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Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting
children. In this work, we investigate the automatic classification of ADHD subjects using
the resting state functional magnetic resonance imaging (fMRI) sequences of the brain.
We show that brain can be modeled as a functional network, and certain properties of
the networks differ in ADHD subjects from control subjects. We compute the pairwise
correlation of brain voxels’ activity over the time frame of the experimental protocol
which helps to model the function of a brain as a network. Different network features
are computed for each of the voxels constructing the network. The concatenation of
the network features of all the voxels in a brain serves as the feature vector. Feature
vectors from a set of subjects are then used to train a PCA-LDA (principal component
analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related
differences lie in some specific regions of brain and using features only from those regions
are sufficient to discriminate ADHD and control subjects. We propose a method to create a
brain mask which includes the useful regions only and demonstrate that using the feature
from the masked regions improves classification accuracy on the test data set. We train
our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for
the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically
the maps that represent the frequency of participation of voxels in network cycles of
length 3. The best classification performance (69.59%) is achieved using 3-cycle map
features with masking. Our proposed approach holds promise in being able to diagnose
and understand the disorder.
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1. INTRODUCTION
Attention Deficit Hyperactivity Disorder (ADHD) is a common
behavioral disorder affecting children. Approximately 3–5% of
school aged children are diagnosed with ADHD. Currently, no
well-known biological measure exists to diagnose ADHD. Instead
doctors rely on behavioral symptoms to identify it. To understand
the cause of the disorder more fundamentally, researchers are
using new structural and functional imaging tools like MRI and
functional magnetic resonance imaging (fMRI). fMRI has been
widely used to study the functioning of brain. It provides high
quality visualization of spatio-temporal activity within a brain,
which can be used to compare the functioning of normal brains
against those with disorders.

fMRI has been used for different functional studies of brain.
Some of the researchers have used task-related fMRI data, in
which the test subjects perform conscious tasks depending on
the input stimuli. Others used resting state brain fMRI data. The
brain remains active even during rest, when it is not engaged
in an attentive task. Raichle et al. (2001) identified several brain
areas such as the medial prefrontal cortex (MPFC), posterior cin-
gulate cortex (PCC), and precuneus that are active during rest.
These areas form part of a functional network known as the

resting-state network or default mode network (DMN) (Greicius
et al., 2004; Damoiseaux et al., 2006). The literature (Greicius
et al., 2004; Cherkassky et al., 2006; Damoiseaux et al., 2006)
tends to use interchangeably the concepts of resting state brain
networks and the DMN as defined by Raichle et al. (2001). We
compare the brain regions that we have found in the current
ADHD data set with the components of the DMN described by
Raichle et al. (2001). It is believed that the DMN may be respon-
sible for synchronizing all parts of the brain’s activity; disruptions
to this network may cause a number of complex brain disor-
ders (Raichle, 2010). Researchers have studied neural substrates
relevant to ADHD related behaviors, such as attention lapses,
and identified the DMN as the key areas to better understand
the problem (Weissman et al., 2006). In this study we use the
resting state brain fMRI data and hypothesize that the differ-
ences between ADHD conditioned and control brains lie in the
variation of functional connections of DMN.

Many studies have been performed to identify functional dif-
ferences related to ADHD. Most of the approaches use group
label analysis to deduce the statistical differences between ADHD
conditioned and control groups. Structural MRI analysis sug-
gests that there are abnormalities in ADHD brains, specifically
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in the frontal lobes, basal ganglia, parietal lobe, occipital lobe,
and cerebellum (Castellanos et al., 1996; Overmeyer et al., 2001;
Sowell et al., 2003; Seidman et al., 2006). In another set of studies,
ADHD brains were analyzed using task-related fMRI data. Bush
et al. (1999) found significant low activity in the anterior cingulate
cortex when ADHD subjects were asked to perform the Counting
Stroop during fMRI. Durston (2003) showed that ADHD condi-
tioned children have difficulty performing the go/nogo task and
display decreased activity in the frontostriatal regions. Teicher
et al. (2000) demonstrated that boys with ADHD have higher T2
relaxation time in the putamen which is directly connected to a
child’s capacity to sit still. A third set of work was done using
the resting state brain fMRI to locate any abnormalities in the
DMN. Castellanos et al. (2008) performed Generalized Linear
Model based regression analysis on the whole brain with respect
to three frontal foci of DMN, and found low negative correlated
activity in precuneus/anterior cingulate cortex in ADHD subjects.
Tian et al. (2006) found functional abnormalities in the dor-
sal anterior cingulate cortex; Cao et al. (2006) showed decreased
regional homogeneity in the frontal-striatal-cerebellar circuits,
but increased regional homogeneity in the occipital cortex among
boys with ADHD. Zang et al. (2007) verified decreased amplitude
of low-frequency fluctuation (ALFF) in the right inferior frontal
cortex, left sensorimotor cortex, bilateral cerebellum, and the ver-
mis, as well as increased ALFF in the right anterior cingulate
cortex, left sensorimotor cortex, and bilateral brainstem.

While group level analysis can suggest statistical differences
between two groups, it may not be that useful for clinical diag-
nosis at the individual level. There have been relatively few
investigations at the individual level of classification of the ADHD
subjects. One such study is performed by Zhu et al. (2008) who
used a PCA-LDA (principal component analysis-linear discrim-
inant analysis) based classifier to separate ADHD and control
subjects at individual level. Unlike our network connectivity fea-
ture, which can connect all the synchronous regions of the whole
brain, they used a regional homogeneity based feature for classifi-
cation. Also the experiments were performed on only 20 subjects,
which are not conclusive.

Our algorithm exploits the topological differences between the
functional networks of the ADHD and controlled brains. The dif-
ferent steps of our approach are described in the Figure 1. The
input to our algorithm is brain fMRI sequences of the subjects.

fMRI data can be viewed as a 4-D video such that the 3-D volume
of the brain is divided into small voxels and imaged for a certain
duration . The data can also be viewed as a time series of intensity
values for each of the voxels. The correlation of these intensity
time-series can be an indication of how synchronous the activi-
ties of two voxels are, and higher correlation values suggest that
two voxels are working in synchronization. A functional network
structure is generated for the brain of each of the subjects under
study by computing the correlations for all possible pairs of vox-
els and establishing a connections between any pairs of voxels
if their correlation value is sufficiently high. Different network
features, such as degree maps, cycle maps, and weight maps are
computed from the network to capture topological differences
between ADHD and control subjects. We have provided a detailed
description of all the network features in the later sections of the
article. A brain mask is computed that includes only the regions
with useful information to classify ADHD and control subjects.
For the rest of the article, we refer to this mask as a “useful region
mask.” The details of the useful region mask computation pro-
cedure are described in section 2.2. Finally, the network features
from the voxels within the useful region mask are extracted to
train a PCA-LDA based classifier. We have tested the performance
of each of the network features computed on the training data set
from the Kennedy Krieger Institute (KKI). We selected two differ-
ent kinds of network features, degree map and 3-cycle map, for
the experiments on the full data set.

In our work, we have performed experiments on a large chal-
lenging data set which includes subjects from different races, age
groups, and data capturing sites. We propose a new approach for
the automatic classification of ADHD subjects, and believe that
our work will be helpful to the medical imaging community.

2. MATERIALS AND METHODS
2.1. DATA
We use the data provided by the Neuro Bureau for the ADHD
200 competition which consists of 776 training subjects and 197
test subjects. Eight different centers contributed to the compi-
lation of the whole data set, which makes the data diverse as
well as complex. Different phenotypic information, such as age,
gender, handedness, and IQ, is also provided for each subject.
Consider Table 1 for an overview of the data set. All research
conducted by ADHD-200 data contributing sites was conducted
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FIGURE 1 | Overview of our approach. Compute an N × N correlation
matrix (N is the number of voxels) using fMRI data; compute the
adjacency matrix by thresholding the low correlation values to generate a
network; compute network features such as node degree and cycle count

for each node of the network; generate a mask for the brain regions which
are believed to be most effective for classification; extract feature values
within the generated brain mask and classify subjects using the PCA-LDA
classifier.
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Table 1 | Summary of the data set released for ADHD-200 competition.

Center Sub Cnt Age (years) Male Female Control Combined Hyperactive Inattentive

TRAINING DATA SET

Kennedy Krieger Institute 83 8 − 13 46 37 61 16 1 5

Neuro Image Sample 48 11 − 22 31 17 23 18 6 1

New York University 222 7 − 18 145 77 99 77 2 44

Oregon Health and Science University 79 7 − 12 43 36 42 23 2 12

Peking University 152 8 − 17 102 50 93 22 0 37

University of Pittsburg 89 10 − 20 46 43 89 0 0 0

Washington University in St. Louis 61 7 − 22 33 28 61 0 0 0

TEST DATA SET

Kennedy Krieger Institute 11 8 − 12 10 1 8 3 0 0

Neuro Image Sample 25 13 − 26 12 13 14 11 0 0

New York University 41 7 − 17 28 13 12 22 0 7

Oregon Health and Science University 34 7 − 12 17 17 27 5 1 1

Peking University 51 8 − 15 32 19 27 9 1 14

University of Pittsburg 9 14 − 17 7 2 5 0 0 4

Brown University 26 8 − 18 9 17 − − − −

A total of eight centers contributed to the data. The labels of the Brown University test set are not yet released.

with local IRB approval, and contributed in compliance with local
IRB protocols. In compliance with HIPAA Privacy Rules, all data
used for the experiments of this article is fully anonymized. The
competition organizers made sure that the 18 patient identifiers
are removed, as well as face information.

For all our experiments we have used preprocessed resting
state fMRI data registered in a 4 × 4 × 4 mm voxel resolution
Montreal Neurological Institute (MNI) space, with nuisance
variance removed, filtered using a bandpass filter (0.009 Hz <f
<0.08 Hz) and blurred with a 6-mm FWHM Gaussian filter. All
the fMRI scans are motion corrected to the first image of the
time series. We have used a binary mask, provided with each of
the subjects, to find out the voxels inside the brain volume. All
the fMRI data volumes are of size 49 × 58 × 47 voxels, but the
number of sample across the time vary based on the center where
data is captured. Further information regarding the data and the
preprocessing steps is provided in NITRC (2011).

Though no quality control is performed on the data, a qual-
ity score is provided with each image file of all the subjects. The
voxel-wise z-scores are thresholded and summed over all the vox-
els to compute the quality score of a image file. Images with low
scores are considered to be better. We have not considered the
quality scores for our study.

2.2. METHOD
Network motifs such as node degree distribution, cycle, etc. are
analyzed in different disciplines of science to understand the sys-
tems being studied and neuroscience is not an exception (Milo
et al., 2002; Ma’ayan et al., 2008; Sporns, 2002). We used dif-
ferent graph theoretic concepts for our study. We assume that
the activity of a brain can be modeled as a functional network
where the voxels are considered as the nodes, which are con-
nected with each other based on the similarity of their activity
over the time domain. In this article we have used the terms
voxel and node interchangeably for the same meaning. The time

series of a node is represented as a bold face notation. As the
first step of the algorithm, we extract the time series for all the
voxels and reorganized it as a separate 2-D matrix for each of
the subjects in the data set. This is illustrated in second step of
Figure 1. Next, the correlation between all possible voxel pairs is
computed. If a subject contains N number of voxels, a correla-
tion matrix of size N × N is constructed, where the ith row of
the matrix corresponds to the pairwise correlation values of the
ith voxel with all other voxels within the anatomical mask of the
subject.

For any two voxels, if the time series are u and v, respectively,
the correlation can be computed as,
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where T is the length of the time series, u = [u1, u2, ..., uT],
v = [v1, v2, ..., vT].

We normalize all the time series between [−1, 1] before cor-
relation computation. Next, we threshold all the values of the
correlation matrix to get a binary map of zeros and ones. This
binary map can be considered as the adjacency matrix of a graph
where the ith voxel is connected to all the voxels for which non-
zero values are present in the ith row of the matrix. Note that we
can consider two voxels to be connected by an edge when the cor-
relation is high positive, high negative or simply the absolute value
of the correlation is high. We have computed three different net-
works considering high positive, high negative, and high absolute
correlation values, respectively.
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2.2.1. Network feature computation
Once the graphs are constructed, for each subject of the data set,
we compute different network features which can provide certain
functional differences between the activity patterns of ADHD and
control subjects’ brain. The feature values from all the voxels of a
network construct the feature map such as degree map, cycle map,
etc. The descriptions of different network features computed are
given below.

2.2.1.1. Degree. For each node in a network, the degree is the
count of the other nodes it is connected to. In other words, the
degree of a node is the number of edges attached to it.

2.2.1.2. Varying distance degree. Instead of considering the
count of all the edges of a node as its degree, we group the
edges based on their physical length and compute a separate
degree for each of the groups. So, if we have n threshold val-
ues for edge length, say {l1, l2, ..., ln}, we can compute n degrees,
{d1, d2, ..., dn}, of a node v, where di is the count of all the edges
connected to v with length between li−1 to li. Refer to the Figure 2
for details. We use the Euclidian distance measure for the calcula-
tion of edge length. For the experiments, we have used threshold
values 20, 40, and 80 mm. where the average brain volume is
approximately of size 172 × 140 × 140 mm. Hence, we get 4◦ per
node which count edges of length 0–20, 20–40, 40–80, and greater
than 88 mm, respectively. The thresholds are selected through an
intuitive basis such that different degrees should capture local to
global connectivity pattern. The average percentage of degrees
from close to far range are found as 70.44%, 16.54%, 8.40%,
and 4.62%.

2.2.1.3. L-cycle count. A path in a network is a sequence of dis-
tinct nodes which can be traversed in the given order using the
connecting edges. A cycle, on the other hand, is a closed path
in the network where the starting and ending node is the same
and all other nodes are distinct. The L-cycle count of a node
is the number of all possible distinct L length cycles containing

l1

l2l3

A

4

1

2

3

5

6

B

FIGURE 2 | (A) The degree of the node, highlighted in yellow, is the count
of all the green nodes connected to it (i.e., 8), while the varying distance
degree is the counts of all the connected nodes in each of the bins defined
by the three edge length thresholds (l1, l2, l3) marked in blue. In this
example the varying distance degrees of the yellow node are {4, 2, 2}.
(B) Shows all the distinct 3-cycles that containing the node 3.

the node. Figure 2 illustrates this idea. L-cycle count for a node
is calculated by traversing through all the L-length path starting
from the node and counting the paths which leads to the start-
ing node. The traversing can be performed using the breadth first
search algorithm. We have used different cycle lengths for our
experiments.

2.2.1.4. Weight sum. Instead of constructing an adjacency
matrix using a threshold on the correlation values, we assume
every node is connected to all other nodes by the weighted edges.
The weight of the connecting edge of a node pair is their correla-
tion value. As the correlation values can be positive and negative,
we can separately add up all the positive, negative and absolute
edge weights of a node to get its sum of positive, negative and
absolute weights.

2.2.2. PCA-LDA classification
Once we finish computation of the network features, we extract
the features from all of the voxels within the useful region mask.
The mask generation algorithm is described in the next subsec-
tion. Concatenation of the feature values extracted from all the
voxels generates a feature vector per subject. A PCA-LDA based
classifier is trained separately using different set of feature vec-
tors computed for different types of network features. Finally,
the classifier is used for automatic classification of the ADHD
subjects.

It is expected that the characteristics of the networks com-
puted are represented by their feature vectors. A feature vector
of a network represents a point in the feature space where the
dimensionality of the space is same as the length of the vector.
If the feature vectors of ADHD and control subjects are separa-
ble then their corresponding points in the feature space should
cluster in different locations. When a classifier is trained, it learns
to partition the feature space in such a way that the feature vec-
tors from each of the groups are ideally clustered in separate
segments. Given a feature vector of a test example, the classifier
can identify which segments of the feature space it belongs to and
classify the test subject accordingly. LDA is a widely used data clas-
sification technique which maximizes the ratio of between-class
variance to the within-class variance to produce maximal separa-
bility. Mathematically, the objective is to maximize the following
function:

J(w) = wTSBw

wTSW w
(2)

where SB and SW are between class and within class scatter matrix,
and can be formulated as follows:

SB =
nA∑
i=1

(
xi

(A) − µ(A))(xi
(A) − µ(A)

)T

+
nC∑
i=1

(
xi

(C) − µ(C))(xi
(C) − µ(C)

)T
(3)

SW =
(
µ(A) − µ(C)

)(
µ(A) − µ(C)

)T
, (4)
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nA and nC are the number of subjects, µ(A) and µ(C) are the
mean feature vectors, xi

A and xi
C are the ith feature vectors of

the ADHD and control group, respectively.
In many cases, the dimension of the feature space becomes

so high that the proper partitioning of the space is difficult. For
example, in our case, the dimension of the feature space is the
number of voxels within the useful region mask which is several
thousands. Again, most of the dimensions do not contain any sig-
nificant data variance. PCA is a procedure to find out a set of
orthogonal directions, called principal components, along which
the variance of the data is maximum. It then projects the data
into the smaller dimensional subspace composed of the principal
components. The classifier can work efficiently on the subspace
which is significantly smaller in dimension than the original fea-
ture space. We use first 40 and first 100 principal components
for the experiments on KKI and full data set, respectively, as they
cover more than 98% of data variance. We have included a plot of
principal component vs. percent of data variance in the supple-
mentary materials. Refer to Abdi and Williams (2010) for details
about PCA.

2.3. USEFUL REGION MASK
Different research studies have proposed several regions of inter-
ests (ROI) for fMRI analysis. These different ROIs vary in size and
number. In some studies they are identified based on the anatom-
ical structure of the brain and in other studies they depend on
the functional responsibility. Tzourio-Mazoyer et al. (2002) iden-
tified the ROIs based on similar functional responses in the brain.
Craddock et al. (2011) generated a homogenous functional con-
nectivity map from resting state fMRI data. Smith et al. (2009)
identified several co-varying functional subnetworks in the rest-
ing state brain. However, it is still unclear which ROIs are the
best for resting state functional connectivity analysis. Also it is
not known if all the ROIs detected by one method are required
for ADHD classification or if the use of a subset of ROIs is more
efficient. To find these answers, we use a novel method to identify
the useful region mask for the classification of ADHD and control
subjects. The algorithm for the useful region mask generation is
as follows:

Step 1 For each of the subjects, used for mask generation algo-
rithm, we do the following:

• Divide the brain volume into small cube-shaped
regions. Each of the regions is typically 5 × 5 × 5 voxels
except the regions at the boundary of the brain volume.

• Select a random subset of the regions. We include each
region in the subset with probability p.

• Generate degree map by extracting the degrees for the
voxels within the selected subset of regions.

Step 2 Train the PCA-LDA based classifier and calculate the
detection accuracy on the test data set.

Step 3 Perform the step 1 and step 2 for m number of times, each
time generating a different random subset, calculating the
detection accuracy and recording it.

Step 4 Choose the random sub sets corresponding to the top
10% of the detection accuracy as the candidates for gen-
erating the useful region mask. We count the occurrence
of each of the regions in all of the candidate sub sets
and normalize the counts between 0 and 1 by divid-
ing it by the number of candidate sub sets. This gives
us the probability of inclusion of each of the regions in
the mask.

Step 5 Finally the useful region mask is generated using a thresh-
old th to prune the regions with low probability.

We experimentally verified that highest detection rate achieved
when p is 0.40 and th is 0.60. The experiment results are included
in the supplementary materials. The value of m was kept as
500 so that the number of iterations should be large enough
but computationally feasible. Figure 3A is an illustration of the
proposed algorithm on a cartoon 2-D slice of a brain while
Figure 3B is the flowchart for the mask generation algorithm.
Note that other network features may also be used in the algo-
rithm but we simply use degree map feature. We assume that
the regions, which are useful for identifying ADHD conditioned
brains, should not vary depending on the feature used for the
detection of the mask. We have tested the idea computing use-
ful region mask using 3-cycle map feature also. We found that
the final detection rates are very similar (check the supplementary
materials).

3. EXPERIMENTS AND RESULTS
First, we verified the performance of each of the network features
computed on a subset of the training data. We used fMRI data
of 83 subjects from the KKI data set. Among the 83 subjects, the
first 44 subjects are used for training and the remaining 39 for
testing. The performances of each of the features is computed
with or without using the useful region mask. The mask is gen-
erated on the KKI training set comprising the first 44 subjects of
the KKI subset and using the algorithm described in section 2.3.
Each time a random subset of regions is selected, the classifica-
tion performance is measured by leave-one-out cross verification,
i.e., take 43 subjects for training and test on the remaining one
subject, repeat the process 44 times, testing each of the 44 sub-
jects one at a time and averaging the correct detection count.
Figure 4 shows the computed mask on different slices of the brain.
Table 2 list the information of the different clusters found in the
useful region mask and the ROIs they are overlapped with. To
empirically select the correlation threshold to be used for our
experiments, we varied it from 0.4 to 0.8 with an increment of
0.1 in every step. In each step, detection rates for different net-
work features are computed on the KKI test set of 39 subjects.
The plots for correlation threshold vs. detection rate are shown
in Figure 5. To generate the plot for the weight map, we com-
pute the sum of the edge weights considering only the edges
which have weights greater than the correlation thresholds used
within that step. Note that the detection rate for each feature is
measured for positive, negative and absolute correlation values.
However, the features computed from the positive correlation val-
ues have always outperformed the other two cases. Hence, we
have not reported the other two cases in the paper. Since for all
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FIGURE 3 | (A) This part of the figure explains the useful region mask
generation algorithm on a single brain slice. The figure is just a graphical
example, not the real data. In actual experiments brain volumes are used
instead of slices and cube regions are used instead of square subdivision
areas. (a) Divide the slice into square regions. (b) Select random sub sets of

square regions marked in dark green. (c) Select the sub sets with top 10% of
detection rate. (d) Generate a probability map based on the regions
occurrence in top 10% subset. (e) Threshold the probability map to produce
the useful region mask. (B) This part shows the flowchart for the mask
generation algorithm.

Z = -60 Z = -37 Z = -18 Z = 6 Z = 70Z = 27 Z = 48

FIGURE 4 | The figure shows different slices to demonstrate the useful region mask computed. The masked regions are highlighted in orange color and
overlaid on the structural images of a sample subject.

Table 2 | Shows list of the clusters and their approximate centers, sizes and standard deviations found using the most useful region mask

algorithm.

ROIs [x, y, z] centers in mm Size in mm3 Standard deviation in mm

x y z

Precuneus cortex [0, −66, 42] 7872 5.4894 6.6435 10.3592

Cingulate gyrus [0, −36, 52]; [0, 6, 42] 13,056 4.5593 11.3751 10.9128

Temporal pole [56, 14, −18] 5312 4.7728 5.5878 5.7664

Superior temporal gyrus [60, −18, −8]; [−60, −20, −4] 3392; 6400 7.1938; 6.6817 9.4413; 11.6393 4.0790; 5.7075

Inferior temporal gyrus [54, −30, −20]; [−60, −48, −10] 1856; 2816 7.6293; 5.4892 6.7262; 8.2390 8.2617; 5.3582

Pre-central gyrus [−6, −22, 62] 8000 16.7226 8.5099 5.2886

Lingual gyrus [6, −64, 4] 19,072 12.5240 11.4946 5.8835

Right amygdala [24, −2, −18] 2176 9.6639 7.3186 7.1020

The coordinates are calculated on the HarvardOxford-cort-maxprob-thr0-1 mm standard atlas provided with the FMRIB Software Library (FSL) 4.1. We list the ROIs

of Harvard–Oxford cortical and subcortical structural Atlases for which more than 50% of the volumes are selected in the useful region mask. Atlas tool of FSL view

is used for this purpose.
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FIGURE 5 | The plots shows how detection rates for different network

features change with correlation threshold. (A) Degree map positive
correlations, (B) degree map negative correlations, (C) degree map absolute

correlations, (D) varying distance degree map positive correlation, (E) 3-cycle
map positive correlation, (F) 4-cycle map positive correlation, and (G) weight
map positive correlation.

Table 3 | Initial test results shows the performance of all the network features computed on the Kennedy Krieger Institute’s data set.

Feature Correlation threshold Performance (%) Performance (%)

using useful region mask without useful region mask

Degree map positive 0.80 76.92 69.23

Degree map negative 0.80 71.79 69.23

Degree map absolute 0.80 74.36 71.79

Varying distance degree map 0.80 76.92 69.23

3-cycle-map 0.80 74.36 71.79

4-cycle-map 0.70 74.36 69.23

Weight map positive 0.80 76.92 69.23

BOW time series histogram - 69.23 66.67

BOW degree map histogram 0.80 69.23 66.67

BOW time series and degree map histogram 0.80 69.23 66.67

Positive, negative and absolute keywords are used to indicate that positive, negative and absolute correlation values are considered for network generation. If any

keyword is not specifically mentioned, then the positive correlation values are used only.

the network features, other than the 4-cycle map, the best per-
formance is consistently achieved when correlation threshold is
0.80, we choose to use this value for all the experiments on the
full data set.

Table 3 summarizes the best performance obtained for each of
the network features and the corresponding correlation thresh-
old values. The performance in the table signifies the percentage
of total number of correct detection (control and ADHD) among
total number of test subjects. Note that for all the features, the
performance without using useful regions mask is lower compare

to when we use the mask. This demonstrate the utility of the
voxel selection through the generated mask. In one of the recent
studies Solmaz et al. used Bag of Word features for automatic
classification of the ADHD subjects (Solmaz et al., 2012). We
used their method for the purpose of comparison of the per-
formances with our method. For our experiments using the Bag
of Words feature, each subject is represented by 75 and 100
bin histograms when we used raw time series and degree map
features, respectively. A third kind of experiment performed by
representing each of the subjects as a concatenation of two types
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of histograms resulting in a 175 bin histogram. The details of
the Bag of Word method are provided in the supplementary
materials.

We perform thorough experiments on the full data set using
positive degree map and positive 3-cycle map features. We trained
our classifier with the full training data, which has 776 sub-
jects from 7 different centers, and test on the 171 subjects from
6 centers released for the ADHD-200 competition. Again, we
compared the performance with and without using the use-
ful region mask. We reused the same mask generated using
first 44 subjects of KKI. It is worth mentioning that the mask
selects 6916 voxels from which features are extracted. The cor-
rect detection rate, specificity and sensitivity for each of the test
centers and for overall centers are reported in Table 4. Since the
subject labels of the Brown University test set have not yet been
released, we cannot compute the performance measures on that
subset.

4. DISCUSSION
We have modeled the brain as a functional network which
is expected to represent the interaction of the different active
regions of the brain. We assumed that ADHD is a problem
caused due to the partial failure of the brain’s communication
network and the affected subjects can be distinguished from
control subjects using the topological differences of their respec-
tive functional networks. To verify the idea, we have extracted
different network features to train a PCA-LDA based automatic
classifier. Figure 6 shows that the average degree map, com-
puted for the ADHD and control subjects of the KKI data
set, is able to capture some difference of connectivity in the
Cingulate Gyrus and the Paracingulate Gyrus regions of brain.
We also proposed that the features from the whole brain are
not required for the classification, but some key areas hold use-
ful information. Our results shows that the inclusion of features
from the whole brain can negatively impact the classification
accuracy. This resulted in a novel algorithm to compute the
useful region mask which helped to improve the classification
performance.

The different network features computed are expected to
capture different characteristics of the functional network. The
degree map and the weight map can capture how densely the
nodes of the network is connected. This can give us a measure
of how synchronously different regions of a brain are interact-
ing. Varying distance degree map, on the other hand, can also
reveal the fact that how the synchronous regions are distributed
over the brain. While degree map only captures pairwise inter-
actions of voxels, it ignores higher-order interactions, such as
among three voxels simultaneously. We know from brain anatomy
that there are such multiply connected brain regions. Hence,
cycle maps offer a different perspective from which a given net-
work may be viewed. The utility of using network motifs such
as cycles to describe networks has been described in Milo et al.
(2002).

Figure 4 and Table 2 presents the ROIs found through our
adaptive labeling technique described in section 2.3. These ROIs
were used in the classification including regions such as the cin-
gulate and precuneus which is consistent with the findings of
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FIGURE 6 | The figure shows average difference of degrees of the control

group from the ADHD group for the voxels within the useful region

mask. The average difference is calculated using the 83 subjects of KKI
training set. The dark red to white color map is used to represents higher

degree of control subjects and blue to green color map is used to show the
opposite. The control group shows higher connectivity in the Cingulate Gyrus
region on slices with Z coordinates 10 and 15 and Paracingulate Gyrus region
on slices with Z coordinates 19 and 23.

Castellanos et al. (2008). The cingulate and precuneus regions
are known to be part of the DMN (Damoiseaux et al., 2006).
Many regions in the Table 2 have also been identified by Assaf
et al. (2010), such as the precuneus, temporal pole, superior tem-
poral gyrus, and pre-central gyrus. Regions in Table 2 that are
consistent with those reported by Uddin et al. (2009) include the
inferior temporal gyrus and lingual gyrus. Interestingly, Table 2
identifies the right amygdala, which did not show up in the anal-
ysis of Castellanos et al. (2008) or Assaf et al. (2010) or Uddin
et al. (2009). The limbic system is known to play a role in ADHD,
and a study by Plessen et al. (2006) reported disrupted con-
nectivity between the amygdala and OFC in the children with
ADHD. Hence the value of our technique is that it provides an
independent and automatic source of hypotheses about the brain
regions that are implicated in the diagnosis and classification of
ADHD. In this sense, our technique for ROI identification can
be considered to be a model-free method. Furthermore, our clas-
sifier is agnostic to any particular theory of ADHD, and works
strictly on a machine-learning approach to separating ADHD
patients from controls by utilizing labeled data. Hence the tech-
nique described in this paper is applicable to other types of brain
disorders where one can create labeled data for the accompanying
brain scans.

The curves in Figure 5 show that for all the network features,
high performance value is achieved when correlation threshold
0.80 is used to construct the network. In four out of seven cases
the performances are the highest, in other two cases they are one
of the highest and in one case it is slightly lower that the highest.
The results are not surprising since they indicate that the differ-
ence of connection structure for highly correlated voxels matters
the most for classification.

Considering the results in Table 4, we observe that in five out
of six data sets, the 3-cycle maps with voxel selection give the
best detection rate. Only on one data set, the Peking data set, the
3-cycle map with voxel selection gives marginally worse perfor-
mance than the degree map with voxel selection. To the best of our
knowledge, this is the first time that the utility of cycle-related fea-
tures has been demonstrated in the fMRI imaging literature. The
study in Ma’ayan et al. (2008) showed that cycle-related features

are useful in discriminating biological networks from man-made
networks, but did not investigate various types of fMRI-derived
networks.

We note that calculating cycle-related features is more com-
putationally intensive than the degree map, and the computation
increases exponentially with cycle length. The use of GPUs can
reduce the cost of computation, as earlier studies with fMRI
images have shown Rao et al. (2011). If standardized libraries for
cycle computation become available on GPU platforms, it will
promote the use of such features in fMRI research.

The use of the degree map provides a good compromise
between classification performance and computational cost. It is
easy to compute, and provides classification performance that is
only marginally worse than that of the 3-cycle maps in most cases.
One limitation of our study is that we have not used any spe-
cific measure to remove different signal to noise ratios which may
be introduced in the data due to the difference of experimental
setups among the sites. Also, some of the recent studies (Power
et al., 2012; Van Dijk et al., 2012) indicate that the correlations of
different brain regions are sensitive to the motion of the head even
though the data is preprocessed for motion correction. We have
not performed any explicit step to counter this problem. Finally,
we note that we used a single classifier, the PCA-LDA method to
investigate the utility of different network features. It is possible
that other classifiers such as neural networks or support vector
machines may give better performance. Such investigations need
to be carried out in the future.
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APPENDIX
Experiments for Finding Best p and th Value
We varied the probability p of including a region in the random
subset and the final threshold th used on the occurrence proba-
bility map of the regions to generate different useful region mask.
Please check the useful region mask generation algorithm in the
section 2.3 of the main article for the details of p and th. For each
pair of values of p and th, we compute a different useful region
mask which is used to generate different detection rates on the
KKI data set. The detection rates are reported in the Figure A1.
The best performance is achieved when p = 0.4 and th = 0.6. We
used these values for the generating the final useful region mask.

The Map of Region Occurrence Probability
In the useful region mask computation algorithm in the section
2.3 of the main article we used top 10% of the random subsets
generated as the candidate subsets for generating the final mask.
We compute the number of occurrence of each of the regions

in the candidates subsets and divide it by the total number of
candidate subsets to generate the region occurrence probability
map. This map is reported in the Figure A2 as per the request of
reviewer 2.

Useful Region Mask Using 3-Cycle Map Feature
We assume that the regions, which are useful for identifying
ADHD conditioned brains, should not vary depending on the fea-
ture used for the detection of the mask. To justify our assumption
we generate another useful region mask on the KKI data set using
3-cycle map features. The mask generated is used to verify the
detection rates on the test data sets released for the ADHD-200
competition. The experiment results are reported in the Table A1.
The detection rates we got using the mask generated with 3-cycle
map features and using the mask generated with positive degree
map features are almost same. This matching results supports our
initial assumption. The Figure A3 shows the mask plotted on the
different slices of a brain.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.2 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 66.6667
0.25 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 71.7949 71.7949 66.6667 69.2308
0.3 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 71.7949 71.7949 71.7949 66.6667 66.6667
0.35 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 71.7949 71.7949 74.359 66.6667 66.6667
0.4 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 71.7949 76.929 74.359 66.6667 66.6667 64.1026
0.45 69.2308 69.2308 69.2308 69.2308 71.7949 69.2308 69.2308 69.2308 74.359 69.2308 71.7949 69.2308 66.6667
0.5 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 69.2308 64.1026 71.7949 71.7949 69.2308 66.6667 64.1026
0.55 69.2308 69.2308 69.2308 71.7949 69.2308 66.6667 69.2308 71.7949 74.359 71.7949 69.2308 66.6667 64.1026
0.6 69.2308 71.7949 71.7949 69.2308 71.7949 66.6667 69.2308 71.7949 69.2308 69.2308 66.6667 69.2308 66.6667
0.65 69.2308 71.7949 69.2308 69.2308 69.2308 66.6667 64.1026 71.7949 71.7949 69.2308 69.2308 64.1026 61.5385
0.7 69.2308 69.2308 69.2308 66.6667 69.2308 74.359 66.6667 69.2308 66.6667 71.7949 66.6667 66.6667 64.1026
0.75 71.7949 69.2308 69.2308 66.6667 69.2308 71.7949 69.2308 66.6667 69.2308 69.2308 71.7949 64.1026 61.5385
0.8 69.2308 69.2308 66.6667 71.7949 69.2308 69.2308 71.7949 69.2308 69.2308 66.6667 69.2308 66.6667 64.1026

Final Threshold th

R
eg

io
n 

Se
le

ct
io

n 
P

ro
ba

bi
li t

y 
p

FIGURE A1 | Different detection results on KKI data set based on different set of values of p and th.
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FIGURE A2 | The region occurrence probability map generated during the useful region mask computation on the KKI data set using positive degree

map features.
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Table A1 | Shows the detection rate of the classification experiments

on the test data set released for the ADHD-200 competition.

Detection rate (%) Specificity Sensitivity

KKI 72.72 1 0

Neuro image 72 57.14 90.91

NYU 70.73 0.8333 0.6552

OHSU 73.52 0.8889 0.1429

Peking 60.78 0.9630 0.1667

Pittsburgh 77.78 1 0.5000

The useful region mask, generated using 3-cycle map features, is used for
identifying the regions to extract the features.

Principal Component and Data Variance Analysis
The Figure A4 show the plots for the number of principal com-
ponents vs. the percentage of the total data variance captured.
For the KKI training data set, the first 40 principal components
are able to capture 99.8% of total data variance while the first
100 principal components of the full training data set are able to
capture 98% of the total data variance.

Bag of Words for ADHD Classification
Bag of Word (BoW) model was first introduced in natural lan-
guage processing. The main idea of BoW is that a document can
be represented by the histogram of the counts of different words
consisting the document. The order of the words or the gram-
mar of the language is immaterial. Again, different documents on
the same topic should share similar histogram pattern while the

patterns of the histograms of the documents on different topics
should differ.

A similar idea is used by Solmaz et al. (2012) for the clas-
sification of ADHD subjects. For the purpose of constructing
vocabulary of the resting state fMRI data, the authors cluster the
time series of the voxels in all the subjects of the training set. This
step groups the similar time series in the same group. The mean
time series for each of the groups construct the vocabulary of the
fMRI data. Hence, we can say that the number of clusters formed
is the number of different words the resting state fMRI data can
have. Now given anytime series of a voxel it can be labeled to the
group number of the closest group. Hence, each subject can be
represented as a histogram of word count based on how many
voxels of the subject belongs to which group. The histogram of
the subjects serves as their feature vector. Now, given a training
and test data set, a classifier can be trained on the histogram of
the training subjects and used to classify the test subjects.

p-Values
The Figure A5 shows the p-values corresponding to the detec-
tion results shown in the Figure A4 of the paper. The p-value of
a classification can be interpreted as the probability that the clas-
sification accuracy can be achieved if the classifier is random. For
example, if m subjects are correctly classified among n test sub-
jects then p-value for the classification would be the probability
of m or more correct detections if classifier detects using ran-
dom chance. The lower the p-value the lower the chance that the
classification is not random.

Slice 5 Slice 10 Slice 15 Slice 20 Slice 25 Slice 30 Slice 35

FIGURE A3 | The figure shows different slices to demonstrate the useful region mask computed using 3-cycle map features. The masked regions are
highlighted in orange color and overlaid on the structural images of a sample subject.
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FIGURE A4 | The figure shows the plots of principal component count vs. percentage of data variance for (A) KKI training data (B) full training data of

776 subjects.
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FIGURE A5 | The plots shows p-values corresponding to the detection

rates for different network features and different correlation

thresholds. (A) Degree map positive correlations, (B) degree map negative

correlations, (C) degree map absolute correlations, (D) varying distance
degree map positive correlation, (E) 3-cycle map positive correlation, (F)

4-cycle map positive correlation, and (G) weight map positive correlation.
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