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The ADHD-200 Global Competition provides an excellent opportunity for building
diagnostic classifiers of Attention-Deficit/Hyperactivity Disorder (ADHD) based on
resting-state functional MRI (rs-fMRI) and structural MRI data. Here, we introduce a simple
method to classify ADHD based on morphological information without using functional
data. Our test results show that the accuracy of this approach is competitive with methods
based on rs-fMRI data. We used isotropic local binary patterns on three orthogonal
planes (LBP-TOP) to extract features from MR brain images. Subsequently, support vector
machines (SVM) were used to develop classification models based on the extracted
features. In this study, a total of 436 male subjects (210 with ADHD and 226 controls) were
analyzed to show the discriminative power of the method. To analyze the properties of this
approach, we tested disparate LBP-TOP features from various parcellations and different
image resolutions. Additionally, morphological information using a single brain tissue type
(i.e., gray matter (GM), white matter (WM), and CSF) was tested. The highest accuracy
we achieved was 0.6995. The LBP-TOP was found to provide better discriminative power
using whole-brain data as the input. Datasets with higher resolution can train models with
increased accuracy. The information from GM plays a more important role than that of
other tissue types. These results and the properties of LBP-TOP suggest that most of
the disparate feature distribution comes from different patterns of cortical folding. Using
LBP-TOP, we provide an ADHD classification model based only on anatomical information,
which is easier to obtain in the clinical environment and which is simpler to preprocess
compared with rs-fMRI data.
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INTRODUCTION
Attention-Deficit/Hyperactivity Disorder (ADHD) is a multi-
factorial and clinically heterogeneous disorder, which is highly
prevalent in children worldwide. It is estimated that 5–10%
of school-age children and 4% of adults suffer from ADHD
(Biederman, 2005). The negative impact of ADHD on patients,
their families, and society make ADHD a major public health
problem (Ferguson, 2000). However, an objective biological tool
to diagnose ADHD is still unavailable. Foreseeing the impor-
tance, the organizers of the ADHD-200 Global Competition
have collected functional and anatomical ADHD MRI datasets
of an unprecedented scale, which are accessible via the Internet
(http://fcon_1000.projects.nitrc.org/indi/adhd200/). This work
provides an important opportunity for researchers all over the
world to study brain changes in ADHD subjects based on numer-
ous brain MRI images.

During the ADHD-200 global competition, we tried many
strategies to discriminate ADHD patients from control subjects
based on resting-state fMRI (rs-fMRI) and anatomical brain
image data. We found that the brain morphological changes
described by a 3D texture analysis can be used to distinguish
children with ADHD from typically developing children (TDC).

These structural image-based models demonstrated similar accu-
racy compared with our models based on rs-fMRI data. In the
present study, we describe and analyze the 3D texture analysis
method.

It is not easy to construct a classification rule to distinguish
ADHD from TDC subjects. ADHD is a complex disorder with a
composite etiology (Faraone and Mick, 2010). No simple existing
indicators can be used to diagnose ADHD at present. Currently,
the Diagnostic and Statistical Manual of Mental Disorders,
4th ed., text revision (DSM-IV-TR) is most often used for diag-
nostic criteria for ADHD. Some ADHD criteria are based on
subjective descriptions by a child’s parents or teachers and not
on objective analysis tools. Recent research has demonstrated
that using different versions of the DSM or disparate sources
of collateral information can significantly affect the calculated
prevalence of ADHD (Polanczyk et al., 2007). Moreover, both
sex and age play important roles in the development of ADHD.
These factors also increase the complexity of building a diagnos-
tic tool (Biederman, 2005). All the aforementioned factors make
it challenging to build an efficient classification model for ADHD.

Additionally, approaches based on rs-fMRI data suffer from
unstable echo planar imaging (EPI) and involve sophisticated data
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preprocessing steps. For these reasons, building a classification
model based on rs-fMRI data from multiple research sites involves
difficult manipulations of large data sets and is not efficient.

However, structural brain images are of high quality and
are more stable with better resolution compared with rs-fMRI
data. We hypothesized that structural brain images might contain
more information from which to build a discriminative model.
Although ADHD is not believed to result from morphological
changes in the brain, several studies have shown that anatom-
ical differences associated with ADHD can be found in MR
images (Qiu et al., 2011). Large changes in volume and struc-
tural differences in the cerebral cortex have also been reported
using MRI methodologies, such as anatomical MRI and diffu-
sion tensor imaging (Kobel et al., 2010). Hence, we set forth to
develop an ADHD classification method based on morphologi-
cal changes. Notably, after using 3D texture descriptors to extract
features from brain anatomical data, we found that morphologi-
cal changes provided information that could discriminate ADHD
from TDC subjects.

In this paper, to describe brain morphology, we introduce a
feature extraction method based on texture point of view using
the isotropic local binary patterns on three orthogonal planes
(LBP-TOP). After extracting features using LBP-TOP, we trained
a support vector machines (SVM) model and built an ADHD
classification model based on the extracted features.

Texture analysis based on local binary patterns (LBP) has
recently been shown to have excellent discriminative power for
many applications in the domain of computer vision (Ojala et al.,
2002; Inen et al., 2011). LBP was originally designed to extract fea-
tures from various textured images, such as organic fibers, wood,
and fabric (Ojala et al., 1996). After decades of development, it
was also found to be useful for extracting the features from other
types of images, such as face description (Ahonen et al., 2006),
image segmentation, and other applications (Inen et al., 2011).
Furthermore, it can be used as a spatiotemporal descriptor for
motion and activity analysis (Zhao and Pietikainen, 2007). In the
domain of computer vision, LBP is an efficient and robust method
for extracting information from morphology (Inen et al., 2011).

Recently, research has been directed toward using LBP to
extract features of medical images (Unay et al., 2007). Research
has been performed on finger vein recognition (Rosdi et al.,
2011), image annotation (Tommasi and Orabona, 2010) and
medical image retrieval (Qian et al., 2011). Most of the research
with medical images has used 2D-LBP approaches to extract fea-
tures. Few studies have used 3D-LBP approaches to describe the
features of medical images.

In the present study, we build an ADHD classification model
using LBP-TOP features and SVM. Different registration meth-
ods, LBP-TOP settings, and source brain image resolutions were
utilized to test the properties of this method. A simple and effi-
cient feature selection method was introduced to create a more
robust model. We built classification models based on three basic
brain tissues: gray matter (GM), white matter (WM), and CSF.
Our results demonstrate that it is possible to build an ADHD
classification model based on LBP-TOP features. We found that
GM data provide the most salient information for discriminating
ADHD from TDC subjects.

LBP-TOP
LBP is a simple and efficient image texture operator introduced
by Ojala et al. (1996, 2002). Figure 1 shows the three steps for
computing LBP on 2D images. The LBPP,R operator can be
defined as

LBPP,R =
P − 1∑
p = 0

sign(vp − vc)2P (1)

sign(x) =
{

1, x ≥ 0

0, x < 0

where vc and vp are the values of the center pixel and neighbor-
hood pixels with radius R, respectively, P is the total number of
neighborhood pixels, and R is the radius in pixel. After the LBP
codes for all voxels in an image are computed, the histogram of
the codes computed over specific regions or over the whole image
can be used as a texture descriptor. Therefore, each bin of the
histogram can be regarded as a “micro-texton” encoded by LBP
(Hadid et al., 2004). Figure 2 demonstrates patterns encoded by
these histogram bins. Any morphological changes would modify
the distribution of the codes, resulting in alterations to the his-
togram. Therefore, the histogram of the computed LBP codes is a
good descriptor for comparing changes between images.

For 3D data, Zhao et al. have proposed simplifying spatiotem-
poral descriptors by concatenating LBP on three orthogonal
planes (LBP-TOP), i.e., the xy, xt, and yt planes (Zhao and
Pietikainen, 2007). Here, we used LBP-TOP to describe brain
volume data. Therefore, we replaced the t dimension with the
z dimension. We propose using the same radius for x, y, and z
for LBP-TOP. Figure 3 illustrates the specific steps for computing
LBP-TOP on 3D-volume data.

The direct output of LBP-TOP is an over-complete set of fea-
tures. One method for selecting the most informative bins from
the raw histogram is to map “uniform patterns.” Figure 4 shows
the rule of uniform patterns and some examples. Ojala et al.
observed that in image classification problems, such as face and
texture classification, the major patterns are uniform patterns.
Non-uniform patterns rarely exist (Ojala et al., 2002). In uniform
LBP mapping, there is a separate output label for each uniform
pattern, and all non-uniform patterns are assigned to a single
label. In the case of LBP with eight neighbors, after mapping uni-
form patterns, the length of the histogram bins for whole-brain
images was reduced from 255 to 259.

MATERIALS AND METHODS
PARTICIPANTS
To best demonstrate the discriminative power of LBP-TOP,
only male subjects were used to control for the known sex-
based differences in ADHD subjects (Biederman, 2005; Polanczyk
et al., 2007). Male data from the Kennedy Krieger Institute
(KKI), the NeuroIMAGE sample (NeuroIMAGE), the New
York University Child Study Center (NYU), Oregon Health
and Science University (OHSU), Peking University (Peking_1,
Peking_2, and Peking_3), and the University of Pittsburgh
(Pittsburgh) were selected for analysis in this study. We ruled
out using the dataset from Washington University because it was
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FIGURE 1 | Steps for computing the local binary pattern (LBP) operator.

The LBP of 2D images aims to map all pixels from the grayscale pattern
space onto the binary pattern space in three steps. Step (I): A small window
is defined by a radius R and the total number of neighborhood pixels P
(in this case, p = 8). Step (II): The neighborhood of each pixel is thresholded

by the value of the center pixel, resulting in a binary number. Then, the
resulting code of the center pixel is given as a weighted sum of the binary
number of its neighbors. Step (III): After all the LBP codes of an image are
computed, the texture features are defined by building a histogram over
specific regions or over the whole image.

FIGURE 2 | Some examples of texture patterns encoded by LBP.

not in the test set of the ADHD-200 global competition and no
ADHD subject in it. Five subjects (0010016, 0010027, 0010055,
0010098, and 0010127) in the NYU dataset were excluded because
no anatomical data existed for them. Subject 0010013 in the
NYU dataset was also excluded because some of the brain in the
anatomical image was cropped during the face removal process.
ADHD hyperactive-type subjects were excluded due to the small
number of such subjects in the dataset.

Therefore, the ADHD subjects in this study were of both
the ADHD combined type and the ADHD inattentive type.
A total of 436 male subjects (210 ADHD subjects and 226

TDC, mean age = 12.12 ± 2.95) were used in this study. The
distributions of subjects by age and by type of ADHD are
shown in Tables S1 and S2. A list of all subjects can be found
in Table S3. The detailed phenotype of each subject can be
found on the website for the ADHD-200 global competition
(http://fcon_1000.projects.nitrc.org/indi/adhd200/).

DIAGNOSTICS OF ADHD
Table 1 shows a brief summary of the diagnosis criteria used
by each site. The sites used different ADHD criteria, intellectual
evaluations, and sources of collateral information.
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FIGURE 3 | The steps of computing LBP on three orthogonal planes

(LBP-TOP). Step (I): A small window is defined by a radius R and the total
number of neighborhood pixels P. Step (II): LBP codes are computed for
three orthogonal directions (x, y, z). Each voxel is encoded based on the
three orthogonal planes (xy, yz, and xz). After the LBP of each direction

is computed, the texture features can be computed by building the
histogram over a specific volume or over the whole-brain volume.
Step (III): The histograms from the three planes are combined to build the
resulting histogram, which represents the texture features of the selected
volume.

DATA PREPROCESSING
An overview of the data analysis procedure is shown in Figure 5.

The details of each step are described below.

Registration methods
Linear registrations with 9 degree of freedom (9-DOF) and
12-DOF were performed using the linear multimodality

registration method developed by Oxford FSL FLIRT (Jenkinson
et al., 2002; Smith et al., 2004). All images were transformed to
standard MNI152 space by FLIRT with 6-DOF (rigid-body trans-
formation). The results of FLIRT with 6-DOF were then linearly
transformed by FLIRT with 9-DOF (rigid-body + independent
scaling). The results of FLIRT with 9-DOF were also linearly
transformed by FLIRT with 12-DOF (rigid-body + scales +
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FIGURE 4 | Uniform patterns. Using circular neighborhoods, U is
calculated as the number of bitwise transitions from 0 to 1 or vice versa. An
LBP pattern is considered uniform if U is less than or equal to 2. Here, we
show three simple examples of uniform and non-uniform patterns. A list of
all uniform LBP patterns with eight neighbors has previously been
published (Inen et al., 2011).

Table 1 | A brief summary of the different diagnostic criteria used by

each site.

Site ADHD Intelligence Source of

criteria evaluation information

Kennedy Krieger Institute (KKI) DICA-IV WISC-IV Parents

DuPaul Subjects

CPRS-R

DSM-IV

NeuroIMAGE sample
(NeuroIMAGE)

KSADS-PL WASI Parents
CPRS-LV Subjects

New York University Child Study
Center (NYU)

KSADS-PL WASI Parents
CPRS-LV Subjects

Oregon Health and Science
University (OHSU)

KSADS-I WISC-IV Parents
CPTRS-III Teachers

Subjects

Peking University (Peking) C-DIS-IV WISCC-R Parents

KSADS-PL

University of Pittsburgh
(Pittsburgh)

N/A WASI N/A

Abbreviations are as follows: C-DIS-IV, Computerized Diagnostic Interview

Schedule IV; CPRS-LV, Conners’ Parent Rating Scale-Revised, Long ver-

sion; CPRS-R, Conners’ Parent Rating Scale-Revised, Long Form; CPTRS-III,

parent and teacher Connors’ Rating Scale, Third Edition; DuPaul, DuPaul

ADHD Rating Scale IV; DSM-IV, Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition; KSADS-I, Kiddie Schedule for Affective Disorders and

Schizophrenia; KSADS-PL, Schedule of Affective Disorders and Schizophrenia

for Children—Present and Lifetime Version; WASI, Wechsler Abbreviated

Scale of Intelligence; WISCC-R, Intelligence Scale for Chinese Children-

Revised; and WISC-IV, Wechsler Intelligence Scale for Children, Fourth

Edition. Details can be found on the ADHD-200 global competition website

(http://fcon_1000.projects.nitrc.org/indi/adhd200/).

skews). Non-linear normalization procedures were performed
using the automated registration tool (ART). ART was developed
by Ardekani et al. (2005) and can be downloaded from http://
www.nitrc.org/projects/art/. Klein and colleagues demonstrated
that ART provides better efficiency and consistency than other
non-linear registration methods (Klein et al., 2009).

FIGURE 5 | Overview of the data analysis procedure. Preprocessing
involves three steps. First, all raw data are transformed into a 1 mm
isotropic volume using the rigid body transformation as performed by FLIRT
with 6 degrees of freedom (6-DOF). Second, brain images are registered to
standard MNI152 space by linear (FLIRT with 9-DOF and FLIRT with
12-DOF) and non-linear (ART) registration methods. To achieve better
registration results, the registration parameters were obtained by
transforming the skull-stripped brains to the standard MNI152 brain
template. Third, we computed the LBP-TOP histograms based on the
registered images with various spatial context information (i.e., brain mask,
AAL, and CC200). Following these steps, classification models can be
trained by directly using the resulting histogram or by using a subset of
data after applying the feature selection algorithm. (The major process flow
is denoted by the thick line. The minor process flow is denoted by the thin
line. The square boxes are the major steps showing how to extract features
from raw data. The round boxes are the parameters or information needed
for the process flow. Texts in gray color indicate the methods or the
subtypes the process step used.)

3D skull striping
To obtain better registration results, skull stripping was per-
formed prior to using the registration algorithm, using the
3DSkullStrip algorithm (Smith, 2002) developed by AFNI (Cox,
1996). 3DSkullStrip has proven to be a relatively robust skull-
stripping algorithm (Iglesias et al., 2011). However, it is not a
perfect tool. Incomplete skull stripping can result in a loss of
information from some brain regions. Hence, we applied the
transformation parameters for skull-stripped brains to the orig-
inal whole-brain images to create the input for the LBP-TOP
algorithm.

Spatial context information and brain parcellations
To examine different spatial context information, we performed
three separate parcellations in this study.
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First, a simple brain mask in MNI152 space, as provided by
FSL, was used to compute the total histogram of the whole-
brain volume. Second, to introduce spatial context based on brain
anatomical information, the widely used automated anatomical
labeling (AAL) template with 116 regions was used (Tzourio-
Mazoyer et al., 2002). Finally, we also used an atlas derived from
functionally parcellating the resting state data (Craddock et al.,
2012). A 200 ROI version with 190 regions of spatially con-
strained parcellation (CC200) was used to introduce the spatial
context information based on rs-fMRI data. The CC200 func-
tional parcellation template made for the competition was kindly
provided by Cameron Craddock. Details of the construction of
CC200 have been previously published (Craddock et al., 2012)
and can also be found on the Athena preprocessing strategies page
of the ADHD-200 preprocessed data website: http://www.nitrc.
org/plugins/mwiki/index.php/neurobureau:AthenaPipeline.

COMPUTATION OF LBP-TOP
The LBP-TOP algorithm was implemented using Java to build the
LBP-TOP map from the structural image. All resulting LBP-TOP
histograms were mapped for the detection of uniform patterns.
Preliminary testing (not shown) demonstrated that only the LBP-
TOP with eight neighbors provided sufficient information to
classify ADHD within a reasonable processing time. Therefore,
only tests with eight neighbors are shown here.

CLASSIFIERS
A k nearest neighbor classifier (KNN, K = 1) was used to show
the baseline of the discriminative power of LBP-TOP. Moreover,
an efficient and widely used classifier, SVM, was used in this
work (Boser et al., 1992). SVM maps training data into high-
dimensional feature space to find the separating hyperplane with
the maximal margin. Due to the large feature size of LBP-TOP
results, we used linear SVM for greater efficiency. LIBLINEAR
(Fan et al., 2008) was chosen for use because of its optimization
for linear SVM.

FEATURE SELECTION
After introducing spatial context information, the LBP-TOP his-
togram bins become an over-completed feature set. To build a
more efficient and robust classification model, a feature selec-
tion method is needed. Moreover, by only selecting the most
important features, we can combine features from various points
of view. For example, we can combine features from different
LBP-TOP results based on dissimilar radii.

Feature selection based on the linear SVM has proven to be
efficient and useful for gene selection, document classification,
and many other applications (Brank et al., 2002; Chang and Lin,
2008).

For any test subject x, the decision function of linear SVM is

P(x) = sign(wT x + b) (2)

where x is the feature vector, b is a constant, and w is the weight
vector. Each value of w denotes the weight of each feature. The
larger the absolute value of wj, the more important the jth feature
is in deciding the result.

After training a linear SVM model, the w in (2) can be used
as a relative importance index. Therefore, we can build a simpler
model using the top n important features.

For combining features from different point of views, we first
trained a linear SVM model using feature groups and ranked
features by the absolute weights of the model. Only half of the
features remained. Then, we combine these features with the fea-
tures from a second feature group and trained another linear
SVM model. Similarly, only half of the features were chosen to be
merged into the next feature group. Using this iterative procedure,
we combined various feature groups and found the most impor-
tant features among these feature groups. Algorithm 1 shows
steps of this iteration. Given a set of N subjects and K different
feature groups, for each training dataset of our 10-fold cross-
validation, we use Algorithm 1 to select and combine the most
important features.

BRAIN SEGMENTATION
FSL’s automated segmentation toolbox (FAST) was used to
segment raw brain images into GM, WM and CSF (Zhang
et al., 2001; Smith et al., 2004). Figure 6 shows an exam-
ple of a resulting probability map. The three tissue probability
maps were analyzed following the same procedure described in
Figure 5.

Algorithm 1 | The algorithm of feature selection.

Input: Training dataset D =
{{

xk,n, yn
}N

n =1

}K

k = 1
,

xk is different feature set based on various setting
Output: Training dataset with selected features S = {sn, yn}N

n =1

For k = 1, . . . , K

1. For each subject n, add all features of xk,n to sn.
2. Use grid search with 10-fold cross-validation to find the

best penalty parameter of linear-SVM based on S.
3. Train a linear-SVM model based on S using the best

penalty parameter.
4. Sort the features of sn based on the absolute weights of

the linear-SVM model.
*5. For each subject n, drop the last half features of sn.

Loop

∗Due to the small number of features revealed when analyzing
the whole-brain region, we simply combined all the features and
do not drop the last half of them.

FIGURE 6 | Examples of brain probability maps based on gray matter

(GM), white matter (WM), and CSF.
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REFERENCE MODELS BASED ON rs-fMRI FEATURES
To compare the results of discriminative models based on rs-
fMRI data, we used a simple and easily repeatable approach.
Briefly, for the preprocessing of rs-fMRI data, we used the
extracted timecourses from the Athena preprocessed data, which
can be download from the ADHD-200 Preprocessed Data web-
site. Details of the specific preprocessing steps can be found on the
website.

The timecourses of the AAL and CC200 parcellations
used in LBP-TOP study were chosen for comparison. The
extracted timecourses files, ADHD200_AAL_TCs_filtfix.tar.gz
and ADHD200_CC200_TCs_filtfix.tar.gz, can be found on the
ADHD-200 Preprocessed Data website. The correlation coeffi-
cients between each pair of regions were computed based on their
extracted timecourses. For example, there are 116 regions in the
AAL parcellation. Therefore, 6670 correlation coefficients can be
computed based on the 6670 ROI pairs. All the correlation coef-
ficients were used as features for the linear SVM ADHD classifier.
The results of each model were validated using the same cross-
validation settings used in the LBP-TOP studies. As described
on the ADHD-200 Preprocessed Data website, the nuisance vari-
ance for the extracted time series of each region was removed,
with or without use of a band-pass filter (0.009 Hz–0.08 Hz),
and blurred with a 6 mm FWHM Gaussian filter. Both
time series, with or without filtering by a band-pass filter,
were tested.

EVALUATION
All tests in this study were evaluated by 10-fold cross-validation.
We randomly partitioned the 436 subjects into 10 subgroups.
For each step of cross-validation, one subgroup was used as a
test data set, and the remaining nine subgroups were pooled
as a training data set. After 10 cross-validations, the test results
of all 10 subgroups were combined to build the accuracy of
the estimation of each model. To facilitate comparison of the
results, the same 10-fold cross-validation set was used in all
evaluations.

We used grid searching to find the best penalty parameter C
for linear SVM for each training dataset. That is, another 10-fold
cross-validation was applied to each training dataset with several
candidate values of C, and we chose the parameter C that led to
the highest accuracy.

While performing feature selection, the assignment of opti-
mal feature weights can be achieved when the optimal value of
C is chosen during each round of cross-validation. After that, we
evaluated the effect of feature number using each testing dataset.
Then, we combined the results of 10 test dataset to build the
accuracy of different feature numbers.

STATISTICAL TESTS
To show the classifier has learned a structure in the data, we com-
pute the p-value against the null distribution using permutation
tests (Good, 2000; Ojala and Garriga, 2010). The null hypothe-
sis of permutation test is that the labels are independent of the
features. Therefore, one can learn almost same accuracy using
random labeled data set. By randomly permuting the labels of the
data set, permutation tests can measure how likely the observed

accuracy is learned by chance. The permutation-based p-value is
defined by

p =
∣∣∣{D′ ∈ �

D : e(c, D′) ≤ e(c, D)
}∣∣∣ + 1

k + 1

where D is the original labeled data, e(c, D) denotes the error of
classifier c learned from D, and

�

D is a set of k randomized versions
D′ of D (Ojala and Garriga, 2010). In this work, the e(c, D) was
estimated by same 10-fold cross-validation with other tests. One
hundred randomized sets of each test were used to estimate the
p-values (k = 100).

To compare different approaches of this work, McNemar’s
tests were applied to compute p-values between two approaches
(Everitt, 1992; Dietterich, 1998). While comparing two different
approaches, confusion matrices of each approach were estimated
by same 10-fold cross-validations. Then we compute the p-values
of McNemar’s tests using R (Team, 2012).

RESULTS
LBP-TOP
Table 2 shows the 10-fold cross-validation results for different
radii (1 mm, 2 mm, and 3 mm) for the LBP-TOP, various parcel-
lations, linear registrations, and non-linear registrations, respec-
tively. Table 2A shows the baseline accuracy which LBP-TOP can
provide with the simple 1 NN classifier. Comparing the results of
Tables 2A and 2B, we can find the linear-SVM classifiers can pro-
vide better accuracy than 1 NN classifiers. Moreover, some of the
properties changed while using different classifiers. The LBP-TOP
with a radius equal to 3 mm provided better accuracy than the
LBP-TOP for the other two radii in most cases while using linear-
SVM classifiers. The same properties cannot be found while using
1 NN approaches. However, there are nonsignificant between dif-
ferent radii in NcNemar’s test (Table S4). As expected, brain data
with ART non-linear registration showed the highest accuracy in
almost all cases, especially while using 1 NN as classifiers. Notably,
using linearly registered brain data did not greatly reduce accu-
racy. After apply NcNemar’s test, there is no significant difference
between registration methods in any cases with linear-SVM clas-
sifiers. And only few cases show significant difference between
registration methods while using 1 NN approaches (Table S5).

Although the resulting feature sizes varied widely (from 177
to 33630 features), accuracy across disparate parcellations was
not greatly affected. Models using a histogram computed from
the whole-brain region had higher accuracies than models based
on other parcellations. Only considering the results of the AAL
and CC200 parcellations, the CC200 showed better results most
often. This finding may be the result of the greater number of uti-
lized features or the greater number of homogeneous areas in the
CC200 parcellation.

The results of reference models based on rs-fMRI features are
shown in Table 2. These data indicate that simple approaches
to analyzing rs-fMRI data do not discriminate as well as mod-
els based on structural information. The McNemar’s test between
structural features and rs-fMRI features also show significant dif-
ference in most cases (Table 3). Based on our experience in the
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Table 2 | (A,B) The ADHD-TDC classification accuracy of models

based on LBP-TOP features with different registration methods,

parcellation, and radius of LBP-TOP, using 1NN and linear-SVM

classifiers alternatively. (C,D) The ADHD-TDC classification accuracy

of models based on simple rs-fMRI features, using 1NN and

linear-SVM classifiers alternatively.

0.5

0.6

0.7

(A) 1NN models based on LBP-TOP features

Parcella�ons Radius Features DOF9 DOF12 ART
Brain mask R1 177 0.6009 0.6376 0.6009

R2 177 0.6261 0.6399 0.6537
R3 177 0.6239 0.6422 0.6353

AAL R1 20,532 0.5986 0.6009 0.6422
R2 20,532 0.5826 0.6032 0.6353
R3 20,532 0.5894 0.5826 0.6376

CC200 R1 33,630 0.5826 0.6124 0.6491
R2 33,630 0.5917 0.6055 0.6445
R3 33,630 0.5940 0.5894 0.6124

(B) Linear-SVM models based on LBP-TOP features

Parcella�ons Radius Features DOF9 DOF12 ART
Brain mask R1 177 0.6422 0.6376 0.6514

R2 177 0.6606 0.6468 0.6651
R3 177 0.6514 0.6399 0.6583

AAL R1 20,532 0.6239 0.6216 0.6537
R2 20,532 0.5986 0.6261 0.6239
R3 20,532 0.6284 0.6399 0.6537

CC200 R1 33,630 0.6445 0.6491 0.6239
R2 33,630 0.6376 0.6491 0.6537
R3 33,630 0.6583 0.6560 0.6697

(C) 1NN models based on simple rs-fMRI features

Parcella�ons Features Non-BF BF
AAL 6697 0.5459 0.5688

CC200 17,955 0.5550 0.5528

(D) Linear-SVM models based on simple rs-fMRI features

Parcella�ons Features Non-BF BF
AAL 6697 0.5665 0.5734

CC200 17,955 0.5803 0.5596

The highest accuracy for each parcellation is denoted by the bold number.

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9,

and DOF12, linear registration with 9, and 12 degree of freedom, respectively;

ART, non-linear registration performed by Automated Registration Tool; AAL,

automated anatomical labeling template; and CC200, spatially constrained par-

cellation based on rs-fMRI. Abbreviations are as follows: BF, rs-fMRI data filtered

by a bandpass filter (0.009 Hz ∼ 0.08 Hz); and non-BF, rs-fMRI data not filtered

by a bandpass filter.

ADHD-200 Global Competition, different preprocessing settings
can affect the resulting accuracy. Moreover, combining the results
of different rs-fMRI approaches can provide better discriminative
power. The results of these simple approaches can be viewed as the
baseline of discriminative power that rs-fMRI data can achieve.

PERMUTATION TEST OF BASIC MODELS
The results of permutation test in Table 4 shows each approach
can learn the class structure in the data. Classifiers based on

Table 3 | p-values of McNemar’s test of linear-SVM models based on

rs-fMRI data and LBP-TOP features using non-linear registration.

Parcellations Radius Non-BF and BF and BF and

LBP-TOP LBP-TOP non-BF

AAL R1 0.0056 0.0102 0.8467

R2 0.0633 0.1052

R3 0.0043 0.0106

CC200 R1 0.1586 0.0454 0.3619

R2 0.0093 0.0018

R3 0.0013 0.0002

The p-values without under lines denote the accuracies of LBP-TOP features

are bigger than rs-fMRI data, and the accuracies of rs-fMRI data filtered by a

bandpass filter are bigger than rs-fMRI data not filtered. The underlined p-values

show the inverse relationship. Bold p-values correspond to significant results

(p-value < 0.05). Abbreviations are as follows: AAL, automated anatomical label-

ing template; CC200, spatially constrained parcellation based on rs-fMRI; BF,

rs-fMRI data filtered by a bandpass filter (0.009 Hz–0.08 Hz); and non-BF, rs-fMRI

data not filtered by a bandpass filter.

Table 4 | Permutation test of some results in Table 2.

Classifier Parcella�ons Radius DOF9 DOF12 ART

1NN Brain mask
R1 0.01 0.01 0.01
R2 0.01 0.01 0.01
R3 0.01 0.01 0.01

Linear-SVM Brain mask
R1 0.01 0.01 0.01
R2 0.01 0.01 0.01
R3 0.01 0.01 0.01

(A, B) Permutation test of classifiers based on LBP-TOP features 

Classifier Parcella�ons Non-BF BF

1NN
AAL 0.03 0.01

CC200 0.03 0.04

Linear- SVM
AAL 0.03 0.01

CC200 0.01 0.01

(C, D) Permutation test of classifiers based on simple rs-fMRI features

The p-values are calculated over 100 randomized sets of each test. The error of

each set was estimated by same 10-fold cross-validation of data. Bold p-values

correspond to significant results (p-value < 0.05).

LBP-TOP features show more significant than approaches based
on rs-fMRI data.

FEATURE SELECTION
The feature selection results with the ART non-linear registra-
tion methods are shown in Table 5. When introducing spatial
context information (the AAL and CC200 parcellations), only a
few features are needed to build a sufficiently accurate classifica-
tion model. In most cases, using the same number of features but
combining features from all the radii of LBP-TOP (R1+R2+R3)
improves the accuracy of the resulting model. After combining
all features based on different parcellations and various radii,
we achieved a model with greater accuracy compared with the
AAL or CC200 parcellations alone. However, the accuracy of
the combined model did not surpass that of the model based

Frontiers in Systems Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 66 | 8

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Chang et al. ADHD classification by brain MRI

Table 5 | ADHD-TDC classification results using LBP-TOP based on the ART non-linear registration method.

0.5

0.6

0.7
Parcella�ons Radius 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Brain mask R1 0.5206 0.5894 0.5872 0.6330 0.6216 0.6376 0.6261 0.6376 0.6514 (177 features)

R2 0.5206 0.6124 0.6239 0.6399 0.6284 0.6261 0.6307 0.6284 0.6651 (177 features)

R3 0.5206 0.5734 0.5505 0.6170 0.6216 0.6307 0.6422 0.6514 0.6583 (177 features)

R1+2+3 0.5183 0.5734 0.6078 0.5917 0.6170 0.6307 0.6147 0.6330 0.6514 0.6583 0.6491 (531 features)

AAL R1 0.5161 0.5596 0.5642 0.5963 0.5894 0.5917 0.5734 0.6284 0.5642 0.5688 0.5734 0.5803 0.6009 0.6261
R2 0.5161 0.5780 0.6032 0.5849 0.5963 0.5917 0.6261 0.6170 0.5872 0.6101 0.6170 0.6170 0.6193 0.6170
R3 0.5161 0.5252 0.5642 0.5459 0.5482 0.5528 0.5826 0.5849 0.5894 0.6124 0.5894 0.5986 0.6307 0.6261

R1+2+3 0.5000 0.5413 0.5206 0.5436 0.5872 0.5963 0.6147 0.6101 0.6261 0.6399 0.6606 0.6491 0.6422 0.6353
CC200 R1 0.5161 0.5115 0.5413 0.5642 0.5757 0.5963 0.5940 0.6078 0.5780 0.6239 0.6055 0.5826 0.5894 0.5917

R2 0.5206 0.5849 0.5917 0.5803 0.6009 0.5963 0.6032 0.5872 0.5711 0.6170 0.5894 0.5757 0.6170 0.6376
R3 0.5161 0.5229 0.5596 0.5459 0.5367 0.5367 0.5619 0.5711 0.5711 0.6147 0.6078 0.6032 0.6239 0.6147

R1+2+3 0.5161 0.5298 0.5528 0.5803 0.6124 0.6101 0.6009 0.5711 0.6147 0.6445 0.6147 0.6353 0.6376 0.6330
0.5229 0.5275 0.5298 0.5596 0.5803 0.5986 0.6330 0.6078 0.6422 0.6399 0.6193 0.6606 0.6628 0.6560All combine

Features

The highest accuracy for each parcellation is denoted by the bold number. The highest accuracy for each row is underlined. R1, R2, and R3 denote the LBP-TOP

radii in mm. R1 + R2 + R3 denote the combination of all features from R1, R2, and R3. All combine denotes the combination of all features from different

parcellations (i.e., brain mask, AAL, and CC200) and various radii. Other abbreviations are as follows: AAL, automated anatomical labeling template; and CC200,

spatially constrained parcellation based on rs-fMRI.

on the histogram of the whole-brain region. Figure 7 shows the
test results from using different feature groups based on AAL
parcellation.

RESOLUTIONS OF BRAIN IMAGES
Table 6 shows the accuracy of models based on various brain
image resolutions. Models utilizing higher resolutions usually
had better accuracy. However, models based on the CC200
parcellation had greater accuracy when using 3 × 3 × 3 mm
resolution. Nevertheless, higher resolution data generally pro-
vided more information for the discrimination of ADHD from
TDC subjects.

TISSUE TYPES
To determine the most discriminative tissue type within the brain,
models based on GM, WM, and CSF probability maps were
tested. These results are shown in Table 7. In most cases, the
structural differences found in the GM data provided the highest
discriminative power for separating ADHD from TDC subjects.
The McNemar’s test between different tissue types do not show
significant difference while using whole brain and AAL parcella-
tions, but show significant difference in some cases using CC200
parcellations (Table S6).

DISCUSSION
The prevalence of ADHD around the world is highly heteroge-
neous. Polanczyk et al. (2007) have shown that this variability
may be explained primarily by the use of differing ADHD diag-
nostic criteria and collateral sources of information. Additionally,
geographic location also plays a role in the variability of ADHD
prevalence around the world (Faraone et al., 2003; Polanczyk
et al., 2007).

Based on the research of Polanczyk et al., estimations of ADHD
prevalence rates using the DSM-III-R or ICD-10 criteria are sig-
nificantly lower than when using other criteria, such as those of
the DSM-IV. Additionally, the use of different collateral sources of

information, such as parents, teachers, subjects, the best-estimate
procedure, the “and rule (parent and teacher),” or the “or rule
(parent or teacher),” can also significantly affect the estimate of
ADHD (Polanczyk et al., 2007).

The ADHD-200 global competition dataset was pooled from
research sites all over the world. The organizers of the compe-
tition went to great lengths to maintain the consistency of the
dataset. Nevertheless, for various historical reasons, including the
use of different benchmarks at each site, it is difficult to use the
same procedure to diagnose ADHD around the world (Table 1).
However, the worldwide diagnosis of ADHD reflects an objective
reality from which ADHD classification models can be built and
evaluated.

While constructing classification models based on machine
learning approaches, the inconsistency of diagnostic criteria may
introduce so-called class label noise, which may seriously dimin-
ish accuracy. Class label noise may be the most important con-
tributor to low accuracy in the ADHD-200 Global Competition.

While constructing our ADHD diagnostic tool based on
brain images, we found it difficult to compare the rs-fMRI data
from different research sites due to differences in image reso-
lution, slice thickness, time points utilized, and image quality.
Moreover, the complex preprocessing steps of fMRI data analy-
sis also introduce hardships that can affect the results. Finding
the optimal preprocessing strategy to provide the most use-
ful information for building a classifier is a time-consuming
process. Therefore, we chose anatomical data rather than rs-
fMRI data to mine useful information from brain morphological
changes. The resulting classification model based on morpho-
logical changes was found to be competitively accurate in dis-
criminating ADHD from TDC subjects. Our results demonstrate
that using features based on LBP-TOP data to train the linear
SVM can result in greater discriminative power than using fea-
tures based on rs-fMRI data. The resulting accuracies based on
LBP-TOP features are better than those based on rs-fMRI data
(Table 2).
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FIGURE 7 | Feature selection results of ADHD-TDC classification

accuracy based on AAL parcellation and the ART non-linear registration

method. R1, R2, and R3 denote the LBP-TOP radii in mm. R1 + R2 + R3

denotes the combination all features from R1, R2, and R3. All combine refers
to the combination of all features from different parcellations (i.e., brain mask,
AAL, and CC200) and various radii.

Table 6 | Feature selection results of ADHD-TDC classification accuracy of different resolution of source images.

0.5

0.6

0.7
Voxel size Parcella�ons 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Brain mask 0.5183 0.5734 0.6078 0.5917 0.6170 0.6307 0.6147 0.6330 0.6514 0.6583 0.6491 (531 features)

1x1x1 mm AAL 0.5000 0.5413 0.5206 0.5436 0.5872 0.5963 0.6147 0.6101 0.6261 0.6399 0.6606 0.6491 0.6422 0.6353
CC200 0.5161 0.5298 0.5528 0.5803 0.6124 0.6101 0.6009 0.5711 0.6147 0.6445 0.6147 0.6353 0.6376 0.6330

All combine 0.5229 0.5275 0.5298 0.5596 0.5803 0.5986 0.6330 0.6078 0.6422 0.6399 0.6193 0.6606 0.6628 0.6560
Brain mask 0.4839 0.5528 0.5986 0.5803 0.6032 0.6261 0.6353 0.5940 0.6032 0.6124 0.5986 (531 features)

3x3x3 mm AAL 0.4794 0.4931 0.5000 0.4908 0.4954 0.5252 0.5298 0.5321 0.5505 0.5780 0.6170 0.5780 0.6078 0.5963
CC200 0.5092 0.5161 0.4839 0.4679 0.5046 0.5275 0.5183 0.5321 0.6078 0.6284 0.6651 0.6995 0.6972 0.6812

All combine 0.4931 0.4794 0.5206 0.5183 0.5046 0.5275 0.5367 0.5573 0.5619 0.6032 0.6422 0.6743 0.6651 0.6583
Brain mask 0.5000 0.5275 0.5505 0.5734 0.5550 0.5619 0.5803 0.5528 0.5436 0.5367 0.5367 (531 features)

6x6x6 mm AAL 0.4725 0.4725 0.4381 0.5046 0.4794 0.4839 0.5183 0.5367 0.5688 0.6032 0.6468 0.6628 0.6583 0.6330
CC200 0.4839 0.4885 0.4908 0.5046 0.5092 0.5367 0.5596 0.5482 0.5803 0.5826 0.6055 0.5803 0.5986 0.6193

All combine 0.4862 0.4541 0.4771 0.4862 0.4633 0.5206 0.5138 0.5046 0.5390 0.5780 0.5963 0.5940 0.6353 0.6491

Features

All parcellation (i.e., brain mask, AAL, CC200) results were built by combining LBP-TOP features with R1+R2+R3 and the ART non-linear registration method. All

combine denotes the combination of all features from different parcellations (i.e., brain mask, AAL, and CC200) and various radii. The highest accuracy for each

resolution is denoted by the bold number. The highest accuracy for each row is underlined. Other abbreviations are as follows: AAL, automated anatomical labeling

template; and CC200, spatially constrained parcellation based on rs-fMRI.

ROBUST TO REGISTRATION METHOD
The robustness of the registration methods when using LBP-TOP
features with ADHD data is notable. Although the model based
on the ART non-linear registration method proved to be the most
accurate, the models based on linear registrations (FLIRT with
9-DOF and 12-DOF) also performed well in our tests (Table 2).
This finding demonstrates the stability of the LBP-TOP to reg-
istration methods. Due to the large interindividual variability of
the human brain, the registration step of MRI brain data analysis
is both critical and challenging (Uylings et al., 2005). Aside from

the linear registration method, more than a dozen non-linear
registration methods have been developed in recent years, but
a perfect registration method does not yet exist (Klein et al.,
2009).

However, after performing a perfect registration, no structural
differences should exist between subjects. Therefore, a good index
for morphological changes should not be based on perfect non-
linear registration methods. This property of LBP-TOP might
provide a simple and efficient way to compare brain morphology
with linearly registered brains.
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Table 7 | The ADHD-TDC classification accuracy of models based on

the probability map of different brain tissues using the ART

non-linear registration method.

0.5

0.6

0.7
Parcella�ons Radius Features CSF WM GM Whole brain

Brain mask R1 177 0.6583 0.6009 0.6330 0.6514
R2 177 0.6399 0.6261 0.6330 0.6651
R3 177 0.6376 0.5986 0.5963 0.6583

AAL R1 20,532 0.6307 0.6147 0.6307 0.6537
R2 20,532 0.6307 0.6353 0.6353 0.6239
R3 20,532 0.6445 0.6284 0.6537 0.6537

CC200 R1 33,630 0.6239 0.6193 0.6560 0.6239
R2 33,630 0.6353 0.6376 0.6720 0.6537
R3 33,630 0.6399 0.6330 0.6674 0.6697

The highest accuracy obtained for each resolution is noted in bold. The highest

accuracy for each row is underlined. Abbreviations are as follows: R1, R2, and

R3, the LBP-TOP radii in mm; AAL, automated anatomical labeling template; and

CC200, a spatially constrained parcellation based on rs-fMRI.

GLOBAL EFFECTS OF ADHD?
To introduce different spatial context information, we utilized
several parcellation strategies in this study. Unexpectedly, the
models using only the distribution of whole-brain features usu-
ally demonstrated the highest accuracy in our tests (Tables 2, 3,
and 4). Adding parcellation information did not improve the
resulting models.

Our results imply that morphological changes in the ADHD
brain may affect the whole-brain texture distribution. Further
research should be performed to confirm these findings.
Theoretically, introducing spatial context information can pro-
vide higher accuracy if there are significant structural brain
changes in several brain regions. Published structural imaging
studies, summarized in two meta-analyses (Valera et al., 2007;
Ellison-Wright et al., 2008), have failed to find robust brain
changes between ADHD and control subjects. Meta-analyses can
help in identifying brain regions that may be the most abnor-
mal in ADHD subjects. However, it is difficult to build a robust
discriminative model of ADHD based only on such selected
regions.

COMBINING MODELS USING FEATURE SELECTION
Consider the results of 1 NN and linear-SVM in Table 2. 1 NN
uses features as they have same weights, whereas the linear-SVM
assigns various weights to them. The results might imply that,
with linear registration, use all features with same weight (1 NN)
cannot provide good results. However, we can make some features
more important to make a better classifier (linear-SVM). Only
few features might be needed to build a sufficient good classifier
in this problem.

To find the most important features and to improve the
robustness and efficiency of our model, we used linear-SVM to
rank the overall extracted features, and we made an effort to
choose the most important features from which to build a bet-
ter classification model. Moreover, using the feature selection
method, we combined models from different point of view to
construct a more general model. The results of our tests show that
it is useful to combine features to build better models (Tables 5
and 6). Moreover, we only need few features to build sufficient

good classifiers (Table 5). To build a simpler and more robust
model, we combined different LBP-TOP features to provide bet-
ter accuracy. However, when dealing with too many features,
the over-fitting effect came into play due to the insufficient
number of subjects in this study (436 subjects). In most cases,
greater accuracy was not gained by combining more than 4096
features.

MOST DISCRIMINATIVE TISSUE
To determine the most useful brain tissue for discriminating
ADHD from TDC subjects, models based on GM, WM, and
CSF probability maps were tested. These results are shown in
Table 7. In most cases, GM-based structural difference provided
the greatest discriminative power.

LBP-TOP extracted morphological data based on the distribu-
tion of various curvatures, edges, dots, corners, and the content
size of the specific region (Figure 2). Most of this information
may come from the complex patterns of cortical folding, which
essentially dominates GM morphology. Therefore, we suggest that
the primary morphological information utilized by our model
may come from gyrification patterns. Wolosin et al. have previ-
ously shown different folding indices for ADHD compared with
control subjects (Wolosin et al., 2009).

CONCLUSIONS
In this study, we approached the ADHD classification problem by
working to find a simple method that could provide sufficient dis-
criminative power. We determined that information derived from
texture analysis of brain morphology could be used to distinguish
ADHD from TDC subjects. An approach based on structural
images is simpler than one based on functional data, and the
data are easier to obtain making such an approach potentially
more useful in the clinical environment. Our results demonstrate
that structural brain data may be another treasure-trove in the
ADHD-200 global competition dataset.

Although the accuracy of the models presented in this study
are far from being useful clinically, texture difference-based fea-
ture extraction may point the way toward a simple and effi-
cient method for determining morphological brain changes. We
have demonstrated that LBP-TOP is a good candidate to build
a discriminative classification model based on structural brain
changes.
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Table S1 | Summary of the ADHD and TDC subjects used in this

study. Abbreviations are as follows: TDC, typically developing children;

KKI, the Kennedy Krieger Institute; NeuroIMAGE, the NeuroIMAGE

sample; NYU, the New York University Child Study Center; OHSU,
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Oregon Health and Science University; Peking_1, Peking_2, and

Peking_3, Peking University; and Pittsburgh, the University of Pittsburgh.

Table S2 | The age distribution of subjects used in this study. TDC,

typically developing children.

Table S3 | List of all subjects. Abbreviations are as follows: dx, diagnosis;

0, typically developing children (TDC); 1, ADHD combined-type; 3, ADHD

inattentive-type; KKI, the Kennedy Krieger Institute; NeuroIMAGE, the

NeuroIMAGE sample; NYU, the New York University Child Study Center;

OHSU, Oregon Health and Science University; Peking_1, Peking_2, and

Peking_3, Peking University; and Pittsburgh, the University of

Pittsburgh.

Table S4 | p-values of McNemar’s test of 1NN models and linear-SVM

models based on LBP-TOP features between different radii (R1, R2,

R3). The p-values without under lines denote the accuracies of R3 are

bigger than R2, the accuracies of R3 are bigger than R1, and the

accuracies of R2 are bigger than R2. The underlined p-values show the

inverse relationship. Bold p-values correspond to significant results

(p-value < 0.05). DOF9, and DOF12, linear registration with 9, and 12

degree of freedom, respectively; ART, non-linear registration performed

by Automated Registration Tool; AAL, automated anatomical labeling

template; and CC200, spatially constrained parcellation based on

rs-fMRI.

Table S5 | p-values of McNemar’s test of 1NN models and linear-SVM

models based on LBP-TOP features between different registrations.

The p-values without under lines denote the accuracies of ART are bigger

than DOF9, the accuracies of ART are bigger than DOF12, and the

accuracies of DOF12 are bigger than DOF9. The underlined p-values show

the inverse relationship. Bold p-values correspond to significant results

(p-value < 0.05). DOF9, and DOF12, linear registration with 9, and 12

degree of freedom, respectively; ART, non-linear registration performed

by Automated Registration Tool; AAL, automated anatomical labeling

template; and CC200, spatially constrained parcellation based on rs-fMRI.

Table S6 | p-values of McNemar’s test of results in Table 6. The

p-values without under lines denote the accuracies of GM are bigger than

CSF and the accuracies of GM are bigger than WM. The underlined

p-values show the inverse relationship. Bold p-values correspond to

significant results (p-value < 0.05). DOF9, and DOF12, linear registration

with 9, and 12 degree of freedom, respectively; ART, non-linear

registration performed by Automated Registration Tool; AAL, automated

anatomical labeling template; and CC200, spatially constrained

parcellation based on rs-fMRI.
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