AUTHOR=Minamimoto Takafumi , Hori Yukiko , Yamanaka Ko , Kimura Minoru TITLE=Neural signal for counteracting pre-action bias in the centromedian thalamic nucleus JOURNAL=Frontiers in Systems Neuroscience VOLUME=8 YEAR=2014 URL=https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2014.00003 DOI=10.3389/fnsys.2014.00003 ISSN=1662-5137 ABSTRACT=

Most of our daily actions are selected and executed involuntarily under familiar situations by the guidance of internal drives, such as motivation. The behavioral tendency or biasing towards one over others reflects the action-selection process in advance of action execution (i.e., pre-action bias). Facing unexpected situations, however, pre-action bias should be withdrawn and replaced by an alternative that is suitable for the situation (i.e., counteracting bias). To understand the neural mechanism for the counteracting process, we studied the neural activity of the thalamic centromedian (CM) nucleus in monkeys performing GO-NOGO task with asymmetrical or symmetrical reward conditions. The monkeys reacted to GO signal faster in large-reward condition, indicating behavioral bias toward large reward. In contrast, they responded slowly in small-reward condition, suggesting a conflict between internal drive and external demand. We found that neurons in the CM nucleus exhibited phasic burst discharges after GO and NOGO instructions especially when they were associated with small reward. The small-reward preference was positively correlated with the strength of behavioral bias toward large reward. The small-reward preference disappeared when only NOGO action was requested. The timing of activation predicted the timing of action opposed to bias. These results suggest that CM signals the discrepancy between internal pre-action bias and external demand, and mediates the counteracting process—resetting behavioral bias and leading to execution of opposing action.