrix of these fea-
tures to form an integrated kernel matrix (assigning weight to
each kernel matrix), which could be better than any of single
kernels. The output of MKL is defined as

yi =
∑

k

βk

⎛
⎝∑

j

λk
j yjKk

(
xk

j , xk
i

)⎞
⎠ + b (5)

where k denotes the k-th kind of feature; Kk is the kernel matrix;
βk is the sub-kernel weight; λk

j is the Lagrange parameters and xk
i

is the features of the i-th subject. Although MKL is theoretically
better, it has more parameters to be tuned. Thus, the training pro-
cess will be much more time-consuming, and sub-optimal model
tends be obtained which might affect the effectiveness of MKL.

IMPLEMENTATION
Our classification framework and validation experiments
was implemented in Matlab using an interface to the

FIGURE 1 | The flow chart of the nested CV classification method using a single feature.
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LIBSVM (v3.1.2, www.csie.ntu.edu.tw/~cjlin/libsvm/) for
the SVM classifier and Shogun (v1.1.0, www.shogun-toolbox.
org/) for the MKL framework. The main source code for
this work will be made available on the website of NICA
group (nica.ia.ac.cn/research/t20120712_1145.htm?lang=en).
Nonetheless, please note that you have to prepare the original
image features by yourself.

RESULTS
CLASSIFICATION RESULTS USING A SINGLE FEATURE
A hierarchical 2-class classifier is used, which first classify subjects
into ADHD group and TDC group, and then into ADHD subtype.
The 10-fold CV classification results using a single feature are listed
in Table 3, in which we compare the CV accuracy using CT, GMP,
ReHo, or ROI-based FC as the feature to train the classifier. In
addition, sensitivity (true positive rate, TPR) and specificity (true
negative rate, TNR) are calculated to evaluate the classification
performance without considering class distribution. J-statistic is a
combined measure of sensitivity and specificity and is calculated
as sensitivity + specificity − 1. J-statistic is used by the ADHD-200
Consortium to compare the competition results of participating
groups (fcon_1000.projects.nitrc.org/indi/adhd200/results.html),
although it is not generally to be recommended (Youden, 1950).
Similar to J-statistic, F-score is another measure considering both
recall and precision, which is commonly used in information
retrieval. F1-score can also be calculated in terms of type I and
type II errors as

F1 = 2 · TPos

2 · TPos + FNeg + FPos
(6)

where TPos, FNeg, and FPos are the number of true positive, false
negative, and false positive. The larger J-statistic and F-score, the
better performance of a classifier. Besides, area under ROC curve
(AUC) is an evaluation measure derived from receiver operating
characteristic (ROC) curve. The ROC curve is a graph evaluation
method which can illustrate the performance of a binary classifier
as its decision threshold is varied. When the decision threshold
of a classifier varies, sensitivity and specificity also change. ROC
curve is created by plotting sensitivity and 1–specificity at different
thresholds. A larger AUC commonly indicates a better classifier.

From the results listed in Table 3, we find that classification
using features of ReHo achieves the best CV accuracy. However,
it does not work well in terms of J-statistic, F1-score and the area
under ROC curve (AUC). This is directly caused by imbalanced

sensitivity and specificity and might be implicitly caused by
the imbalance of class distribution which we will discuss later.
Classifiers using features of GMP and ROI-based FC both achieve
good CV accuracy and AUC, as well as more balanced sensitivity
and specificity (a higher J-statistic or F1-score). Figure 2A shows
the ROC curve of the CV classification using different kinds of
features.

We also test the classifier built using a single feature on the
test set of 169 samples (the labels for 26 samples from Brown
University are not available) and the classification results are
summarized in Table 4. Classifier using feature of ROI-based
FC achieves the best results in terms of almost all the criteria.
Although the classification results on test set are a little worse than
the CV results on training set, the difference between them is not
significant. This suggests that our CV classification framework
could estimate the performances with little bias.

CLASSIFICATION RESULTS USING MKL
In order to integrate the above four kinds of features, an MKL
classifier is trained. To reduce computational complexity, we skip
the feature selection and parameter tuning steps and directly use
the same feature subset and parameters in classifications using
a single feature, which might not be the optimal ones for MKL
classifier. However, the classification results on both training set
and test set exceed the best ones of classification using only a sin-
gle feature. This suggests that MKL that integrates multimodal
features is potentially powerful, although it is more difficult to
choose hyper-parameters and is more time consuming. The clas-
sification results using MKL are also listed in Tables 3 and 4, and
the ROC curve can be found in Figure 2. We can find that the
ROC curve of MKL classifier is better (nearer to northwest) than
other classifier using a single feature, and the AUC of the former
is larger than the latter.

DISCUSSION
CLASSIFICATION USING MULTI-SITE DATASETS
Because of the difficulty of collecting samples, datasets in imag-
ing study are usually quite small in the neuroimaging community.
One hundred samples are already quite large dataset and cost
thousands of dollars and several months to collect. Thus, open-
ing or exchanging neuroimaging data can produce much larger
datasets, making the researches more reliable and convincing.
This will benefit the whole community as the ADHD-200 datasets
did. However, datasets from different sites usually vary in their
scanning device or parameters, and the race of subjects may also

Table 3 | The 10-fold CV classification results using a single kind of feature and multimodal features.

Feature CV Accuracy (2-class) Sensitivity/Specificity J-statistic F1-score AUC CV Accuracy (3-class)

CT 61.38% 18.47/85.07% 0.0353 0.2539 0.5870 49.12%

GMP 64.90% 45.50/75.62% 0.2112 0.4798 0.6787 56.87%

ReHo 65.87% 22.52/89.80% 0.1232 0.3195 0.5982 56.15%

FC 62.02% 41.89/73.13% 0.1502 0.4397 0.6365 54.92%

MKL 67.79% 38.29 / 84.08% 0.2237 0.4582 0.7068 57.71%

The bold font means the best performance using a single feature. The performance of MKL is listed in the bottom and is better than that using a single feature.
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FIGURE 2 | (A) The ROC curve of CV classification on training set of 624 subjects; (B) The ROC curve of classification on test set of 169 subjects.

Table 4 | The classification results on test set using a single kind of feature.

Feature Accuracy (2-class) Sensitivity/Specificity J-statistic F1-score AUC Accuracy (3-class)

CT 55.62% 22.67/81.91% 0.0458 0.3119 0.5212 44.1%

GMP 56.80% 34.67/74.47% 0.0917 0.4160 0.6065 52.6%

ReHo 56.80% 17.57/90.30% 0.0788 0.2913 0.5480 48.1%

FC 59.17% 44.00/71.28% 0.1528 0.4889 0.6187 53.2%

MKL 61.54% 41.33 / 77.66% 0.1899 0.4882 0.6288 54.1%

The bold font means the best performance using a single feature. The performance of MKL is listed in the bottom and is better than that using a single feature.

be different. These factors might result in different baselines of
extracted features. Although some studies argue that multi-site
datasets do not significantly affect their results (Pardoe et al.,
2008; Bendfeldt et al., 2012), we find that these studies have some
obvious limitations: (1) The number of scanning sites is limited—
only two or three, while ADHD-200 Sample have eight scanning
sites; (2) All datasets have both patients and normal control, while
in ADHD-200 Sample 2 sites have only normal controls. (3) They
implement VBM analysis on multi-site datasets rather than clas-
sification. Thus, their conclusions may not be applied to our
study.

In our experiment, we find that the impacts of multi-site
datasets on each kind of feature are not similar. For instance, we
also use scale-invariant feature transform (SIFT) to extract fea-
tures for classification and we find that these features can even
distinguish subjects from different sites, which means that they
can hardly be used directly to predict ADHD patients because of
the evidently distinct baseline. We consider that several potential
methods may alleviate this problem. (1) The first is to construct
a regression model with respect to these factors. Nonetheless, this

method might produce more uncertainty, because the impacts of
factors such as scanning parameters or races on the human brains
are much more complicated than age or gender. A simple regres-
sion might not work well. (2) Another method is to regularize
the features of subjects from different sites respectively. Although
this method may work well on other datasets, it is not suitable for
ADHD-200 samples because datasets from some sites have only
normal controls or few ADHD patients. We can use this method
only when we abandon these datasets. (3) The third method is to
train classifier on each datasets from different sites. However, this
method, in fact, does not take advantage of the large samples of
multi-site datasets. Moreover, the ADHD-200 test set has some
samples from a new site, which have to be predicted using the
model trained by the samples from other sites. In short, for com-
plicated multi-site datasets such as the ADHD-200 Sample, the
optimal solution is still pending and worth further investigation.

IMPACTS OF IMBALANCED CLASS ON CLASSIFICATION
The ADHD-200 datasets have more TDC than ADHD patients
(485 TDC vs. 281 ADHD). Such imbalanced datasets might cause
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bias of a classifier, making it more prone to classify samples to
TDC. In fact, from the competition results released by the ADHD-
200 Consortium, we found that for most participating groups,
the number of subjects that were predicted as TDC was much
more than the actual number of TDC in test set, which was one
of the main causes of high specificity and low sensitivity in aver-
age (71.77% vs. 31.44%). A prediction system with an excessively
imbalanced sensitivity and specificity is defective, which might
at least suggest that the classifier is biased while training. We
consider that we should pay more attention to other evaluation
methods such as F-score or ROC graph rather than using only
accuracy of classification.

In this paper, we use the selected datasets containing 404 TDC
and 222 ADHD patients, in which the ratio of the number of TDC
to that of ADHD patients is 1.82. Without special handling of this
imbalance, we obtain the specificity of 73.13% and the sensitivity
of 41.89% (using FC as features). However, in the competition,
we use much less TDC than in this paper—only 517 subjects with
303 TDC and 214 ADHD patients. The ratio of the number of
TDC to that of ADHD patients is 1.42. The competition results
show that we obtained the specificity of 66.4% and sensitivity of
52.3%—the highest sensitivity and highest J-statistic (specificity
+ sensitivity – 1) in the contest. The reason we reduce the TDC
used in the competition is that we want to prevent the impacts of
imbalanced datasets as far as possible. We do not know the priori
of the test set. Thus, we assume it as 50%, that is, the probabil-
ity of a sample being TDC or ADHD patient is equal in the test
set. However, you can also assume the priori as the same of train-
ing set (as most participants did). In fact, the actual number of
TDC is slightly more than that of ADHD patients (the ratio is
only 1.21, much less than that in training set). Thus, we consider
that imbalanced class of training set and almost balanced class of
test set might be one of the main reasons that cause the mean
specificity much more than the mean sensitivity. The results of
this paper also demonstrate this trend, that is, when using more
imbalanced datasets, we obtain a more imbalanced specificity and
sensitivity, and the impacts of imbalanced datasets on classifica-
tion are different for different kinds of features. However, we do
not do any further experiments about this discovery so that it is
yet a hypothesis.

There are a number of solutions to the problem of imbal-
anced datasets at both the data and algorithm levels. At data level,

different forms of re-sampling is commonly used, such as ran-
dom oversampling with replacement, random undersampling,
directed oversampling, directed undersampling, oversampling
with informed generation of new samples, and combinations of
the above techniques. While at the algorithm level, common solu-
tions include adjusting the costs of classes, adjusting the decision
threshold, one-class learning, etc. A special issue with respect to
this problem provides an overview of these methods (Chawla
et al., 2004). However, because we did not know the class distri-
bution of the test set prior to the competition, we could not apply
any of these methods to solve the problem in the competition.

CONCLUSION AND LIMITATION
We have presented our classification framework for ADHD pre-
diction. Four kinds of feature are extracted from the brain
images and used for training classifiers. A hybrid feature selection
method is applied before training SVMs in order to prevent the
overfitting problem and reduce the computational complexity.
We have used a nested CV method to tune the hyper-parameters
of classifiers and evaluate the performances of our method, which
can yield unbiased estimation of classification method. In addi-
tion to using a single feature, we also employ MKL to integrate
multi-modal features. Our experiments show that MKL using
multimodal features can yield better classification results for
ADHD prediction.

Worth mentioning, this study has several limitations. The
first is that we do not take into account the phenotypic infor-
mation such as gender or age. The information may also con-
tribute to the classification, as shown in the competition results
of the University of Alberta. Another limitation of our frame-
work is its performance on the imbalanced datasets. We believe
that the imbalanced class of datasets affects the classification
results, and when taking it into consideration, a classifier can
achieve a better balance of its performances on sensitivity and
specificity.
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