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The absence of auditory input, particularly during development, causes widespread
changes in the structure and function of the auditory system, extending from peripheral
structures into auditory cortex. In humans, the consequences of these changes are
far-reaching and often include detriments to language acquisition, and associated
psychosocial issues. Much of what is currently known about the nature of deafness-related
changes to auditory structures comes from studies of congenitally deaf or early-deafened
animal models. Fortunately, the mammalian auditory system shows a high degree
of preservation among species, allowing for generalization from these models to the
human auditory system. This review begins with a comparison of common methods
used to obtain deaf animal models, highlighting the specific advantages and anatomical
consequences of each. Some consideration is also given to the effectiveness of methods
used to measure hearing loss during and following deafening procedures. The structural
and functional consequences of congenital and early-onset deafness have been examined
across a variety of mammals. This review attempts to summarize these changes, which
often involve alteration of hair cells and supporting cells in the cochleae, and anatomical
and physiological changes that extend through subcortical structures and into cortex.
The nature of these changes is discussed, and the impacts to neural processing are
addressed. Finally, long-term changes in cortical structures are discussed, with a focus
on the presence or absence of cross-modal plasticity. In addition to being of interest
to our understanding of multisensory processing, these changes also have important
implications for the use of assistive devices such as cochlear implants.
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INTRODUCTION
A profound childhood hearing loss can have widespread, dev-
astating consequences that impact a child and their family for
a lifetime. Perhaps most importantly, hearing loss can prevent
a child from acquiring spoken language, which has a num-
ber of subsequent developmental and psychosocial consequences
(see Möeller, 2007 for review). Fortunately, interventions which
bypass damaged peripheral structures have been developed that
allow for the restoration of auditory input. In fact, if implanted
within a sensitive period for normal development, children with
cochlear implants typically go on to display expressive and recep-
tive language skills similar to those of normal hearing children
by the time they are school-aged (e.g., Svirsky et al., 2004).
However, successful intervention requires that the remaining
auditory structures are of sufficient anatomical integrity, and
functional state. For example, while cochlear implants have
been successfully applied in cases of cochlear degeneration, they
require intact spiral ganglion neurons be present in order to
function.

Much of what we know about the changes to auditory
structures that result from deafness, and how these changes

have informed the design of cochlear prostheses, has come from
studies in animal models. Fortunately, the subcortical auditory
system is highly conserved among mammals (e.g., Glendenning
and Masterton, 1998), such that a number of animal models exist
that can inform our understanding of its structure and function.
Moreover, a number of deaf animal models exist which closely
resemble common morphologies of human disease (e.g., BALB/c
mice, deafness mice, deaf-white cats). However, it is important
to note that changes in the anatomy and function of peripheral
and central auditory structures depend highly upon a number of
factors, including the time of onset of hearing loss and the specific
nature of the impairment. This review aims to address changes
that occur in response to bilateral, congenital or early-onset
deafness. Other forms of deafness (e.g., late-onset, unilateral,
frequency-specific, etc.) are associated with a wide variety of
highly specific changes that are beyond the scope of this paper.
Here we address the most common methods for acquiring deaf
animal models, including some discussion surrounding whether
the methods currently used to evaluate hearing impairment are
sufficient. We then describe anatomical and physiological changes
that occur following deafness, including structures within the
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cochlea, subcortical nuclei, and within auditory cortex. Finally,
we discuss cross-modal reorganization that appears to follow
hearing impairment with some consideration of potential
mechanisms.

DEAFENING METHODS
The breadth and variability of phenotypes, mutations, mecha-
nisms, and pathways associated with heritable deafness in humans
is remarkable (Raviv et al., 2011). Thus, a high degree of vari-
ability in animal models is necessary to begin to understand the
structural and functional changes associated with deafness. As a
result, a number of methods have been used to produce animal
models of profound deafness. While each has unique advan-
tages and limitations, the development of any reliable technique
requires that certain criteria be satisfied. Firstly, to minimize
between-subject differences that might complicate the interpreta-
tion of post-deafening interventions, variability in the outcome of
the procedure within a given species should be minimal. Ideally,
this would include both variability in functional outcomes (i.e.,
threshold elevation), as well as variability in associated pathol-
ogy. While there is some variability in the threshold elevation
required for a deaf model, researchers typically seek models with
ABR thresholds in excess of 80 dB nHL across the frequency
range tested (see the section titled Measuring Deafness for more
on outcome measurement). In order to avoid frequency-specific
complications, any pathology associated with the deafening pro-
cedure should be uniform along the length of the cochlea. Finally,
in order to minimize trauma associated with the procedure, steps
should be taken to ensure the general health of the animal both
during the procedure, and during post-procedural care. Here,
we present a list of techniques that have been successful in gen-
erating animal models of hearing impairment, along with some
commentary on their benefits and shortcomings.

GENETIC MODELS OF HEARING LOSS
Across mammalian species, a number of genes required for nor-
mal cochlear function have been identified. For example, muta-
tions in at least six mouse genes (PAX3, SOX10, MITF, SLUG,
EDN3, and EDNRB) cause hereditary auditory-pigmentary dis-
orders that mimic Waardenburg syndrome in humans (Tachibana
et al., 2003). Transgenic and knock-out mouse strains that over-
or under-express these genes have provided useful models of
heritable conditions relating to inner and outer hair cell dys-
function that result in hearing loss (see Avraham, 2003 for
review). These models allow for examination of the auditory
system in great detail, and help improve our understanding of
how very small-scale anatomical changes are related to hearing
loss. Unfortunately, the genetic heterogeneity of hearing loss in
humans involves hundreds of genes, with the possibility of multi-
ple mutations contributing to disease etiology in any given patient
(see Raviv et al., 2011, for review). Thus, while often related to
hereditary hearing disorders in humans, gene-targeted models
can be overly specific [e.g., a mouse model of the rare X-linked
genetic mutation leading to progressive hearing loss associated
with Norrie Disease (Berger et al., 1996)], such that data from
these animals may not be generalizable to a large population of
people with hearing impairments of varied origins.

Other models take advantage of the high incidence rates of
congenital deafness that have been observed in a number of mam-
malian species. Examples include white minks, which provide
yet another model of deafness associated with Waardenburg syn-
drome (e.g., Sugiura and Hilding, 1970), as well as collies (e.g.,
Lurie, 1948), Dalmatians (e.g., Lurie, 1948; Niparko and Finger,
1997), and deaf white cats (e.g., Bergsma and Brown, 1971), each
of which models congenital deafness associated with the complete
breakdown of cochlear structures often seen in the Scheibe defor-
mity in humans. Across modalities, there is evidence that even a
small amount of patterned sensory input at a very young age can
initiate a cascade of developmental changes that can drastically
alter the subsequent function of sensory systems (e.g., Hubel and
Wiesel, 1970; Chang and Merzenich, 2003). Blocking the audi-
tory canals of hearing animals at an early age provides a model
of deafness associated with malformation of the external ear.
However, this method produces an insufficient model of com-
plete auditory deprivation, as many sounds (particularly those
with low-frequency energy) are still transmitted to the cochlea via
bone conduction (e.g., Popescu and Polley, 2010). Thus, congeni-
tally deaf models are necessary to study the auditory system in the
absence of input. Moreover, models like the congenitally deaf cat
are useful for the study of late onset hearing (e.g., as provided by
a cochlear implant), as the auditory nerve is well-preserved com-
pared to other methods of deafening (Shepherd and Martin, 1995;
Leake et al., 1999).

PHYSICAL DESTRUCTION
A second method of obtaining deaf animal models involves
the physical destruction of cochlear structures. This is typically
accomplished by creating an opening in the cochlea either by
drilling through the cochlear wall (e.g., Sanes et al., 1992; Illing
et al., 1997, 2005; Vale and Sanes, 2002), or by penetrating the
round window (e.g., Tierney et al., 1997). Once exposed, the con-
tents of the cochlea can be ablated using one of a number of
small tools, and aspirated with a hollow glass needle. In the most
extreme cases, the entire cochlea may be crushed with forceps and
the remains aspirated (e.g., Rubio, 2006; Alvarado et al., 2009).
One advantage of physical ablation is that the basilar membrane
can be selectively lesioned, such that degeneration of spiral nerve
fibers is largely restricted to the damaged area (Leake-Jones et al.,
1982). This allows for the generation of models of partial hear-
ing loss. However, the interpretation of pathology associated with
cochlear implantation following physical ablation (Xu et al., 1993)
and the growth of new bone (Leake-Jones et al., 1982) make this
type of model impractical for studies of electrical stimulation of
auditory nerve fibers.

An alternative method of physically ablating cochlear struc-
tures is through exposure to high-intensity sound, often in excess
of 100 dB SPL (e.g., Sullivan et al., 2011). Such exposure can cause
permanent damage to the cochlea that may provide a good model
of frequency-specific hearing loss, such as the high-frequency
impairments common in aging populations. However, the hear-
ing loss produced is highly variable between individual animals
(Bredberg, 1973; Cody and Robertson, 1983), such that the util-
ity of noise-induced hearing loss for deafening animal models is
limited.
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It is also possible to prevent auditory stimuli from reaching
subcortical and cortical auditory structures via bilateral transec-
tion of the auditory nerve. Unfortunately, efforts to completely
transect the auditory nerve often cause inadvertent damage to
adjacent vestibular nerve fibers. Conversely, overly conservative
transections may preserve some auditory fibers, maintaining a
partial representation of the cochlea.

OTOTOXIC DRUG ADMINISTRATION
The final class of methods used to obtain deaf animal models
takes advantage of the ototoxic side-effects of common drugs. For
example, their impressive efficacy and low cost make aminoglyco-
side antibiotics the most widely used class of antibacterial drugs
worldwide (Forge and Schacht, 2000). However, their nephrotoxic
and ototoxic side-effects have been well-documented. While some
of the aminoglycosides (e.g., gentamycin, tobramycin, strepto-
mycin) have been shown to be predominantly vestibulotoxic,
others (e.g., neomycin, kanamycin, amikacin, dihydrostrepto-
mycin) exhibit toxicity primarily within the cochlea. Across a
number of species, the onset of this toxicity has been shown to
be related to the onset of auditory function. For example, both
rats (O’leary and Moore, 1992) and cats (Shepherd and Martin,
1995) receiving ototoxic drug administrations before the onset of
hearing later showed normal auditory thresholds, while animals
treated after the onset of hearing showed profound hearing losses.
There also appears to be a sensitive period following the onset of
hearing, during which animals are particularly sensitive to amino-
glycoside toxicity (Henley and Rybak, 1995; Henley et al., 1996).
During this period [post-natal days 11–16 in the rat (Henley et al.,
1996)], decreased elimination rate constants, and increased half-
lives lead to much higher mean serum aminoglycoside levels in
young animals than in old animals. Thus, ototoxicity is expressed
2–3 times more quickly in these younger animals (Osaka et al.,
1979; Astbury and Read, 1982).

The exact mechanisms involved in aminoglycoside ototoxi-
city are not fully understood. Labeled aminoglycosides appear
first in the stria vascularis (Wang and Steyger, 2009), suggest-
ing that they enter the fluids of the inner ear via strial capillaries,
and subsequently accumulate in hair cells. The point of entry of
aminoglycosides into cochlear hair cells is also not clear. While
there is some suggestion that endocytosis is the primary mecha-
nism (Hashino and Shero, 1995; Richardson et al., 1997), others
advocate for the mechano-electrical transducer channel located
on the stereocilia (Marcotti et al., 2005; Waguespack and Ricci,
2005). Still others suggest transient receptor potential channels
expressed in the cochlea and permissive to aminoglycosides in
renal cells may play a role (see Huth et al., 2011 for review).
Within the hair cells, there is some speculation that mitochon-
dria are the target of aminoglycoside toxicity. A maternally-linked
genetic predisposition to ototoxic susceptibility (Hu et al., 1991)
and the potentiation of toxicity that results from the inhibition
of mitochondrial protein synthesis (Hyde, 1995), suggest that the
drugs target and impair the function of mitochondrial RNA. This
might explain why the toxic effects of aminoglycosides are readily
observed in mitochondria-rich tissues like the organ of Corti.

Regardless of the mechanisms involved, it is clear that ototoxic
aminoglycosides, when administered in sufficient quantity, can

be used to produce deaf animals across a number of mammalian
species. Repeated intramuscular injections of an aminoglycoside
result in bilaterally symmetric hearing loss that progresses from
high to low frequencies (Simmons et al., 1960). The time course
of this hearing loss has been described as biphasic, consisting of
a dramatic reduction in high frequency hearing occurring within
48 h of the first injection, followed by a slow reduction that pro-
ceeds from high to low frequencies over several weeks (Shepherd
and Clark, 1985). While effective, there is considerable variabil-
ity in the extent of cochlear damage between individuals for
any given drug dosage (Leake-Jones et al., 1982). Repeated drug
administrations of this nature are also stressful to the animal, and
time consuming for the experimenter (e.g., the cats deafened by
Shepherd and Clark (1985) first showed profound low-frequency
hearing loss 75 days following drug administration). Finally, the
risk of kidney failure following repeated drug administrations is
significant and thus, renal function must be constantly monitored
during the deafening procedure.

In an effort to circumvent systemic effects, alternative meth-
ods involve aspirating the cochlear lymph, and administering
aminoglycoside antibiotics directly to the cochlea (e.g., Leake-
Jones et al., 1982; Zettel et al., 2003; Asako et al., 2005). This
method causes the rapid-onset of profound hearing loss across
the entire frequency range. While this method may prevent unde-
sirable nephrotoxicity, the degree of destruction in the organ of
Corti is extreme and may limit the types of deafness that can be
modeled in this manner. Moreover, this method is not ideal for
studies of cochlear implant function, as it can result in extensive
fibrous tissue and bone growth within the scala tympani (Sutton
and Miller, 1983).

A promising method for deafening animals involves admin-
istering an aminoglycoside antibiotic in combination with an
infusion of a loop diuretic, such as furosemide or ethacrynic
acid (West et al., 1973). Loop diuretics do not result in perma-
nent ototoxicity when administered in isolation; rather, they are
thought to act on the stria vascularis to reduce the endocochlear
potential, causing a subsequent alteration of the ionic compo-
sition of the endolymph that fills the scala media. Typically, a
single injection of an aminoglycoside is given enough time to
accumulate in the cochlea. A loop diuretic is then infused, and
the animal’s hearing thresholds are either continuously moni-
tored, or periodically monitored, usually via auditory brainstem
responses (ABR). This method produces a rapid and dramatic
bilateral hearing loss in guinea pigs (West et al., 1973; Brummett
et al., 1979) and cats (Xu et al., 1993). Unfortunately, effi-
cacy differs by species, with the same procedure resulting in
only mild hearing loss, and acute renal failure in the macaque
(Shepherd et al., 1994).

MEASURING DEAFNESS
Regardless of the procedure used, successful deafening depends
on valid and reliable methods of measuring the degree of hear-
ing loss achieved. For example, one early method of assessing
deafness that is now rarely used involved producing a loud hand
clap and observing whether an animal responded with reflexive
movement of the pinnae or a startle reflex (Preyer, 1882). While
the absence of Preyer’s reflex has been shown to correlate well
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with profound hearing loss (Jero et al., 2001), the method relied
heavily on subjective measure, and was incapable of distinguish-
ing between conductive and sensorineural hearing loss.

Currently, an overwhelming majority of researchers rely on an
auditory brainstem response (ABR) to define the endpoint of, or
to measure the success of their deafening procedure. ABRs can be
evoked using a variety of auditory stimuli. However, researchers
typically rely on click-evoked ABRs to measure deafness in ani-
mal models (see Figure 1 for an example). While clicks contain
energy across a wide frequency band, click-evoked ABRs are not
equally sensitive to hearing loss across this same range. Rather,
the results of click-evoked ABRs in humans correlate best on aver-
age with audiometric thresholds in the range of 2–4 kHz (Watkins
and Baldwin, 1999). Indeed, Shepherd and Martin (1995) noted
that the click-evoked ABR is not a good predictor of high-
frequency hearing loss in cats; such losses are better revealed
by ABR audiograms that measure thresholds at different pure
tone frequencies. Insensitivity of click-evoked ABRs to high fre-
quency hearing loss is cause for concern when monitoring the
auditory status of humans receiving aminoglycoside antibiotics,
as this class of drugs is known to first impair hair cell function
in the high frequency range (Simmons et al., 1960), and thus,
early signs of hearing loss may be masked. However, when deaf-
ening an animal via ototoxic drug administration, the goal of the
procedure is often profound hearing loss across all frequencies.
Thus, the correlation between low-frequency hearing and click-
evoked ABR results is less troublesome. That being said, pure
tone-evoked ABR provides an alternative method for measur-
ing hearing thresholds across a variety of frequencies, provided

FIGURE 1 | Sample auditory brainstem responses (ABR) from a hearing

cat. Auditory clicks are presented at levels ranging from 80 dB down to
5 dB SPL. Responses represent the average of 1000 presentations, and are
comprised of 5 peaks: wave I is thought to be generated by the peripheral
auditory nerve; wave II by the central auditory nerve; wave III by the
cochlear nucleus; wave IV by the superior olive and lateral lemniscus; and
wave V by the lateral lemniscus and inferior colliculus. Each of these
characteristic peaks shows a reduction in amplitude and an increase in
latency as presentation level decreases. Auditory thresholds are typically
considered to lie somewhere between the presentation level at which no
discernible response is present and the level at which a response is first
elicited (between 20 and 25 dB, respectively, in this example).

that the frequencies chosen represent the extent of the audible
frequency range of the animal in question.

In humans, the click-evoked ABR is a widely used screening
tool for hearing loss in neonates (see Hyde, 2005 for review).
Typically, an automated screening device provides a pass/fail
output with no need for subjective evaluation, but also pro-
duces false-positive rates between 3 and 8% (Barsky-Firkser and
Sun, 1997; Mason and Herrman, 1998; Mehl and Thompson,
1998). Infants who fail this initial screen are referred for further
audiological assessment. In addition to deafness, a number of
disease conditions can result in abnormal ABRs, including pos-
terior fossa tumors, vertebra-vascular pathology, demyelinating
diseases, central nervous system infections, and polyneuropathies
(Thomsen and Tos, 1990). In humans, diagnosis of the cause
of ABR abnormality requires follow-up audiometric testing and
imaging. Fortunately, follow-up measures can be avoided when
using ABR to assess the success of deafening, provided the animal
was shown to have a normal ABR at the onset of the procedure.
When deafening animal models, hearing loss is typically consid-
ered to be complete when waves I through V of the ABR are absent
at stimulus intensities of 80 dB nHL or greater. While this subjec-
tive evaluation may be a cause for concern, the complete absence
of wave I reflects a lack of activity in the auditory nerve (e.g., Starr,
1976) and thus, should be expected to reflect profound hearing
loss throughout the central and peripheral auditory structures.

In sum, the ABR represents a quick and inexpensive method
of monitoring auditory system function during or following
deafening procedures. Click-evoked ABRs may be insensitive to
high-frequency hearing losses that often precede impairment at
lower frequencies in aminoglycoside-induced deafness. However,
when seeking to ensure a profound hearing loss across all frequen-
cies, ABR is well-suited, provided that a baseline ABR is suggestive
of normal hearing status prior to deafening.

EFFECTS OF DEAFNESS ON THE AUDITORY SYSTEM
THE COCHLEA AND COCHLEAR NERVE
The nature of the cochlear damage involved with hearing loss
in animal models differs widely depending on the nature of the
deficit. For example, in the case of mechanical destruction of the
cochlea, the impact to cochlear structures is decidedly depen-
dent on the extent of damage (see Figure 2 for an illustration of
cochlear structures commonly affected). Conversely, the cochlear
damage associated with genetic models of hearing loss is partic-
ular to the specific genes involved. For example, deaf white cats
mimic the Scheibe deformity in humans, presenting with early-
onset, progressive cochleosaccular degeneration and severe sen-
sorineural hearing impairment (Scheibe, 1892). However, the rate
and extent of pathology are widely variable between animals. The
traditionally described course of pathology involves cochleosac-
cular degeneration that begins at the end of the first postnatal
week with the sagging and ultimate collapse of Reissner’s mem-
brane, distortion of the tectorial membrane, and atrophy of the
stria vascularis (Bosher and Hallpike, 1965, 1967; Ryugo et al.,
1997, 1998, 2003). However, additional forms of pathology have
been described involving excessive epithelial growth within the
bony labyrinth either in isolation, or in addition to the collapse
of Reissner’s membrane (Ryugo et al., 2003; Baker et al., 2010).
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FIGURE 2 | A cross-sectional illustration of the cochlea showing the

structures most commonly affected in animal models of deafness. The
etiology of hearing loss depends on the type of model used, and is
described in detail in the section titled The Cochlea and Cochlear Nerve.

In any case, these anatomical changes are typically followed by
hair cell destruction that proceeds from the cochlear base toward
its apex (e.g., Leake et al., 1997; Ryugo et al., 1998), mimicking
the pattern of maturation in the organ of Corti (Pujol and Marty,
1970; Romand and Romand, 1982; Lim and Anniko, 1984). The
extent of cell loss ranges from the basal 20% of the cochlea in cases
of threshold elevation (single unit thresholds in excess of 60 dB
SPL for tones below 10 kHz; Ryugo et al., 1998) to the eventual
complete loss of inner and outer hair cells, as well as supporting
cells along the entire length of the basilar membrane in cases of
complete deafness (Rebillard et al., 1981; Ryugo et al., 1998).

Each inner hair cell of the cochlea has a direct, one-to-one con-
nection with a spherical bushy cell in the cochlear nucleus, via a
type I spiral ganglion neuron (SGN; Sento and Ryugo, 1989). The
number of SGNs is drastically reduced in hearing impaired ani-
mals; the nature of the deficit appears to depend on the degree and
duration of hearing loss, as well as the age at which it occurs. In
animals with congenitally elevated thresholds (Ryugo et al., 1998),
damage is often limited to those cells which innervate the most
basal portion of the cochlea. Short-term deafened adult animals
also show maximal cell loss in basal SGNs (Leake and Hradek,
1988), while animals deafened during development, before the
onset of hearing, present maximal SGN degeneration in a region
approximately 40-60% from the cochlear base (Leake et al., 1991,
1992). Finally, congenitally deaf (Ryugo et al., 1998) and long-
term deafened animals (Shepherd et al., 2004; Hurley et al.,
2007) present with a dramatic reduction in SGNs throughout the
entirety of the cochlea. The process of SGN loss begins with the
loss of unmyelinated peripheral processes in the organ of Corti,
followed by a gradual degeneration of myelinated processes in
the spiral lamina, and of the cell somata within Rosenthal’s canal

(Leake and Hradek, 1988; Heid et al., 1998; Hardie and Shepherd,
1999). Surviving SGNs are devoid of a perikaryal myelin sheath
(Leake and Hradek, 1988; Shepherd and Hardie, 2001), which can
lead to reduced temporal resolution (Zhou et al., 1995), increased
refractory properties (Shepherd et al., 2004), and evidence of con-
duction block (Shepherd and Javel, 1997). Schwann cells within
the deafened cochlea can survive for some time despite the degen-
eration of SGNs, however, there is some evidence that they revert
to a non-myelinating phenotype (Hurley et al., 2007).

It has been suggested that alterations of SGN structure occur
secondary to cochlear pathology in a variety of species, includ-
ing deaf white cats (Bosher and Hallpike, 1965, 1967; Suga and
Hattler, 1970; Mair, 1973; West and Harrison, 1973; Elverland
et al., 1975), mice (Mikaelian et al., 1974), Dalmatians (Johnsson
et al., 1973; Mair, 1976), and humans (Altmann, 1950). There is
some evidence that the survival of SGNs depends on endogenous,
pro-survival neurotrophin peptides that are normally provided
by the hair cells and supporting cells of the cochlea (Springer
and Kitzman, 1998; Landry et al., 2011). However, others have
suggested that SGN pathology represents a separate degenerative
process that can precede or follow cochlear damage (Pujol et al.,
1977; Leake et al., 1997). Indeed, in some cases the pattern of SGN
loss differs significantly from the pattern of cochlear pathology,
lending support to this latter view. Furthermore, in congenitally
deaf animals, a large number of unmyelinated SGNs are found
before evidence of other sensory or epithelial deficits occur, and
in some cases SGN degeneration precedes damage to the sensory
cells of the cochlea (Pujol et al., 1977).

Auditory nerve fibers bifurcate in the ventral cochlear nucleus,
sending an ascending branch rostrally in the anterior division
(AVCN), and a descending branch caudally into the posterior
division (PVCN) of the ventral nucleus, which ultimately inner-
vates the dorsal nucleus. These branches terminate in a variety of
structures including endbulbs of Held, modified endbulbs, and
terminal boutons which may be accompanied by a series of en
passant swellings. In normal hearing animals, endbulbs of Held
typically exhibit a complex arborization, with multiple branches
that stem from a single, thick trunk. These endings typically con-
tact up to half of the soma of a spherical bushy cell (SBC; Ryugo
et al., 1997). In contrast, the endbulbs of Held that remain fol-
lowing deafness exhibit less extensive arborization, giving rise to
fewer en passant and terminal swellings that are larger in size,
and which contain fewer synaptic vesicles on average than those
of normal hearing animals (Ryugo et al., 1997, 1998; Limb and
Ryugo, 2000; Lee et al., 2003; Baker et al., 2010; O’Neil et al.,
2011). The fine, interconnected varicosities and branches present
in the endbulbs of Held of normal hearing animals are absent in
the deaf, leading to diminished contact with the target bushy cell
(Ryugo et al., 1998). In fact, evidence of morphological differ-
ences between the endbulbs of Held of deaf animals and those of
hearing animals are evident at birth both in deaf white cats (Baker
et al., 2010) and mice (Oleskevich and Walmsley, 2002; McKay
and Oleskevich, 2007). In contrast, the modified endbulbs of deaf
animals, which typically contact globular bushy cells (GBCs) in
the VCN, show a drastic reduction in size, but are not different
from those of normal hearing animals in terms of complexity
(Redd et al., 2000). Finally, the bouton endings that synapse on
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multipolar cells of the cochlear nucleus are significantly smaller in
congenitally deaf animals than in normal hearing controls (Redd
et al., 2002).

The highly-organized pattern of neurons projecting to the
cochlear nucleus helps maintain the tonotopic organization ini-
tiated in the cochlea. In hearing animals, these projections are
broad prior to the onset of hearing, and are refined during a sensi-
tive period for development occurring shortly thereafter (Snyder
and Leake, 1997). However, this refinement is activity-dependent;
the tonotopic specificity of projections to the cochlear nucleus is
significantly degraded in hearing impaired animals (Leake et al.,
2006).

SUBCORTICAL NUCLEI
Cochlear nucleus (Table 1)
In many ways, the pattern of ascending auditory projections in
the brainstem of congenitally deaf animals appears normal (Heid
et al., 1997). However, anatomical and functional changes are

present at most levels of this pathway (Figure 3). The precise
nature of these changes depends on a number of factors, includ-
ing an animal’s age at the onset of deafness and the intervention
used to induce deafness. Thus, a summary table is provided for
each of the following subcortical and cortical sections to allow for
direct comparison across age and methodology.

Neonatal removal of the cochlea or blockade of cochlear nerve
activity results in reduced cochlear nucleus volume resulting from
decreases in the number of neurons (Nordeen et al., 1983; Tierney
et al., 1997; Moore et al., 1998), in the size of neurons (Hulcrantz
et al., 1991; Lustig et al., 1994; Saada et al., 1996; Hardie and
Shepherd, 1999), or a combination of the two (Hashisaki and
Rubel, 1989). The magnitude of these changes is dependent
on a number of factors including the degree of ganglion cell
loss (Moore and Kowalchuk, 1988; Hardie and Shepherd, 1999),
and the duration of hearing impairment (Hardie and Shepherd,
1999). Additionally, changes in both neuronal size and num-
ber appear to be related to the time at which auditory input is

Table 1 | Summary of changes in cochlear nuclei.

Author(s) Species Etiology Deafness onset Change(s) observed

Nordeen et al., 1983 Gerbil Cochlear ablation Day 1–2 ↓ # of neurons

Moore et al., 1998 Rats Ototoxicity Day 6–10 No change in # of neurons

Cochlear
removal

Day 6 Day 12 ↓ # of neurons
No change in # of neurons

Stakhovskaya et al., 2008 Cat Ototoxic Day 16–24
Day 48–56

↓↓↓ volume
↓ volume

Moore and Kowalchuk, 1988 Ferret Cochlear lesion Day 12–93 ↓ volume in dorsal division
↓↓↓ volume in ventral divisions
↓ size of bushy cell somata

Anniko et al., 1989 Mouse Congenital Day 0 ↓ volume in dorsal division
↓↓↓ volume in ventral divisions

Tierney et al., 1997 Gerbils Cochlear
removal

Day 3–7

Day 11–93

↓ # of neurons
↓↓↓ volume
↓ neuron size
No change in # of neurons
↓ volume
↓ neuron size

Hashisaki and Rubel, 1989 Gerbils Cochlear
removal

Day 7

Day 140

↓ # of neurons
↓ size of neurons
No change in # of neurons
↓ size of neurons

Hulcrantz et al., 1991 Cat Ototoxic Day 14–16 ↓ size of neurons

Lustig et al., 1994
Saada et al., 1996

Cat
Cat

Ototoxic
Congenital

Day 14–16
Day 0

↓ size of neurons
↓ size of neurons

Hardie and Shepherd, 1999 Cat Ototoxic Day 10 ↓ size of neurons

Saada et al., 1996 Cat Congenital Day 0 ↓ size of bushy cell somata

West and Harrison, 1973 Cat Congenital Day 0 ↓ size of bushy cell somata

Redd et al., 2002 Cat Congenital Day 0 ↓ size of multipolar cell bodies
↓ complexity of synaptic cleft

Redd et al., 2000 Cat Congenital Day 0 PSDs are flattened and ↓ in size
↑ in neurotransmitter receptors

Ryugo et al., 2010 Cat Ototoxic Day 17–24 PSDs are flattened and ↑ in size

Oleskevich and Walmsley, 2002 Mouse Congenital Day 0 ↑ neurotransmitter release probability

Wang and Manis, 2006 Mouse Congenital Day 20–57 ↓ temporal resolution

PSD, Postsynaptic density, Day 0 = Day of birth.
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FIGURE 3 | The ascending mammalian auditory pathway—from

cochlea to cortex.

removed; the greatest decrease occurs when animals are deafened
long before the onset of hearing, while those animals deafened
at or after hearing onset show no change (Tierney et al., 1997;
Stakhovskaya et al., 2008). Finally, the decrease in volume is typi-
cally less severe in the dorsal division than in either of the ventral
divisions (Moore and Kowalchuk, 1988; Anniko et al., 1989; but
see Saada et al., 1996).

In the cochlear nuclei of hearing animals, post-synaptic den-
sities (PSDs) cover the somata of bushy cells. These PSDs are
punctate and tend to present as distinct convexities that indent
the presynaptic membrane (Redd et al., 2000). In contrast, bushy
cells of congenitally deaf animals contain PSDs that are larger and
appear flattened (Redd et al., 2000; Ryugo et al., 2010), while the
cell somata themselves are smaller than those of hearing animals
(West and Harrison, 1973; Moore and Kowalchuk, 1988; Saada
et al., 1996). While no deafness-related changes in the size of
PSDs, or in the synaptic vessel density have been reported for
multipolar cells in the cochlear nucleus, the cell bodies them-
selves are significantly smaller in deaf animals than in normal
hearing controls (Redd et al., 2002). Additionally, the system of
channels that exists in the synaptic cleft between these cells and
the terminal boutons of ascending auditory nerve fibers (which
likely functions to remove neurotransmitter from the synapse)

is significantly less complex following hearing loss (Redd et al.,
2002).

In addition to these anatomical differences, changes in the
function of synapses in the cochlear nucleus appear to increase
the likelihood of action potential generation under conditions
of drastically diminished spike activity. For example, some deaf
models show an increase in neurotransmitter release probability,
relative to normal hearing controls (Oleskevich and Walmsley,
2002). Concurrently, hypertrophy of PSDs in the deaf cochlear
nucleus may represent an upregulation of the neurotransmit-
ter receptors in order to optimize potential responses (Redd
et al., 2000). It has been suggested that the differential effects
of deafness on PSD size and vesicle density between bushy cells
and multipolar cells may be related to the baseline activity lev-
els; those cells which are normally highly active (bushy cells)
undergo large-scale compensatory changes following deafness,
while cells with lower baseline rates of activity (multipolar cells)
undergo little or no change (Redd et al., 2002). It has fur-
ther been suggested that the changes occurring at bushy cell
synapses may impair the ability of those cells to reliably pre-
serve temporal coding information arriving from ganglion cells
(Wang and Manis, 2006).

Superior olive (Table 2)
The superior olivary complex consists of three primary nuclei,
the medial superior olive (MSO), lateral superior olive (LSO),
and the medial nucleus of the geniculate body (MNTB), along
with several smaller periolivary nuclei. In hearing animals, the
MSO, LSO, and MNTB contribute to sound localization in the
azimuth, and are tonotopically organized. Rough frequency gra-
dients in these nuclei are established by the differential expression
of ion channels (e.g., Li et al., 2001) and currents (e.g., Leao
et al., 2006) along the tonotopic axis, occurring before the onset
of hearing. However, these physiological gradients are dependent
on spontaneous activity in the cochlear nerve, and fail to develop
in congenitally deaf models that lack spontaneous spiking (von
Hehn et al., 2004; Leao et al., 2006).

The MSO receives input from the cochlear nuclei bilaterally.
Within the MSO of hearing animals, excitatory inputs are seg-
regated such that ipsilateral inputs terminate on lateral dendrites
while contralateral inputs terminate medially (Russell and Moore,
1995; Kapfer et al., 2002). In the absence of auditory input, den-
drites of MSO neurons have been shown to undergo selective
atrophy, leading to a reduction in the number, but not in the
overall area of dendritic profiles (Russell and Moore, 1999). Some
researchers report age-related decreases in the size of MSO neu-
rons, and the total volume of the nucleus of congenitally deaf
animals (Schwartz and Higa, 1982), while others fail to find
evidence for such changes (Tirko and Ryugo, 2012). Inhibitory
inputs of normal hearing mammals specialized for low frequency
hearing (e.g., gerbil, cat, chinchilla) tend to be confined primarily
to MSO cell bodies (Werthat et al., 2008; Couchman et al., 2010).
This spatial arrangement is thought to be crucial for processing
the sub-millisecond interaural differences that allow for accurate
sound localization, and is the result of neural activity-dependent
developmental change. Deafness causes a bilateral disruption
in the spatial segregation of MSO neurons, with a significant
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Table 2 | Summary of changes in superior olivary nuclei.

Author(s) Species Etiology Deafness onset Change(s) observed

Russell and Moore, 1999 Gerbil Cochlear removal Day 18 ↓ # of dendrites in MSO

Schwartz and Higa, 1982 Cat Congenital Day 0 ↓ MSO neuron size
↓ size of the MSO

Tirko and Ryugo, 2012 Cat Congenital Day 0 No change in MSO neuron size
No change in nucleus size
↓ terminal bouton size in MSO
↓ inhibitory input at MSO cell soma/dendrites

Kapfer et al., 2002 Gerbil Noise exposure Day 10–25 ↓ inhibitory input at MSO cell soma

Moore, 1992 Ferret Cochlear removal Day 5 ↓ # of LSO neurons
↓ size of the LSO

Pasic et al., 1994 Gerbil Cochlear ablation Day 28–42 ↓ size of MNTB neurons

Oleskevich and Walmsley, 2002 Mice Congenital Day 0 Calyx of Held matures normally

Oleskevich et al., 2004 Mice Congenital Day 0 Calyx of Held matures normally

Youssoufian et al., 2005 Mice Congenital Day 0 Calyx of Held matures normally

Leao et al., 2006 Mice Congenital Day 0 Tonotopy is disrupted

von Hehn et al., 2004 Mice Congenital Day 0 Tonotopy is disrupted

MSO, Medial superior olive; LSO, Lateral superior olive; MNTB, Medial nucleus of the trapezoid body.

reduction in inhibitory input at the cell somata (Kapfer et al.,
2002; Tirko and Ryugo, 2012) and along the dendrites (Tirko
and Ryugo, 2012). While the density of terminations on MSO
cell dendrites does not change following hearing loss, the termi-
nal boutons of deaf animals are significantly smaller than those of
normal hearing animals (Tirko and Ryugo, 2012).

The LSO receives excitatory input from the ipsilateral cochlear
nucleus, and inhibitory input from the contralateral cochlear
nucleus, via the MNTB. In animal models of hearing loss,
cochlear destruction leads to neural loss and shrinkage of the LSO
(Moore, 1992) and a decrease in the size of cell somata in MNTB
(Pasic et al., 1994). Within the MNTB, there is a large central
synapse known as the calyx of Held that undergoes remarkable
development to ensure the high-fidelity transfer of sound infor-
mation. Interestingly, this development appears to be unrelated
to both spontaneous and sound-evoked neural activity, such that
the calyx of Held matures normally in deaf animals (Oleskevich
and Walmsley, 2002; Oleskevich et al., 2004; Youssoufian et al.,
2005). In hearing animals, the rough tonotopy established before
the onset of hearing is later refined such that each neuron of
the LSO receives excitatory and inhibitory inputs from neurons
that respond to the same sound frequency (Kandler et al., 2009).
However, the pruning that leads to this sophisticated tonotopy
depends in large part on auditory-evoked activity (Gillespie et al.,
2005; Kandler et al., 2009) and fails to occur following early-onset
deafness.

Inferior colliculus (Table 3)
The inferior colliculus (IC) is comprised of dorsal and lateral
cortices that collectively form a “rind” surrounding the cen-
tral core (Winer, 2005). This central nucleus receives inputs
from the cochlear nuclei, superior olives, and nuclei of the lat-
eral lemniscus, as well as descending inputs from the auditory
cortex and superior colliculus. Interestingly, the pattern of projec-
tions remains relatively unchanged following long-term auditory

deprivation. For example, projections from the cochlear nucleus
to the ipsilateral IC show no change in number following bilat-
eral cochlear removal (Moore, 1990), while projections to the
contralateral IC show either a small decrease (Trune, 1983) or
no change at all (Moore and Kowalchuk, 1988; Moore, 1994).
Similarly, the number of projections from the cochlear nucleus
to IC is unaffected by congenital deafness (Heid et al., 1997).
Projections from the superior olivary complex to IC are simi-
larly unaffected by cochlear removal (Russell and Moore, 1995)
or congenital deafness (Heid et al., 1997). Finally, a rudimentary
representation of tonotopy persists in the IC following long-term
deafness (Snyder et al., 1990, 1991; Heid et al., 1997; Shepherd
and Javel, 1999), suggesting that frequency-based organization is
established independent of patterned auditory activity.

While the number of projections to the IC appears unaffected
by hearing loss, there appear to be substantial qualitative dif-
ferences between IC neurons in hearing-deprived and normal
hearing animals. The somata of IC neurons in bilaterally deaf-
ened animals undergo some degree of atrophy, resulting in a slight
but significant decrease in soma area relative to normal hearing
controls (Nishiyama et al., 2000). Moreover, early-onset hearing
loss leads to a sharp reduction in synaptic density relative to nor-
mal hearing animals, and an apparent decrease in the number of
presynaptic vesicles in many of the remaining synapses (Hardie
et al., 1998). Developmental studies have shown that dramatic
increases in synaptic density in the IC follow the onset of hearing,
suggesting a role for stimulus-evoked neural activity in shaping
connections in this nucleus (Aitkin et al., 1996, 1997).

Functionally, bilateral cochlear ablation causes a rapid loss
of inhibitory (Vale and Sanes, 2000, 2002) and excitatory (Vale
and Sanes, 2002) synaptic strength, as a result of changes
to both pre- and post-synaptic mechanisms. Vale and Sanes
(2002) have demonstrated that these changes are independent
of deafferentation-induced cell death of neurons in the cochlear
nucleus. IC neurons deprived of auditory input also demonstrate
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Table 3 | Summary of changes in inferior colliculi.

Author(s) Species Etiology Deafness onset Change(s) observed

Moore and Kowalchuk, 1988 Ferret Cochlear lesion Day 12–93 ↓ volume

Nishiyama et al., 2000 Cat Ototoxic Day 10 ↓ soma area

Hardie et al., 1998 Cat Ototoxic Day 10 ↓ synaptic density
↓ # of presynaptic vesicles

Trune, 1983 Mouse Cochlear lesion Day 6 ↓ # of projections from CN

Vale and Sanes, 2000 Gerbil Cochlear ablation Day 7 ↓ inhibitory synapse strength

Vale and Sanes, 2002 Gerbil Cochlear ablation Day 9 ↓ inhibitory and excitatory synapse strength

Shepherd et al., 1999 Cat Ototoxic Day 10 ↓ temporal resolution

Snyder et al., 1995 Cat Ototoxic Day 16 ↓ temporal resolution

Vollmer et al., 2005 Cat Ototoxic Day 14–25 ↓ temporal resolution

Moore, 1994 Ferret Cochlear removal Day 25 No change in # of neurons

Moore, 1990 Ferret Cochlear removal Day 5 No change in # of neurons
No change in projection pattern from CN

Russell and Moore, 1995 Gerbil Cochlear removal Day 2–14 No change in projection pattern from SO

Heid et al., 1997 Cat Congenital Day 0 No change in projection pattern from CN/SO
Tonotopy is maintained

Shepherd and Javel, 1999 Cat Ototoxic Unknown Tonotopy is maintained

Snyder et al., 1990 Cat Ototoxic Day 16 Tonotopy is maintained

Snyder et al., 1991 Cat Ototoxic Day 16 Tonotopy is maintained

CN, Cochlear nucleus; SO, Superior olive.

poor temporal resolution, with decreased maximum following
frequencies and longer response latencies than IC neurons in nor-
mal hearing animals (Snyder et al., 1995; Shepherd et al., 1999;
Vollmer et al., 2005).

Medial geniculate body
The medial geniculate body (MGB) is the auditory thalamic
processing station between the inferior colliculus and the audi-
tory cortex. Across species, the MGB is typically subdivided into
multiple subsections, each of which contains several nuclei that
process both afferent and efferent neural activity (Winer, 1984;
Clerici and Coleman, 1990). Despite its importance to the audi-
tory system, there is a paucity of information on changes at the
thalamic level following deafness; a single study has identified
normal cortical projections to A1 from the MGB of neonatally
deafened animals (Stanton and Harrison, 2000). There are a
number of potential reasons for this lack of information, the
most likely of which is difficulty accessing thalamic structures.
Because of its location, the MGB is very difficult to target, both
for neuroanatomical tracer injection, and for the type of in vivo
electrophysiological studies that have measured function at other
levels of the auditory system. Changes in the pattern of projection
to auditory cortex could be revealed through cortical injections
of retrograde tracers; however, these studies have not yet been
undertaken.

AUDITORY CORTEX (TABLE 4)
The primary auditory cortex (A1) is the most extensively stud-
ied area of auditory cortex. In congenitally deaf animals, A1 has a
similar laminar structure to that of hearing animals (Hartmann
et al., 1997). Electrophysiological studies have suggested that
the area occupied by A1 increases slightly following neonatal
deafening (Raggio and Schreiner, 1999), while the size of A1

in congenitally deaf animals appears to be no different than in
hearing animals (Kral et al., 2002). However, anatomical stud-
ies demonstrate that auditory cortex decreases in size following
hearing loss, and that this decrease is correlated with the age of
deafness onset (Wong et al., 2013a). In particular, the size of A1
appears drastically reduced following early-onset deafness (Wong
et al., 2013a) as well as in congenitally deaf animals (Wong et al.,
2013b). In addition, congenitally deaf animals present with reduc-
tions in both the number of primary dendrites and in the span
of dendritic trees in primary auditory cortex relative to hearing
controls (Kral et al., 2006). Thus, while gross level anatomical
similarities may exist between hearing and non-hearing animals,
functional connectivity differs greatly between the two. For exam-
ple, inputs to layers III/IV of A1 are present in congenitally deaf
animals, as are subsequent inputs to more superficial, super-
granular layers (Klinke et al., 1999). However, activity in deeper,
infragranular layers is significantly decreased (Kral et al., 2000,
2002), and synaptic current latencies are significantly longer [after
controlling for brainstem latency shifts (Kral et al., 2000; Klinke
et al., 2001)], suggesting that connections between superficial and
deeper layers do not mature. In hearing animals, the infragranu-
lar layers of A1 are the source of descending, feedback projections.
Thus, inactivity in these layers following auditory deprivation
suggests that subcortical feedback loops are likely non-functional.

In hearing animals, supergranular layers project to higher-
order areas of auditory cortex. The presence of supergranular
activity in electrically-stimulated deaf animals suggests that feed-
forward connections persist between A1 and secondary auditory
areas in deaf animals, at least early in development. Feedback
projections from these higher-order auditory areas primarily tar-
get the deep layers of A1 (Rouiller et al., 1991). Inactivity in
the infragranular layers of deaf A1 suggests that these feedback
projections and the associated top-down modulation of activity
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Table 4 | Summary of changes in auditory cortices.

Author(s) Species Etiology Deafness onset Change(s) observed

Raggio and Schreiner, 1999 Cat Ototoxic Day 16–21 ↑ in area of A1
↑ excitability/↓ inhibition of A1 neurons
No change in rate- or latency-intensity functions
Tonotopy is lost

Kral et al., 2002 Cat Congenital Day 0 No change in size of A1
Immature connections to deeper layers
Coarse tonotopy maintained

Wong et al., 2013a Cat Ototoxic Early late ↓↓↓ in area of A1
↓ in area of A1

Wong et al., 2013b Cat Congenital Day 0 ↓↓↓ in area of A1

Kral et al., 2006 Cat Congenital Day 0 ↓ in # of primary dendrites
↓ in span of dendritic trees

Hartmann et al., 1997
Stanton and Harrison, 2000

Cat
Cat

Congenital
Ototoxic

Day 0
Day 6

No change in laminar structure
No change in thalamocortical projections to A1

Klinke et al., 1999 Cat Congenital Day 0 Inputs to layers III/IV remain
Connections to supergranular layers remain

Kral et al., 2000 Cat Congenital Day 0 Immature connections to deeper layers

Kral et al., 2003 Cat Congenital Day 0 ↑ spontaneous firing rate

Kotak et al., 2005 Gerbil Cochlear ablation Dat 10 ↑ excitability/↓ inhibition of A1 neurons

Kral et al., 2005 Cat Congenital Day 0 ↑ excitability/↓ inhibition of A1 neurons
↓ response to electrical stimulation

Raggio and Schreiner, 1994 Cat Ototoxic Day 16–21 No change in rate- or latency-intensity functions

Tillein et al., 2010 Cat Congenital Day 0 Binaural feature sensitivity is maintained
Coarse tonotopy maintained

Kral et al., 2001 Cat Congenital Day 0 Coarse tonotopy maintained

Hartmann et al., 1997 Cat Congenital Day 0 Coarse tonotopy maintained

Fallon et al., 2009 Cat Ototoxic Day 17 Tonotopy is lost

Kotak et al., 2007 Gerbil Cochlear ablation Day 10 No LTP in layer V neurons

LTP, Long-term potentiation; A1, Primary auditory cortex.

in A1 do not develop in deaf animals (Raizada and Grossberg,
2003). In support of this idea, in-vitro electrophysiological exami-
nation of hearing-deprived auditory cortex has demonstrated that
layer V neurons are incapable of undergoing the sort of long-term
potentiation that normally underlies synaptic plasticity (Kotak
et al., 2007).

Functional changes in the primary auditory cortex of con-
genitally deaf animals have been explored using in vitro electro-
physiological techniques, as well as through the introduction of
peripheral electrical stimulation via a cochlear implant. Multi-
unit recordings from deaf A1 show slightly increased sponta-
neous firing rates when compared to hearing animals, which
may reflect upregulated spontaneous activity in thalamic inputs
(Kral et al., 2003). Additionally, the excitability of A1 neurons
has been shown to increase following deprivation of afferent
activity, while inhibition is decreased (Raggio and Schreiner,
1999; Kotak et al., 2005; Kral et al., 2005). Together, these
results suggest that cortical neurons favor excitability, likely as a
response to reduced cochlear excitation. However, when driven
via electrical stimulation, evoked neural activity is decreased
in congenitally deaf animals compared to hearing controls
(Kral et al., 2005).

Despite changes in the rate of activity, the rudimentary features
of A1 neuron responses appear to be present in congenitally deaf
animals, despite a complete, and in some cases long-term lack of
stimulus-evoked neural activity. For example, the rate-intenisty
and latency-intensity functions of electrically-stimulated deaf A1
neurons are similar to those of hearing animals (Raggio and
Schreiner, 1994, 1999). Additionally, A1 neurons from congen-
itally deaf animals demonstrate rudimentary binaural feature
sensitivity (Tillein et al., 2010). Interestingly, there are no reports
of changes in the temporal processing of electrically stimulated A1
neurons, despite changes in downstream structures (see above).

As in the IC, the auditory cortex of congenitally deaf ani-
mals maintains a rudimentary representation of tonotopy, even
after extensive periods of hearing loss (Hartmann et al., 1997;
Shepherd et al., 1997; Kral et al., 2001, 2002; Tillein et al.,
2010), with an activation area similar to hearing controls (Kral
et al., 2005). Conversely, neonatally deafened animals show a
near-complete loss of tonotopic organization and a rostro-caudal
spread of activation in A1 (Raggio and Schreiner, 1999; Fallon
et al., 2009). Tonotopic organization of the IC remains following
neonatal deafening, and thalamocortical projections to A1 have
been shown to be relatively normal in deafened animals (Stanton
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and Harrison, 2000), suggesting that these differences in A1 tono-
topy are the result of reorganization at the level of the thalamus
or of A1 itself, serving to increase the overlap between adjacent
basilar membrane representations.

CROSS-MODAL REORGANIZATION FOLLOWING DEAFNESS
Genetic blueprints play a significant role in the establishment of
rudimentary organization throughout the auditory system prior
to the onset of hearing. For example, molecular guidanace cues
establish tonotopy in the cochlear nucleus in the absence of
stimulus-related activity (Kandler et al., 2009), and ectopic pro-
jections from the cochlear nucleus to the superior olive are estab-
lished before the onset of cochlear function (Kitzes et al., 1995;
Russell and Moore, 1995). In hearing animals, this organization
undergoes stimulus-evoked, activity-dependent refinement, such
that adult-like perception is achieved only after hearing onset.
As with other sensory systems, congenital deprivation results in
an immature system that appears to persist for some time fol-
lowing the normal point of hearing onset. However, if sensory
input is not restored before the end of the sensitive period for
normal development, many auditory structures may be recruited
by another sensory modality. This cross-modal reorganization
of cortical structures is thought to underlie behavioral enhance-
ments observed in the remaining sensory modalities of both
animal models (e.g., Lomber et al., 2010), and of humans (see
Bavelier et al., 2006 for a review).

In hearing animals, the response properties of A1 neurons
remain dynamic into adulthood, undergoing rapid changes in
order to optimize auditory perception. For example, animals
trained to detect a tone of a particular frequency within a com-
plex soundscape show facilitated processing for that frequency
in A1 (Fritz et al., 2003). Despite evidence that primary sen-
sory areas are capable of processing information from remaining
sensory modalities when that information is introduced via sur-
gical manipulation of afferent inputs (Frost and Metin, 1985;
Sur et al., 1988; Ptito et al., 2001), crossmodal reorganization in
the primary auditory cortex following congenital and early-onset
deafness remains a contentious issue. Rebillard and colleagues
(1977) reported recording visually-evoked responses to flashes of
a stroboscopic light in the primary auditory cortex of both con-
genitally deaf and early-deafened cats. However, other researchers
report an absence of neurons in A1 that are responsive to light
flashes or illuminated bars (Stewart and Starr, 1970; Kral et al.,
2003). This has led to the belief that A1 is not susceptible to
crossmodal reorganization following sensory deprivation. This
is in accordance with research in the visual system; congenital
blindness leads to the processing of auditory stimuli in areas of
cortex which normally process visual information in both cats
(Rauschecker and Korte, 1993) and humans (Röder et al., 2000).
However, cross-modal reorganization is limited to higher-order
visual areas, with no change in primary visual cortex (Yaka et al.,
1999; Weeks et al., 2000). Kral and colleagues (2003) also investi-
gated whether cells in deaf A1 were responsive to somatosensory
stimulation, finding none that responded to direct stimulation by
a cotton pad applied to various parts of the head and body, or
to puffs of air directed toward the face of the animal. However,
more recent studies in early- (Meredith and Allman, 2012) and

late-deaf ferrets (Allman et al., 2009) have found evidence of
neurons in core auditory areas, including A1, that are respon-
sive to strokes and taps from brushes and Semmes-Weinstein
filaments, as well as puffs of air. In these latter studies, cross-
modally activated neurons tended to have large, bilateral receptive
fields that were not somatotopically organized. Anatomical tracer
injections demonstrated that the pattern of projections between
somatosensory areas and A1 in reorganized deaf animals does not
differ from the pattern present in hearing animals, suggesting that
crossmodal activity does not rely upon the formation of novel
projections (Meredith and Allman, 2012). Thus, contradictory
data exist with respect to crossmodal reorganization between deaf
A1 and both the visual and somatosensory systems. While a num-
ber of factors may be involved in these discordant data, a likely
candidate involves the anesthetic regimens used. Studies failing to
find crossmodal activation of A1 (Stewart and Starr, 1970; Kral
et al., 2003) relied on halothane anesthesia, while those demon-
strating A1 neurons responsive to non-auditory stimulation used
infusions of pentobarbitol (Rebillard et al., 1977), or ketamine
and acepromazine (Allman et al., 2009; Meredith and Allman,
2012). Since anesthetics are known to vary in their physiologi-
cal effects (e.g., Albrecht et al., 1977; Schettini, 1980), it is entirely
possible that the presence of crossmodal activation in A1 may be
differentially affected by the anesthetic used. Beyond the single
animal examined by Rebillard and colleagues (1977), it remains to
be seen whether visually-evoked activity can be recorded in deaf
A1 under appropriate anesthetic conditions.

Unlike A1, there is convincing evidence that higher-order
auditory areas process non-auditory stimuli in deaf animals. For
example, it has been demonstrated that recruitment of auditory
areas typically involved in sound localization, including the pos-
terior auditory field (PAF; Lomber et al., 2010), and the auditory
field of the anterior ectosylvian sulcus (FAES; Meredith et al.,
2011), underlies enhanced peripheral localization of visual stim-
uli in deaf animals. In each of these cases, deaf cats were shown
to more accurately detect the location of a small LED light source
in the periphery of their visual field than did hearing cats. When
PAF was reversibly deactivated (Lomber et al., 2010), deaf cats
were no better than hearing cats at this task. Interestingly, when
FAES was deactivated in the same manner (Meredith et al., 2011),
the accuracy of deaf cats fell to well below that of normal cats,
suggesting that deaf FAES is involved in visual target detection
in lieu of, rather than in addition to the visual cortical area
normally involved with this task. The dorsal zone (DZ) of the
auditory cortex, which lies adjacent to the visual motion process-
ing regions of the middle suprasylvian sulcus (Lomber, 2001), has
been shown to mediate enhanced visual motion sensitivity in deaf
animals (Lomber et al., 2010). Deaf cats outperformed hearing
controls on a two-alternative forced choice task designed to deter-
mine their threshold for visual motion detection. However, the
thresholds of the two groups were no different following deac-
tivation of DZ. Finally, neurons in the anterior auditory field
(AAF) of deaf animals have been shown to encode somatosen-
sory cues from low-threshold hair receptors stimulated by a soft
brush or calibrated filament, as well as movement characteristics
of visual stimuli, including their velocity and direction (Meredith
and Lomber, 2011).
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How the sort of cross-modal reorganization described above
might occur remains an issue of some debate (see Bavelier and
Neville, 2002, for review). Rauschecker (1995) described sev-
eral possible cortical mechanisms, including unmasking of silent
inputs, stabilization of normally transient connections, sprout-
ing of new axons, or by some combination of these processes.
Indeed, anatomical studies have demonstrated that cortical sen-
sory areas are connected both directly (Falchier et al., 2002;
Rockland and Ojima, 2003; Hall and Lomber, 2008; Allman et al.,
2009; Meredith and Allman, 2012) as well as via multimodal cor-
tical areas (Cappe and Barone, 2005). Thus, it is possible that
intermodal connections that are normally latent or transient may
underlie reorganization. Such reorganization is often examined
using tracer injections designed to determine whether the number
of axons connecting sensory areas is increased following deafness.
However, intersensory connections might also be strengthened
via increases in dendritic branching and synapse number (with or
without a change in axonal number). Thus, anterograde tracing
and analysis of changes in the number of terminal boutons would
provide a fuller insight into the role of intracortical connections
in cross-modal plasticity. Conversely, it has also been suggested
that cortical reorganization may result from changes in subcorti-
cal inputs (Allman et al., 2009). For example, both the cochlear
nucleus (Shore and Zhou, 2006) and inferior colliculus (Aitkin
et al., 1981) have been shown to respond to somatosensory inputs
in hearing animals, and this response is enhanced following hear-
ing loss (Shore et al., 2008; Zeng et al., 2012). In the absence of
auditory input, subcortical nuclei may respond to inputs from
other sensory modalities, and the reorganization of auditory cor-
tex may simply reflect upstream processing of these changes.
Cortical and subcortical mechanisms for reorganization are by
no means mutually exclusive; it is likely that cross-modal plas-
ticity involves some combination of mechanisms that depends, at
least in part, on the nature of the hearing impairment, the timing
of auditory deprivation, and the replacement sensory modality
involved.

CONCLUSIONS
The absence of auditory input that accompanies hearing impair-
ment causes long term changes to the structure and function of
the auditory system. The exact nature of these changes depends
upon factors such as the etiology and onset time of the impair-
ment, and can have significant developmental and psychosocial
consequences. Interventions including amplification and cochlear
implantation may mediate these consequences, but each depends
critically on the integrity and function of remaining auditory
structures. Studies undertaken in deaf animal models have pro-
vided much of what is known about the function of the deaf
auditory system, and have informed the development and design
of hearing prostheses. Perhaps most interestingly, these studies
have informed our understanding of sensitive periods in develop-
ment, and their role in functional recovery following the provi-
sion of a hearing aid and/or cochlear implant. The animal studies
described herein illustrate the importance of early intervention
both in terms of minimizing structural and functional damage
within auditory structures, as well as recovering auditory cortical
areas that might otherwise be recruited by other sensory systems.

However, the effects of deafness on higher-order cortical areas
and the exact mechanism(s) underlying cross-modal plasticity
are not yet fully understood. Thus, research using animal mod-
els will continue to inform our understanding of the far-reaching
consequences of deafness as the field moves forward.
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