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Coherent network oscillations (<0.1 Hz) linking distributed brain regions are commonly
observed in the brain during both rest and task conditions. What oscillatory network exists
and how network oscillations change in connectivity strength, frequency and direction
when going from rest to explicit task are topics of recent inquiry. Here, we study network
oscillations within the sensorimotor regions of able-bodied individuals using hemodynamic
activity as measured by functional near-infrared spectroscopy (fNIRS). Using spectral
interdependency methods, we examined how the supplementary motor area (SMA), the
left premotor cortex (LPMC) and the left primary motor cortex (LM1) are bound as a
network during extended resting state (RS) and between-tasks resting state (btRS), and
how the activity of the network changes as participants execute left, right, and bilateral
hand (LH, RH, and BH) finger movements. We found: (i) power, coherence and Granger
causality (GC) spectra had significant peaks within the frequency band (0.01–0.04 Hz)
during RS whereas the peaks shifted to a bit higher frequency range (0.04–0.08 Hz)
during btRS and finger movement tasks, (ii) there was significant bidirectional connectivity
between all the nodes during RS and unidirectional connectivity from the LM1 to SMA
and LM1 to LPMC during btRS, and (iii) the connections from SMA to LM1 and from
LPMC to LM1 were significantly modulated in LH, RH, and BH finger movements
relative to btRS. The unidirectional connectivity from SMA to LM1 just before the actual
task changed to the bidirectional connectivity during LH and BH finger movement. The
uni-directionality could be associated with movement suppression and the bi-directionality
with preparation, sensorimotor update and controlled execution. These results underscore
that fNIRS is an effective tool for monitoring spectral signatures of brain activity, which may
serve as an important precursor before monitoring the recovery progress following brain
injury.
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INTRODUCTION
Based on converging electrophysiological and neuroimaging data,
the brain is known to be a self-organizing dynamical system con-
sisting of anatomically distinct and efficiently connected brain
regions supporting inherent electrical, chemical, hemodynamic,
and metabolic processes (Buzsaki, 2006; Palva and Palva, 2012).
An aspect of the brain’s self-organizing dynamic behaviors is
reflected in slow (<0.1 Hz) fluctuations (oscillations) of blood-
oxygenation-level dependent (BOLD) functional magnetic reso-
nance imaging (fMRI) signals recorded during resting conditions
(Biswal et al., 1995; Bajaj et al., 2013). These intrinsic BOLD fluc-
tuations are believed to be associated with neural level excitabil-
ity fluctuations in cortical and subcortical networks (Buzsáki
and Draguhn, 2004; Balduzzi et al., 2008; Keilholz et al., 2010)
providing neural substrates for the flexibility and variability in
moment-to-moment perception, cognition and motor behaviors
(Arieli et al., 1996; Makeig et al., 2004; Palva and Palva, 2012).
These slow coherent oscillations are the backbone of whole-brain

functional connectivity networks such as default-mode networks
(Raichle et al., 2001; Buckner et al., 2008), which have been
intensely studied in basic and clinical neuroscience (Fox and
Greicius, 2010; Gillebert and Mantini, 2013). Despite tremen-
dous progress in understanding the intrinsic brain functional
connectivity patterns, the underlying network oscillations (“roots
of these patterns”) and modulations by task conditions have not
been understood very well. In particular, the details on what oscil-
latory networks are at work during resting conditions and how
these networks change in connectivity strength, frequency and
direction when going from rest to explicit task are still being
revealed. Here, we studied low-frequency network oscillations
within the sensorimotor regions of able-bodied individuals dur-
ing rest and motor movement using the hemodynamic activity as
measured by functional near-infrared spectroscopy (fNIRS).

fNIRS technology uses specific wavelengths of light in the near-
infrared range between 700 and 1000 nm, irradiated through the
scalp, to enable the non-invasive measurement of changes in the
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relative ratios of deoxygenated hemoglobin (deoxy-Hb) and oxy-
genated hemoglobin (oxy-Hb) following neuronal activity in the
brain (Arno and Britton, 1997; Kober et al., 2014). Like the BOLD
fMRI, fNIRS measurements also reflect hemodynamic changes
and rely on the neurovascular coupling in the brain (Ogawa
et al., 1990; Logothetis et al., 2001; Raichle et al., 2001; Logothetis
and Wandell, 2004) to infer changes in neural activity. Low fre-
quency fluctuations have been observed in the fNIRS recordings
of brain activity (Obrig et al., 2000; Duff et al., 2008). Obrig
et al. (2000) have studied spectral power of fluctuations in fNIRS
recordings and reported three spectral peaks around 0.03, 0.1,
and 1 Hz during resting conditions and during visual stimula-
tion tasks. There was an increase in oxy-Hb concentration and a
decrease in deoxy-Hb during visual stimulation. Amplitude mod-
ulations of low-frequency oscillations (LFO) have been observed
in task-activated and task-deactivated regions (Duff et al., 2008).
However, there have not been fNIRS studies to provide evidence
of brain intrinsic network oscillations and their modulations by
task conditions.

Previous studies have focused on brain functional and effec-
tive connectivity during resting state (RS), motor imagery (MI),
and motor execution (ME) tasks using fMRI and EEG. Most of
these studies compare the connection strengths and direction-
ality between MI and ME tasks and demonstrate modulation
during task execution (Solodkin et al., 2004; Grefkes et al., 2008;
Kasess et al., 2008; Chen et al., 2009; Gao et al., 2011). These
studies suggest that the networks during MI and ME behave in
a similar way or at least have some common and overlapping
networks involving the brain areas including the primary motor
cortex (M1), the premotor cortex (PMC) and the supplemen-
tary motor area (SMA) (Jeannerod, 1994; Gerardin et al., 2000;
Solodkin et al., 2004; Kasess et al., 2008). These studies are based
on independent hypotheses and estimations are performed using
statistical models, which are further based on anatomical assump-
tions reflecting basic structural connections among these cortical
areas. DCM (Friston et al., 2003) and Granger causality (GC)
(Granger, 1969; Friston et al., 2003) are the two most common
computational approaches used to analyze effective connectiv-
ity or directed functional connectivity between brain regions. It
has been found that during ME there is time lag in activation
pattern between M1 and SMA suggesting a delayed response of
M1 during task execution (Kasess et al., 2008). Anatomically,
SMA is reciprocally connected to M1 causing bilateral activity
even for unimanual hand movements (Muakkassa and Strick,
1979; Deecke, 1987). A comparison of connectivity between RS
and ME using the DCM approach suggests that parameters for
RS and condition-specific DCM connectivity parameters during
motor task are weakly correlated, whereas task-based parame-
ters are strongly and positively correlated with DCM connectivity
parameters (Rehme et al., 2013). Jiang et al. (2004) showed that a
functional connectivity in the motor networks during rest can be
modulated by planning, initiation and coordination of voluntary
movements.

Reports of network activity in unilateral and bilateral hand
(BH) movements have found that during right hand movements,
left SMA and left premotor cortex (LPMC) promote activity in
left primary motor cortex (LM1) positively whereas networks

are modulated negatively toward right M1 (Grefkes et al., 2008).
Conversely during bimanual hand movements, both right and
left M1 are positively modulated. Others have shown that activity
during bimanual movement is initiated by the dominant hemi-
sphere (Walsh et al., 2008). DCM results suggest that during ME
task there is weak positive influence from SMA on M1 whereas
during kinesthetic MI, the influence is suppressive (Solodkin
et al., 2004; Kasess et al., 2008). Their study also suggests that the
feedback connection from M1 to SMA may play a significant role
in the preparation and coordination of a task. Previous studies
also confirmed that connectivity parameters of motor networks
could change in stroke survivors. This was demonstrated by larger
individual path variance in patients in comparison to healthy sub-
jects confirmed by the diminishing connections for M1 and SMA
(Inman et al., 2012). It is still not clear how (at what frequency, for
example) M1 and SMA exert influence on each other during ME
and what role this feed-forward or feed-backward circuit plays in
initiating and executing motor tasks.

In the current study, we used near-infrared spectroscopy
(NIRS), a relatively new technique as compared to other neu-
roimaging modalities, to investigate the directed functional con-
nectivity using GC approach during rest as well as during ME.
NIRS can only be used to measure activities on cortical surfaces
whereas fMRI can be used to measure activations throughout the
whole brain. However, NIRS is a non-invasive, safe, cost effective
and more flexible and portable technique with reasonable spa-
tial and excellent temporal resolution compared to fMRI. NIRS
also allows monitoring children as well as patients who are psy-
chologically unfit to be studied under traditional neuroimaging
methods.

Considering the above-mentioned advantages of NIRS over
fMRI, our present study explores and compares the cortical net-
work dynamics during RS, between task resting state (btRS) and
ME tasks using the parametric GC approach (Granger, 1969;
Dhamala et al., 2008b) focusing on the motor network consist-
ing of: primary motor cortex (M1), PMC and the SMA. The
primary goals of the current study were to: (i) evaluate the intrin-
sic oscillatory features at low frequencies (0.01–0.1 Hz) and the
task modulations and (ii) establish the characteristics of normal
brain motor network activity as a necessary precursor prior to the
study of network activity following brain injury. A secondary goal
was to assess the applicability of NIRS as a tool to explore the
functional connectivity among different brain areas. Most of the
previous fNIRS studies investigate functional connectivity among
various brain areas during much simpler hand motor tasks. The
question remains is to whether NIRS can be used effectively to
infer how neural activations respond to various complex motor
tasks.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-seven able-bodied adult volunteers participated in the
study (8 males; 19 females; age 22–63, mean = 31.8 ± 12.8 years).
People were excluded from the study if they: (a) had any medical
conditions that could interfere with ability to complete ques-
tionnaires and visual-motor tasks, (b) had any unstable medical
conditions, (c) were unable to attend both testing sessions, or
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(d) were taking any medications which could influence motor or
visual ability. All subjects provided written informed consent and
procedures were reviewed and approved by the local Institutional
Review Board (IRB).

NIRS RECORDINGS
During recordings, participants were seated comfortably in an
adjustable chair facing a computer screen approximately 24 inches
away. Data was collected in two 1-h sessions separated by 7 days
using the Hitachi ETG-4000 52-channel NIRS system (Hitachi
Medical Co., Tokyo Japan). The absorption of near infrared light
at two wavelengths (695 and 830 nm) was measured with a sam-
pling rate of 10 Hz. Changes in reduced (deoxy) hemoglobin
(HbR), and oxy-Hb (HbO) concentrations at each time point
from each channel were computed using the modified Beer-
Lambert law (Cope et al., 1988). The 8 emitter probes and 7
detector probes were arranged into an 3 × 5 array, resulting in
22 measurement channels (inter-optode distance = 30 mm).

CAP POSITIONING AND MEASUREMENT
During testing, cap position was adjusted to make sure that the
hair bundles were not blocking sensors and detectors, a strong
evoked activity occurred over sensorimotor regions for ME and
adequate signals were obtained from all the channels (Figure 1A).
The cap was made of an elastic spandex-type fabric in which the
grid was embedded (Figure 1B). Standard cap measurements for
each subject were then taken relative to prominent anatomical
landmarks. In order to replicate the cap position across sessions,
the following distances were measured: the distance (in mm) from

the left and right tragus to the center point of the cap, nasion to
cross seam, and inion to center point.

The position of the cap and ROIs were determined by calculat-
ing x and y distance between the center of the cap and all optode
and channel locations. The Cz location, defined as the intersec-
tion point of two lines formed by 50% of the distance between
the left and right tragus and 50% of the distance between the
nasion and inion (Jasper, 1958), was calculated for each subject
individually based on anatomical measurements obtained during
data collection. Then, the coordinates

(
x, y

)
of the cap seam were

subtracted from the Cz locations for each subject in order to cal-
culate the distance between the subject’s true Cz and the cap cross
hair/center. The position of the cap seam relative to anatomical
landmarks was measured for every participant at each session.
Last, the coordinates

(
x, y

)
of the optodes and channels were cal-

culated by subtracting the amount of cap shift (true Cz—cap
seam) from each individual optode and channel position

(
x, y

)
on the cap. Thus, the exact location of each optode was calculated
for subjects individually.

PROTOCOL
During each fNIRS recording session, participants underwent a
7 min RS followed by a 9 min 30 s motor task. Each participant
read a standardized set of task instructions before each record-
ing to ensure normalization of procedures within and between
sessions. The RS occurred prior to the motor task for all partici-
pants at each session in order to control for possible confounding
effects of task performance (Fransson, 2006). During the RS mea-
surement, subjects were asked to refrain from cognitive, motor

FIGURE 1 | Experimental design. (A) Location of NIRS channels relative to
the International 10–20 System shown on a standard brain template (Rorden
et al., 2007). Numbers in diamonds indicate individual NIRS channels. Circles

represent locations on the International 10–20 System. There are 2 cm
between the centers of neighboring channels (B) Optode configuration and
cap placement for sessions 1 and 2.
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and language tasks while visualizing a fixation-cross (Greicius
et al., 2003). The motor task involved performing a finger tapping
sequence with hands resting palms down (Verstynen et al., 2005).
Participants performed three cycles of the following sequence:
right-hand (RH), left-hand (LH), and BH finger tapping. Each
tapping interval lasted 30 s. Thirty-second rest intervals were
included between tapping segments in which subjects visual-
ized a fixation cross and remained motionless. The bilateral
finger-tapping task was included to facilitate activity in the SMA,
which has been shown to demonstrate increased activation dur-
ing simultaneous right and left finger movements (Debaere et al.,
2001).

ROI SELECTION
Three ROIs were defined anatomically as follows: the M1 as the
area extending from the anterior bank of the central sulcus to
the anterior edge of the precentral gyrus (Dassonville et al., 2001;
Kimberley et al., 2008b,c), the PMC as the area between M1 and
the sulcus nearest the coronal plane through the anterior commis-
sure, bounded inferiorly by the inferior edge of the frontal lobe
(Dassonville et al., 2001), and the SMA as the medial region of the
hemispheres superior to the dorsal bank of the cingulated sulcus
along the same anterior-posterior extent as the PM (Dassonville
et al., 2001; Kimberley et al., 2008a,c).

Each ROI was assigned a position within the international
10–20-electrode system, which corresponded to its anatomical
location based on previous research and neuroanatomical atlases
(Jasper, 1958; Homan et al., 1987). Based on the 10–20 inter-
national system, M1 ROI was assigned to the C3, PMC ROI as
50% of the distance between Cz and F3, and SMA ROI as 50% of
the distance between Cz and Fz. The coordinates of the selected
international 10–20 system positions were calculated for each
subject.

For channel selection, the three closest channels to the interna-
tional 10–20 system locations were calculated mathematically for
each participant and selected to represent each ROI. The channels
closest to ROIs were the same for every subject for M1 (channels
4, 8, and 9), SMA (channels 2, 6, and 11), and PM (channels 13,
17, and 18) (Figure 1A).

DATA PREPROCESSING AND ANALYSIS
Raw fNIRS data were linearly detrended, band-pass filtered
between 0.01 and 0.1 Hz. The detrending and filtering removed
slow trends and other physiological noise such as respiration and
cardiac activities.

In the resting condition, participants visualized a fixation cross
and the recordings form the baseline (extended RS). The sec-
ond condition was the task condition, which had fNIRS data for:
(i) resting period prior to each task period, i.e., btRS and (ii)
during task periods, i.e., during ME. During ME, time series of
whole length (9 min 30 s) from each node and run was broken
into segments each of length 30 sec. These segments were grouped
together separately for different conditions: btRS, RH, LH, and
BH finger tapping. Each movement condition was repeated three
times and rest condition occurred for a total of 10 times. These
repetitions were treated as trials for the spectral analysis. For each
condition, concentration changes for oxy-Hb, deoxy-HB, and

total-Hb were calculated. We used only oxy-Hb signal changes
in current analysis since previous studies showed no significant
correlation between changes in deoxy-Hb and ability to imagine
movements measured by MIQ-R (Kober et al., 2014), whereas
under task-related activations, oxy-Hb signal was more robust
and highly stable with time than deoxy-Hb signals (Obrig et al.,
2000; Mihara et al., 2012). The ensemble means of the segments
for each node (M1, SMA, PM) were removed from the segmented
data to make these zero-mean processes for spectral analysis. We
then computed power, coherence and GC using the parametric
spectral approach (Dhamala et al., 2008b). Coherence and GC are
categorized as spectral interdependency measures, which are used
to characterize network oscillations.

SPECTRAL INTERDEPENDENCY MEASURES
Spectral interdependency measures are a means of statistically
quantifying the inter-relationship between a pair of oscillatory
processes; say 1 and 2, as a function of frequency of oscillation.
In practice, there are three measures that characterize the spectral
interdependency between a pair of processes: total interdepen-
dence (M1, 2), GC one-way effect or directional influence from
the first process to the second process (M1→2) or from the sec-
ond to the first (M2→1) and instantaneous causality (measure of
reciprocity, M1.2). These are related as (Geweke, 1982):

M1, 2 = M1→2 + M2→1 + M1.2 (1)

The measures of spectral interdependency are derived from a
spectral density matrix (S), which is constructed from the time
series of oscillatory systems by using optimal autoregressive (AR)
modeling in the parametric method.

Diagonal elements of the spectral density matrix (S) repre-
sented node activity in terms of spectral power (P), whereas
the coherence function C(f ) was derived from the cross spectra
normalized by the product of the individual auto spectra as:

C
(
f
) = |S12

(
f
) |2

S11
(
f
)

S22
(
f
) (2)

The coherence function is a well-accepted measure to characterize
frequency-specific interdependence between multiple time series
from multisite recordings such as multi-electrode electrophysi-
ological recordings, electro/magneto encephalography (E/MEG)
and functional magnetic resonance imaging (fMRI). It ranges
from 0 (no interdependence) to 1 (maximum interdependence).
C(f ) is related to Geweke’s measure of total interdependence(

M1, 2

)
(Geweke, 1982):

M1, 2
(
f
) = − ln

(
1 − C

(
f
))

(3)

whose value ranges from 0 to infinity.
Directional influences between processes 1 and 2 are given by

(Geweke, 1982; Ding et al., 2006; Dhamala et al., 2008a,b):

M1→2
(
f
) = ln

S22(f )
H̃11(f )�11H̃∗

11(f )

M2→1
(
f
) = ln

S11(f )
H̃22(f )�22H̃∗

22(f )
,

(4)
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where H̃11 = H11 + �12
�11

H12, H̃22 = H22 + �12
�22

H21

Here,
∑

(noise covariance matrix), H (transfer function
matrix), H̃(new transfer function matrix) are estimated from the
residual errors and the inverse of the Fourier transforms of the
coefficients in AR models respectively. Here ∗ denotes matrix
adjoint.

SIGNIFICANT TESTS AND PERCENTAGE MODULATIONS
GC values were integrated over the frequency range from 0.01 Hz
(f1) to 0.1 Hz (f2):

iGC1→2 = 1

f2 − f1

∫ f2

f1

M1→2(f )df (5)

Significant connections for each condition (RS, btRS, RH, LH
and BH finger tapping) were found using permutation test at
p < 0.05. Further, a two-sample t-test for all the significant con-
nections was performed for ME task (LH, RH and BH finger
tapping) vs. RS. We considered RS and btRS conditions as ref-
erence conditions- reference 1 (ref 1) and reference 2 (ref 2)
respectively. The percentage of modulation between two nodes,
for example 1 and 2, having significant connection strength for a

particular condition (LH, RH, BH finger tapping) relative to the
reference conditions were calculated as follows:

M = iGCME − iGCref 1(or2)

iGCref 1(or2)

× 100% (6)

where M, iGCME and iGCref 1(or2) represented percentage modu-
lation, integrated causal flow for ME and integrated causal flow
for ref 1 (or 2) from node 1 to node 2 respectively.

RESULTS
POWER, COHERENCE, AND GC SPECTRA
Power, coherence and GC spectra for all the nodes (SMA, LM1,
and LPMC), which were found to be involved during RS, btRS
and task execution, were computed. Figures 2–5 show group level
comparison of these spectra between two conditions: RS and
motion execution (ME) by considering all the subject’s runs as tri-
als. Here within the ME condition, there are three sub-conditions:
btRS, RH, LH, BH finger tapping.

During the RS, for all the three nodes, the peaks for power were
in the frequency band 0.01–0.04 Hz (Figure 2A). All the nodes
were found to be highly coherent (Figure 2B) in the same fre-
quency band. Further GC peaks were also within same frequency

FIGURE 2 | Power, coherence and Granger causality spectra during

resting state. For all the three nodes (A) peaks for power spectra for SMA
(blue), LM1 (red), and LPMC (green) (B) high coherence values among all the
combinations: SMA-LM1 (blue), SMA-LPMC (red) and LM1-LPMC (green) and

peaks for GC for (C) SMA-LM1 (blue), LM1-SMA (red) (D) SMA-LPMC (blue),
LPMC-SMA (red), and (E) LPMC-LM1 (blue), LM1-LPMC (red) are obtained in
the same frequency band of 0.01–0.04 Hz. Dashed black lines in GC plots
show significant threshold at p < 0.01 (n = 27).
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band (0.01–0.04 Hz) (Figures 2C–E). On the other hand, for ME
case, these nodes were highly coherent in the frequency band
0.04–0.08 Hz along with power peaks within same frequency band
whereas GC peaks were within 0.06–0.1 Hz for all the conditions-
btRS (Figures 3A, 4A, 5A–C, respectively), RH (Figures 3B, 4B,
5D–F, respectively), LH (Figures 3C, 4C, 5G–I, respectively),
and BH (Figures 3D, 4D, 5J–L, respectively). Dashed lines in
the GC plots show a significant threshold (p < 0.01, n = 27)
(Figures 2C–E, 5).

DIRECTED FUNCTIONAL CONNECTIVITY
Condition 1: Resting state (RS)
Directionality of causal flow among the three nodes, SMA, LM1,
and LPMC was computed during RS. A bidirectional causal
flow was observed among all the three nodes (Figures 2C–E).
Dashed line in the plots shows the significant threshold (p < 0.01,
n = 27). Although all the connections were bidirectional and sig-
nificant there was considerable causal flow difference between
forward and backward connections. In Figure 2C, causal flow
from LM1 to SMA is more than SMA to LM1, in Figure 2D, causal
flow from LPMC to SMA is more than SMA to LPMC and sim-
ilarly in Figure 2E, causal flow is more from LM1 to LPMC than
from LPMC to LM1. The overall calculation of causal flow was
estimated by integrating over the entire frequency band (0.01–
0.1 Hz) as shown in Figure 6A, reference 1). Here thickness of the
arrows reflects magnitude of the causal flow.

Condition 2: Motion execution (ME)
Similarly, directionality of causal flow among all the three nodes
was computed and compared among btRS condition, RH, LH,
and BH finger movement.

Condition 2a. btRS condition- Figures 5A–C shows the direc-
tionality of causal flow for btRS condition in ME task. A sig-
nificant causal flow was found from LM1 to SMA (Figure 5A),
bidirectional significant causal flow between SMA and LPMC
(Figure 5B) and significant causal flow from LM1 to LPMC
(Figure 5C).

Condition 2b. RH finger movement- Figures 5D–F shows the
directionality of causal flow for RH finger movement condi-
tion in ME task. Here there was significant causal flow from
SMA to LM1 (Figure 5D), insignificant causal flow between SMA
and LPMC (Figure 5E) and bidirectional significant causal flow
between LM1 and LPMC (Figure 5F).

Condition 2c. LH finger movement- Figures 5G–I shows the direc-
tionality of causal flow for LH finger movement condition in ME
task. Here there was bidirectional significant causal flow between
SMA and LM1 (Figure 5G), significant causal flow from LPMC
to SMA (Figure 5H) and bidirectional significant causal flow
between LM1 and LPMC (Figure 5I).

FIGURE 3 | Coherence spectra during motor execution. High coherence values among all the combinations: SMA-LM1 (blue), SMA-LPMC (red), and
LM1-LPMC (green) are obtained in the frequency band of 0.04–0.08 Hz for (A) btRS condition (B) RH (C) LH, and (D) BH finger movement.
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FIGURE 4 | Power spectra during motor execution. Power peaks are obtained in the frequency band (0.04–0.08 Hz) for all the nodes: SMA (blue), LM1 (red),
and LPMC (green) for (A) btRS condition (B) RH (C) LH, and (D) BH hand finger movement.

Condition 2d. BH finger movement- Figures 5J–L shows the direc-
tionality of causal flow for BH finger movement condition in ME
task. Bidirectional significant causal flow was observed between
SMA and LM1 (Figure 5J), bidirectional significant causal flow
between SMA and LPMC (Figure 5K) and significant causal flow
from LPMC to LM1 (Figure 5L).

A comparison: condition 1 vs. condition 2 and condition 2a vs.
condition 2(b-d)
Considering RS condition (condition 1) as reference 1
(Figure 6A) and btRS (condition 2a) as reference 2 (Figure 6B),
a pairwise t-test was performed for only significant connections
in all the conditions i.e., reference 1 vs. reference 2 and RH, LH,
and BH finger movement conditions 2(b-d) vs. reference 1 and
reference 2. We found that none of the significant connections
were significantly different for reference 1 vs. reference 2. There
was only one connection, which was significantly different:
LPMC to LM1 in reference 1 vs. LH condition (condition 2c),
which is 52% modulated (Figure 6C, marked with blue dot).

For reference 2 vs. LH, we found all the connections were sig-
nificantly different. There was modulation of 75% and 46% from
SMA to LM1 and LM1 to SMA respectively. Further, there was
modulation of 68% and 61% from LPMC to SMA and LPMC to
LM1 respectively (Figure 6C).

For reference 2 vs. BH, all the connections were significantly
different except from LPMC to LM1, which was, 39% modulated.

There was 90 and 88% modulation from LM1 to SMA and SMA
to LM1 respectively and 78 and 72% modulation from LPMC to
SMA and SMA to LPMC respectively (Figure 6D).

For reference 2 vs. RH, there was only one connection SMA to
LM1, which was significantly different and was 42% modulated.
There was 50 and 26% modulation for significant connection
from LPMC to LM1 and LM1 to LPMC respectively (Figure 6E).

DISCUSSION
We have observed differences in oscillatory motor network activ-
ity within the sensorimotor regions of able-bodied individuals
during rest and finger movement using the hemodynamic activ-
ity as measured by fNIRS. During RS, there were significant node
and network oscillations in the frequency band 0.01–0.04 Hz.
These GC results obtained from the parametric approach showed
that there were significant bidirectional connections among LM1,
LPMC, and SMA during RS, from LM1 to SMA and LPMC and
between SMA and LPMC during btRS. There were significant
modulations between connections during ME task in compar-
ison to btRS, especially, from SMA to LM1 during RH finger
movement and bidirectional significant modulations between
LM1 and SMA during LH and BH finger movements. We found
significant positive modulations from LPMC to LM1 under all
the conditions whereas LPMC to SMA during LH and bidi-
rectional positive modulations between these during BH finger
movement.
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FIGURE 5 | Granger causality spectra during motor execution. GC peaks for all the combinations among SMA, LM1, and LPMC are within 0.06–0.1 Hz for
all the conditions- (A–C) btRS condition, (D–F) RH, (G–I) LH, and (J–L) BH. Dashed lines in these plots show a significant threshold (p < 0.01, n = 27).

POWER, COHERENCE, AND GC SPECTRA
Our findings confirm and extend previous findings that showed
significant network activity changes in going from RS to move-
ment (Jiang et al., 2004). Furthermore, strong coherence relation-
ships in the frequency band 0.02–0.15 Hz are obtained between
M1 and SMA (Otten et al., 2012). In the same study by Otten
and colleagues, higher correlation values are obtained among
motor areas in RS oscillations even in the presence of lesions.
Further, basic motor networks are suggested to be spatially sim-
ilar between patients and controls. Similarities have been found
between anatomical and functional mapping using covariance
analysis following RS MRI (Xiong et al., 1999). In animal stud-
ies, a spontaneous influence of stimulation on oxygenation and
metabolism is found around 0.1 Hz (Mayhewa et al., 1999). It
is suggested that these oscillations follow electrocorticography

(EcOG) bursts of a specific type and can be evoked by a stimulus
(Obrig et al., 2000).

Dominant components of LFO below 0.1 Hz is found using
Fourier analysis of temporal components of oxy-hemoglobin sig-
nal in an NIRS study (Tong and Frederick, 2010). It has also
been reported that frequency corresponding to task related acti-
vations had an amplitude around seven times greater than during
RS activation maps (Cordes et al., 2001). Our study confirms
and specifies these findings, suggesting a particular frequency
band 0.01–0.04 Hz is dominant during RS and 0.04–0.08 Hz is
dominant during btRS and ME tasks. Here we note that coher-
ence spectra are related to the total interdependence (Equation 3)
and the total interdependence is the sum of two one-way effects
and instantaneous causality (Equation 1). The peak frequen-
cies detected by coherence and GC methods thus may differ
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FIGURE 6 | A comparison of directed connectivity measures obtained by integrating over entire frequency band of interest (0.01–0.1 Hz) for (A) RS

condition (reference 1) (B) btRS condition (reference 2) (C) LH (D) BH, and (E) RH finger movement.

depending on the instantaneous causality. Dominant frequency
bands of GC for RS and ME are different since for RS NIRS data
analysis, there is no contrast used to explore the connections.
Because brain areas are expected to be more coherent during RS
than during ME task, RS is usually considered as baseline during
analysis of task dependent networks. During btRS and ME tasks,
integrated activity of several brain areas are necessary to perform
a particular task. On the other hand, RS analysis is supposed to
detect a complete but phase locked neural networks whereas task
execution is supposed to detect all possible connections associated
with a brain area. This suggests that there is some contribution
by functional connectivity during RS to task related connectivity,
both <0.1 Hz.

DIRECTED FUNCTIONAL CONNECTIVITY
(a) RS vs. btRS
Comparing the connection strengths and directionality between
RS and btRS conditions, there are significant bidirectional con-
nections between SMA and LPMC although weaker in case of
btRS. Furthermore, there is unidirectional significant causal flow
from LM1 to SMA during btRS in comparison to significant bidi-
rectional causal flow between them in RS. Although, participants
are not directly instructed to imagine motor task in between two
ME tasks, our results are consistent with MI conditions where
participants are usually instructed to imagine some hand or finger
movements (Kasess et al., 2008). It has been shown that during
MI, dorsal premotor (PMd) cortex have the primary influence
on SMA and then backward from SMA to PMd (Matsumoto
et al., 2007). Others have demonstrated suppressive influence
of SMA on LM1 during MI, reporting a feedback circuit from

LM1 to SMA (Kasess et al., 2008; Chen et al., 2009). The result
could reflect the fact that SMA plays a crucial role in maintaining
the activity within itself before passing information to neigh-
boring areas in order to execute the motor plan. Although not
demonstrated in the current study, negative values of LPMC on
LM1 during MI (Solodkin et al., 2004) suggests the weak and
suppressive influence of LPMC on LM1.

(b) Role of SMA, LPMC and LM1 during ME task
The connection from LPMC to LM1 was found to be signifi-
cantly stronger in LH finger tapping in comparison to RS. This
connection is also significantly stronger in all three conditions
(LH, BH, and RH) when compared to btRS. During execution
of task, whether unimanual or bimanual, both SMA and LPMC
were shown to have a significant influence on LM1. The extent
of modulation appears to depend on the condition: LH, RH,
or bimanual hand finger tapping movements. Our results are in
accord with previous studies. Both SMA and LPMC are known to
be involved in movement selection and execution of movements,
especially PMC which is thought to be involved in the execu-
tion of triggered movements and the transformation of external
stimuli to motor planning (Lutz et al., 2000; Schubotz et al.,
2001). During unimanual tasks, we found that SMA positively
influences LM1 with 75 and 42% modulation for LH and RH
finger movements respectively. Previously, SMA was found to
be involved in various unimanual tasks. A transcranial magnetic
stimulation (TMS) study by Arai et al. (2012) found excitatory
influence from SMA to M1, which was in accordance with an
fMRI study by Pool et al. (2013). On the other hand, SMA is also
involved in temporal organization of bimanual movements. We
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find strong modulation between SMA and LM1 during BH fin-
ger movement. Anatomical studies also show SMA is connected
with various motor areas in opposite hemispheres confirming its
role during bimanual tasks (Rouiller et al., 1994). A study involv-
ing patients with lesions affecting SMA demonstrated upper limb
impairments during bimanual tasks (Serrien et al., 2001) and a
study using non-human primates demonstrate the role of SMA
and M1 during bimanual task execution (Donchin et al., 1998).
These studies showed that SMA neurons fire significantly dur-
ing bimanual tasks whereas firing pattern of neurons differs when
compared between unimanual and bimanual movements.

We compared the connection strengths and directionality
between SMA and LM1 for btRS and ME. We observed that this
connection is suppressed during preparation to execute the task.
Hence if planning, preparation and then execution of motor task
are considered in the same domain, we find a closed-loop circuit
between both of these areas where there is feed-forward influ-
ence from LM1 to SMA during preparation and feed-backward
influence from SMA to LM1 during actual execution of task.

Previous studies compare the effective connectivity between
MI and ME using other approaches like DCM and SEM and
find similar results suggesting positive influence of task result-
ing in strong activation of M1 and a suppressive influence during
MI but strong enough to keep M1 active to execute the task
(Solodkin et al., 2004; Kasess et al., 2008). Further, strong influ-
ences of LPMC on LM1 were found in unilateral as well as BH
finger movements whereas a weak and insignificant influence was
observed during btRS. This result may have occurred due to the
lack of actual movements during btRS, resulting in a suppres-
sion of activity in LM1 with a concomitant increase in activation
for LPMC and SMA. Further, a large proportion of activation is
found during kinesthetic imagery (KI) in LPMC. It was suggested
that KI can be considered as a part of motor preparation system
(Solodkin et al., 2004). We found networking during the btRS and
ME tasks to be very similar with activations in the same corti-
cal areas where roles of SMA and LM1 differ as one source and
other target depending on whether its analyzed before or after
the actual task is executed. This is consistent with the study by
Solodkin and colleagues which suggests that changes in interrela-
tionships among these areas result into different prospects of the
same network (Solodkin et al., 2004).

In this study, we used the bivariate version of the Geweke’s
spectral decomposition-based GC (Geweke, 1982; Dhamala et al.,
2008a) for the calculation of directed functional connectivity.
In the directed transfer-function based formulation (Kuś et al.,
2004), the bivariate methods are shown to have limitations for
correctly resolving true directions. A complete set of recordings
is required to resolve true patterns of interactions. Geweke’s
bivariate formulation has a limitation of distinguishing indirect
causal influences from direct causal influences. The reduction
in conditional GC (from node 1 to node 2 conditioned on node
3) compared to pairwise causality (from node 1 to node 2)
(Dhamala et al., 2008a) can indicate a mediated causal influence
(between 1 and 2 via 3). The sensorimotor regions we considered
in this study are known to have direct anatomical connections
with each other. Therefore, conditional causality was not used
here. The main conclusions are based on the low-frequency

GC spectra and the connectivity modulation by the motor
tasks, for which the use of bivariate GC is sufficient. Although
the understanding of the exact mechanism for slow (<0.1 Hz)
oscillations is lacking, the oscillatory node and network activity
as observed here from the fNIR measurements could be due to
neural level excitability fluctuations (Elwell et al., 1999; Balduzzi
et al., 2008; Tong and Frederick, 2010) and communication in
cortical and subcortical networks (Buzsáki and Draguhn, 2004;
Balduzzi et al., 2008; Keilholz et al., 2010). Excitability fluctua-
tions allow for the flexibility in moment-to-moment perception,
cognition, and motor behaviors (Arieli et al., 1996; Makeig et al.,
2004; Palva and Palva, 2012). The neural mechanism into how
slow oscillations are generated and associated across electrical,
metabolic and hemodynamic processes still remains a topic of
future investigations, which may require these processes to be
monitored concurrently.

In conclusion, results of the present work show (i) power,
coherence and GC spectra had peaks within the frequency
band (0.01–0.04 Hz) during RS whereas the peaks shifted to a
higher frequency range (0.04–0.08 Hz) during btRS and finger
movement tasks, (ii) there was significant bidirectional con-
nectivity between all the nodes during RS and unidirectional
connectivity from the LM1 to SMA and LM1 to LPMC dur-
ing btRS, and (iii) the connections from SMA to LM1 and
from LPMC to LM1 were significantly modulated in LH, RH,
and BH finger movements relative to btRS. These results are
consistent with the other studies, which used fMRI and EEG
techniques. This provides us confidence that NIRS can be effec-
tively used for monitoring slow hemodynamic fluctuations and
underlying brain functional connectivity during rest and task.
These data serve as a foundation for studies to follow com-
paring the characteristics of motor and RS networks between
healthy subjects and people with neurologic insult such as stroke.
Analysis of brain network in patients with lesions may lead to
an effective approach to determine the functional and struc-
tural damage to cortical network connections, which may better
inform us as we develop clinical recovery pathway for these
clients.
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