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Noise-vocoding is a transformation which, when applied to speech, severely reduces
spectral resolution and eliminates periodicity, yielding a stimulus that sounds “like a
harsh whisper” (Scott et al., 2000, p. 2401). This process simulates a cochlear implant,
where the activity of many thousand hair cells in the inner ear is replaced by direct
stimulation of the auditory nerve by a small number of tonotopically-arranged electrodes.
Although a cochlear implant offers a powerful means of restoring some degree of
hearing to profoundly deaf individuals, the outcomes for spoken communication are
highly variable (Moore and Shannon, 2009). Some variability may arise from differences
in peripheral representation (e.g., the degree of residual nerve survival) but some may
reflect differences in higher-order linguistic processing. In order to explore this possibility,
we used noise-vocoding to explore speech recognition and perceptual learning in
normal-hearing listeners tested across several levels of the linguistic hierarchy: segments
(consonants and vowels), single words, and sentences. Listeners improved significantly
on all tasks across two test sessions. In the first session, individual differences
analyses revealed two independently varying sources of variability: one lexico-semantic
in nature and implicating the recognition of words and sentences, and the other an
acoustic-phonetic factor associated with words and segments. However, consequent to
learning, by the second session there was a more uniform covariance pattern concerning
all stimulus types. A further analysis of phonetic feature recognition allowed greater insight
into learning-related changes in perception and showed that, surprisingly, participants did
not make full use of cues that were preserved in the stimuli (e.g., vowel duration). We
discuss these findings in relation cochlear implantation, and suggest auditory training
strategies to maximize speech recognition performance in the absence of typical cues.
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INTRODUCTION
A cochlear implant (CI) is a hearing aid that converts acous-
tic sound energy into electrical stimuli to be transmitted to the
auditory nerve, via an array of electrodes arranged tonotopically
along the basilar membrane of the inner ear (Rubinstein, 2004).
Although the implant restores some degree of hearing to pro-
foundly deaf individuals, the substitution of thousands of inner
hair cells with, at most, tens of electrodes means that the trans-
mitted signal is greatly impoverished in spectral detail. CI devices
give a weak sense of voice pitch and transmit fewer discriminable
steps in amplitude, and there is often a mis-match between fre-
quencies being transmitted by the individual electrodes and those
best received at the position of contact on the basilar membrane.
Thus, particularly for post-lingual recipients of an implant (i.e.,
those who lost their hearing after the acquizition of language),
the listener must learn to make sense of an altered and unfamiliar
sound world. This process of adaptation and perceptual learn-
ing after cochlear implantation can take a long time, with widely

varying levels of success (Pisoni, 2000; Sarant et al., 2001; Munson
et al., 2003; Skinner, 2003). Much research relating to implan-
tation has therefore been concerned with identifying predictive
markers of success, and appropriate training regimes to optimize
post-implantation outcomes.

A growing body of studies has employed acoustic sim-
ulations of CIs to model post-implantation adaptation in
normal-hearing participants. Vocoding is an acoustic transfor-
mation that produces speech with degraded spectral detail by
replacing the original wideband speech signal with a variable
number of amplitude-modulated carriers, such as noise bands
(noise-vocoding) or sine waves (tone vocoding). Here, the car-
riers simulate the electrodes of the CI to create a re-synthesized
speech signal that is spectrally impoverished, yet maintains
relatively intact amplitude envelope cues (Shannon et al., 1995).
Here, increasing the number of bands (or channels) increases the
spectral resolution, with a concomitant increase in intelligibility
of transformed sounds. As with the studies in CI recipients, it
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has been shown that normal-hearing participants also exhibit
considerable individual variability in performance with CI
simulations (Nogaki et al., 2007; Stacey and Summerfield, 2007;
Eisner et al., 2010).

An important issue for clinicians testing and training CI recipi-
ents is the selection of appropriate materials (Loebach and Pisoni,
2008; Loebach et al., 2008, 2009). The main day-to-day context
for spoken communication is spontaneous face-to-face conver-
sation, so it is natural to consider training paradigms similar to
that situation. For example, connected discourse tracking (CDT),
using face-to-face repetition of a story told by an experimenter,
has been shown to yield significant improvements in the recogni-
tion of severely degraded speech in hearing participants (Rosen
et al., 1999). However, delivery of this kind of training is very
labor-intensive (though a recent study comparing live CDT with
a computer-based approach showed equivalent training benefits
from the two training routines; Faulkner et al., 2012). Thus, train-
ing and assessment routines typically involve the recognition of
laboratory recordings of materials such as sentences, words and
simple syllables. There is some evidence that improvements with
one kind of test material can generalize to another. For example,
Loebach and Pisoni (2008) found that training participants with
exposure and feedback on either words, sentences or environmen-
tal sounds gave improvements in performance that generalized
to the other tasks. In a very small group of three CI recipients,
Fu et al. (2005) found that training with CV and CVC sylla-
bles (where “C” stands for Consonant, and “V” for Vowel) led to
improved test performance on sentence recognition. However, the
picture is not straightforward: Loebach and Pisoni (2008) found
that generalization was most effective between materials of the
same class (e.g., words to words, sentences to sentences), and that
training on speech materials did not afford any improvements in
recognition of environmental sounds. This may depend on the
nature of the vocoding transformation, as this severely degrades
spectral detail important for recognizing some environmental
sounds—similarly, training on vocoded sentence materials gave
poor generalization to the recognition of talkers (Loebach et al.,
2009).

Imbalances in learning transfer may also be affected by the
behavior of the listener. Loebach et al. (2008) found that training
on talker identification afforded greater generalization to vocoded
sentence transcription than training on talker gender identifi-
cation. The authors suggest this is because the more difficult
task of talker identification led to greater attentional engage-
ment of the listeners with the acoustic properties of vocoded
speech. Similarly, Loebach et al. (2010) and Davis et al. (2005)
found that training participants with semantically anomalous
sentences was just as effective as training with meaningful sen-
tences, while Hervais-Adelman et al. (2008) found equivalent
improvements in performance after training with vocoded non-
words as observed with real-word training. Loebach et al. (2010)
suggest this is because the absence of semantic cues engages a
more analytic listening mode in the listener, where attention
is directed to the acoustic-phonetic aspects of the signal rather
than “synthetic,” higher-order processes focused on linguistic
comprehension. Although they acknowledge that sentence and
word materials afford greater ecological validity (Loebach et al.,

2010), Loebach and colleagues suggest that encouraging analytic,
acoustic-phonetic, listening can afford better generalization of
learning across a range of materials.

Another way to view the data from these training studies is
that there are potentially both “analytic” and “synthetic” factors
at play when listeners adapt to degraded speech input. However,
the extent to which these operate independently is not known,
and it may be that some listeners would stand to benefit more
from training on higher-order processes for employment in the
recognition of ecologically valid, linguistic materials encoun-
tered in day-to-day life. A study by Grant and Seitz (2000)
showed that use of “top–down” contextual information—what
Loebach and colleagues would consider a “synthetic” process—
varies across individuals. They presented 34 hearing-impaired
listeners with filtered sentences from the IEEE corpus (e.g., “Glue
the sheet to the dark blue background”; IEEE, 1969), and their
constituent keywords in isolation, at three different intelligibility
levels. Using Boothroyd and Nittrouer’s (1988) equation explain-
ing the relationship between word recognition in sentences and
in isolation, Grant and Seitz (2000) calculated individual k-factor
scores—representing the listener’s ability to use semantic and
morpho-syntactic information in the sentence to identify the
words within it—and observed considerable variability in this
parameter across their listening population. In further support
of multiple factors underlying speech recognition, Surprenant
and Watson’s (2001) large-scale study of individual variabil-
ity in speech-in-noise recognition indicated that performance
is far from identical across different linguistic levels—Pearson’s
correlation coefficients between speech-in-noise recognition of
CV-units, words and sentences and a clear-speech syllable iden-
tification task ranged from only 0.25 to 0.47 in their experiment.
Therefore, extracting patterns of covariance, and measuring how
these change with learning, could offer additional insight into
the underlying perceptual processes supporting adaptation to
a CI or simulation. For example, close correlation of speech
recognition at segment, word and sentence level may indicate
a unified “analytic” strategy, whereas statistical independence of
sentence stimuli from words and segments could reflect consider-
able importance for top–down syntactic and semantic processing
strategies in recognizing vocoded sentences.

In the current experiment, we tested a group of normal-
hearing adults in the transcription of noise-vocoded sentences,
words and segments at a range of difficulty levels (operationalized
in terms of the number of vocoding bands), with the following
objectives:

• To explore patterns of covariation across the linguistic hierar-
chy—segment, word, sentence—in order to characterize the
number and nature of factors underlying the recognition of
vocoded speech. We predicted that individual scores across
the five tasks would be significantly correlated, but that indi-
viduals’ differing abilities to use “top–down”/“synthetic” and
“bottom–up”/“analytic” processes would limit the strength of
these correlations.

• To measure long-term perceptual learning of vocoded speech—by
re-testing participants after 1–2 weeks. There were several aims
here:
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i. To assess whether adaptation to noise-vocoded speech can
be maintained over several days without exposure.

ii. To compare the size of any adaptation effects across stimu-
lus type.

iii. To explore whether adaptation / additional exposure alters
listening strategies (as measured using analyses of covaria-
tion).

Davis et al. (2005) found that transcription of vocoded sen-
tences improved significantly within 30 items of exposure, in
the absence of feedback. Therefore, to minimize design com-
plexity and optimize the exploitation of individual differences
analyses, learning in the current experiment was operational-
ized as the improvement in performance from Session 1 to
Session 2, without involvement of explicit training procedures.

• To quantify the efficiency of “analytic” listening—Loebach et al.
(2010) suggested that failure to attend to critical acoustic prop-
erties of vocoded stimuli may limit the transfer of learning. Our
final objective was to use information transfer (IT) analyses of
consonant and vowel perception to quantify the reception of
acoustic-phonetic features, and to directly assess the degree to
which the acoustic cues present in the stimulus are being used
by untrained listeners.

Previous work on the learning of vocoded speech has tended to
train and test participants at a fixed level of degradation (i.e.,
number of bands; Davis et al., 2005; Hervais-Adelman et al., 2008;
Loebach and Pisoni, 2008; Eisner et al., 2010). Given the consid-
erable variation in individual performance with vocoded stimuli,
this runs the risk of floor or ceiling effects in the data. For the cur-
rent experiment, we adopted an approach used by Shannon et al.
(2004), who tested across a range of difficulty levels (numbers of
channels) and fitted logistic functions to describe performance on
a range of noise-vocoded speech recognition tasks. In the current
experiment, curves were fitted to the recognition data for each
participant, by task and by session—estimates of 50% thresholds,
representing performance across a range of difficulty, could then
be extracted for use in further analysis of learning effects and
covariation across tasks and time.

METHOD
PARTICIPANTS
Participants were 28 monolingual speakers of British English (12
male), with no language or hearing problems. The participants
were recruited from the UCL Department of Psychology Subject
Pool using an age inclusion criterion of 18–40 years old (individ-
ual date of birth information was not collected). All participants
were naïve to noise-vocoded speech.

MATERIALS
Listeners were tested on perception of 5 different stimulus types,
all vocoded with 1, 2, 4, 8, 16, and 32 bands (where 1 is most
degraded, and 32 the most intelligible). The items were also
available in undistorted form. All materials were recorded by a
female speaker of Standard Southern British English in a sound-
proof, anechoic chamber. Recordings were made on a Digital
Audio Tape recorder (Sony 60ES) and fed to the S/PDIF digital
input of an M-Audio Delta 66 PC soundcard. The files were then

downsampled at a rate of 44100 Hz to mono.wav files with 16-
bit resolution using Cool Edit 96 software (Syntrillium Software
Corporation, USA). The vocoding algorithm followed the gen-
eral scheme described by Shannon et al. (1995), with analysis and
output filters between 100–5000 Hz and envelope extraction via
half-wave rectification and low-pass filtering at 400 Hz.

The stimulus sets were as follows:

• Simple Sentences. One-hundred-and-forty items from the
BKB sentence corpus (Bench et al., 1979), each with three
keywords (e.g., The clown had a funny face).

• Low Predictability Sentences. One-hundred-and—forty items
from the IEEE sentence corpus (IEEE, 1969), each with five
keywords (e.g., The birch canoe slid on the smooth planks).

• Single Words. One-hundred-and-forty items from the
phonemically-balanced Boothroyd AB lists (e.g., gas, mice,
whip; Boothroyd, 1968).

• Consonants. Seventeen consonants: b, d, f, g, dZ, k, l, m, n, p,
s, S, t, v, w, j, z. One token of each consonant was recorded in
the context /A:/-C-/A:/, where C is a consonant e.g., apa, aga,
ala.

• Vowels. Seventeen vowels: æ, eI, A:, ε:, i:, i@, e, I, aI, 3, 6, @U,
u:, O:, aU, OI, �. One token of each vowel was recorded in the
context /b/-V-/d/, where V is the vowel e.g., bad, beard, boyed.

DESIGN AND PROCEDURE
Twenty-seven listeners made two visits to the lab, separated by
7–15 days (M = 10.44 days, SD = 2.69), while the twenty-eighth
participant could only return after 78 days. All stimulus presen-
tation routines were programmed and run in MATLAB v7.1 (The
Mathworks, Inc., Natick, MA).

• Sentences and Words. For each task (Simple Sentences, Low
Predictability Sentences and Words, respectively), each session
featured a set of 70 different items with 10 at each difficulty
level. Within each task, one set of 70 items was labeled as Set
A and another 70 distinct items as Set B. Fourteen participants
received Set A items in Session 1, while the remainder received
Set B items in Session 1. Within-session, a pseudorandom-
ization routine ensured that the 70 items (i.e., their linguistic
content) were completely randomized across the task, but that
within each chronological block of 7 sentences there was an
example from each difficulty level.

• Consonants and Vowels. The consonants and vowels were
tested separately. Each of the tokens was repeated at all of
the seven difficulty levels, and the whole list of items was
fully randomized. Exposure to the difficulty levels was not
chronologically constrained.

In each session, the tasks were administered in the order: BKB
sentences, IEEE sentences, words, consonants, vowels. All test
materials were presented over Sennheiser HD25-SP headphones
in a quiet room, at a fixed volume setting using QuickMix
(Version 1.06; Product Technology Partners, Cambridge, UK).
The sentences and words tasks were open-set recognition tasks.
Each stimulus was played once and the participant gave a
typed report of the item content. Responses were self-timed.
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The listener was encouraged to type as much as possible from
what they heard (and that partial answers were acceptable), but
were also told that it was fine to leave a blank response bar if
the item was completely unintelligible. The consonants and vow-
els tasks each adopted a 17-alternative forced-choice paradigm.
The response choices were presented on a printed sheet which
remained in view for the duration of the task. In these two tasks,
listeners were encouraged not to leave any gaps, even when they
were completely unsure of the answer.

ANALYSIS
For each participant, performance on the tasks was scored as the
proportion of keywords/items correct at each distortion level. For
the sentences, a scoring system was adopted in which deviations
in tense and number agreement on nouns (i.e., if the participant
reported “men” when the actual keyword was “man”) and verbs
(i.e., if the participant reported “carries” or “carried” when the
correct word was “carry”) were allowed. The reasoning behind
this approach was to allow for errors that may have resulted from
the participant’s attempts to report a grammatically correct sen-
tence for each item. For example, if the participant hears the first
keyword in “the cup hangs on a hook” as “cups,” then he/she
may choose to report “hang” as the second keyword, in order to
maintain number agreement. For both the Sentences and Words,
typographic errors that produced homophones of the target word
e.g., “bare” and “bear” were permitted.

Psychometric performance curves
Logistic curve-fitting was performed on group data (by task and
session), and on each individual data set (by participant, task,
and session) using the psignifit software package (Wichmann and
Hill, 2001a,b). For superior fits, the distortion levels (number of
bands) were converted into their log10 equivalents (as used by
Shannon et al., 2004). Data from undistorted stimuli were not
included. The equation used for fitting is shown in Figure 1.

In the output of the fitting procedure, the alpha parameter
corresponds to the number of bands giving 50% of maximum

FIGURE 1 | Equation used to estimate psychometric functions

describing the relationship between number of bands and speech

intelligibility. α, alpha; β, beta; γ, gamma; λ, lambda. “x” in this study was
the log of the number of channels in the noise vocoder.

performance, and was extracted from each fitted curve for use in
subsequent analyses. Lower alpha values indicate better perfor-
mance. Beta is inversely proportional to the curve steepness. The
parameter gamma corresponds to the base rate of performance
(or “guessing rate”), while lambda reflects the “lapse rate” i.e., a
lowering of the upper asymptote to allow for errors unrelated to
the stimulus level. The software takes a constrained maximum-
likelihood approach to fitting, where all four variables are free to
vary, but where, in this case, gamma and lambda are constrained
between 0.00 and 0.05. For the forced-choice tasks (Consonants
and Vowels), the gamma parameter was set to 1/17.

Information transfer analyses
The forced-choice nature of the consonant and vowel tasks means
that the data could be arranged into confusion matrices for
use in an Information Transfer (IT) analysis (e.g., Miller and
Nicely, 1955). IT analysis makes use of confusions (e.g., /b/ is
mistaken for /d/) in speech identification tasks to measure the
extent to which phonetic features (e.g., place of articulation,
presence/absence of voicing) in the stimuli are transmitted accu-
rately to the listener. The data are typically quantified in terms
of the proportion or percentage of available bits of informa-
tion in the stimuli that are accurately received by the listener.
If no confusions are made in the participant’s identification of
a certain feature (e.g., vowel length), the IT score would be
1 or 100%, and correspondingly, if the participant’s responses
do not vary lawfully with the actual feature value, the score
would be 0.

Unfortunately, as the participants’ responses were made by
typing the answers, rather than by selecting onscreen response
options, some participants in the current experiment deviated
from the forced-choice response constraints. This could take the
form of omitted responses (which often occurred at particularly
difficult distortion levels) or responses from outside the closed
list. As a consequence, all data sets that included any omissions or
deviations from the forced-choice options were not included in
the IT analysis.

Consonants. A total of 14 data sets were entered into the IT anal-
ysis for consonant recognition. The feature matrix used included
voicing, place and manner, and is shown in Table 1.

Unconditional IT feature analyses were run within the FIX
analysis package (Feature Information XFer, University College
London, UK; http://www.phon.ucl.ac.uk/resource/software.
html). The amount of Information transferred for Voicing,
Place, and Manner (as a proportion of the amount input for
each of the features) was recorded for (i) group confusion

Table 1 | Feature matrix for IT analysis of the Consonants task.

B d f g dZ k l m n p s S t v w j z

Voicing + + − + + − + + + − − − − + + + +
Manner plos plos fric plos aff plos app nas nas plos fric fric plos fric app app fric

Place bil alv lad vel paa vel alv bil alv bil alv paa alv Lad lav pal alv

For Voicing, the ‘+’ and ‘−’ signs correspond to present and absent voicing, respectively. For Manner, plos, plosive; fric, fricative; aff, affricate; app, approximant;

nas, nasal. For Place, bil, bilabial; alv, alveolar; lad, labiodental; paa, postalveolar; vel, velar; lav, labialized velar; pal, palatal.
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matrices constructed at 1, 2, 4, 8, 16, and 32 bands, for Session
1 and Session 2 separately and (ii) for individual confusion
matrices collapsed across 1–32 bands, for Session 1 and Session 2
separately. For the particular set of consonants used, there were
0.937 bits of information available for Voicing, 2.542 bits for
Place of articulation and 2.095 bits for Manner of articulation.

Vowels. A total of 14 data sets were entered into the IT analysis
for vowel recognition. The feature matrix used included vowel
height, backness, roundedness, length, and whether the vowel was
a monophthong or diphthong (Table 2).

IT feature analyses were run, using the FIX analysis package,
for (i) group confusion matrices constructed at 1, 2, 4, 8, 16,
and 32 bands, for Session 1 and Session 2 separately and (ii)
for individual confusion matrices collapsed across 1–32 bands,
for Session 1 and Session 2 separately. In all analyses, there were
3.264 bits of information available for vowel Height, 2.816 bits for
Backness, 1.452 bits for Roundedness, 0.874 bits for Length and
0.937 bits for Mono—vs. Diphthong status.

All other reported statistical analyses were carried out in SPSS
(version 19; IBM, Armonk, NY).

RESULTS
This section falls into two parts. In the first, psychometric perfor-
mance functions are fitted to each individual’s performance, and
individual differences analyses of curve position used to charac-
terize group performance across and within the two sessions. The
second part uses IT analyses to explore the perception of conso-
nants and vowels and relate this to recognition of sentences and
words.

MEASURING PROFILES OF LEARNING AND COVARIANCE
Figure 2 shows a plot of the group performance functions for the
open-set [2(a)] and closed-set [forced-choice; 2(b)] tasks in each
session.

For analysis, the alpha scores generated in the curve fitting pro-
cedure were operationalized as the Threshold Number of Bands
(TNB) for each participant, in each task, in each session. Figure 3
shows that there was an overall decrease in TNBs on the five
tasks between Session 1 and 2. A repeated-measures ANOVA
analysis was run on the TNBs, with Session and Task as within-
subjects factors. A between-subjects factor, Version (which coded
the order of presentation of the item sets) was also included. There
was a significant effect of Session [F(1, 26) = 35.094, p < 0.001],

a significant effect of Task [F(4, 104) = 117.18, p < 0.001), and a
non-significant interaction of these two factors (F < 1), indicat-
ing that the degree of improvement was not significantly different
across tasks.

FIGURE 2 | Logistic curves describing group performance on the

speech recognition tasks for (A) open-set tasks (sentences and words)

and (B) consonants and vowels. Error bars show 95% confidence limits
around α.

Table 2 | Feature matrix for IT analysis of the Vowels task.

æ eI a d i: ei e I aI d a eW
u: c aU Ic

�

Height no cm-fc o om c nc-m cm nc o-nc om o m-nc c om o-nc om-nc om

Backness f f-nf b f f nf-c f nf f-nf c b c-nb b b f-nb b-nf b

Roundedness n n n n n n n n n n y ny y y ny yn n

Length s l l l l l s s l l s l l l l l s

Diphthong? n y n n n y n n y n n y n n y y n

For Height, o, open; no, near-open; om, open-mid; m, mid; cm, close-mid; nc, near-close; c, close. For Backness, b, back; nb, near-back; c, central; nf, near-front;

f, front. For Roundedness, y, rounded and n, unrounded. For Length, s, short and l, long. For Diphthong, y, diphthong and n, monophthong. Dashes indicate the

separation of the diphthong descriptions into monophthongal elements, in temporal order.
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FIGURE 3 | Mean TNBs (Threshold Number of Bands) for speech

recognition across the five tasks, and across the two test sessions.

Error bars show ±1 standard error of the mean.

The between-subjects effect of Version was non-significant
(F < 1), as were the two-way interactions of Version with Session
[F(1, 26) = 1.33, p = 0.260] and Version with Task [F(1, 104) =
1.16, p = 0.333]. There was, however, a significant three-way
interaction of Version, Session and Task [F(4, 104) = 5.57, p <

0.001]; while most conditions across both versions showed a
mean improvement from Session 1 to Session 2, Version A partic-
ipants showed a trend in the opposite direction on the IEEE task,
while the Version B participants showed a very small decrease
in mean performance on the Words task from Session 1 to
Session 2.

There was evidence of several significant relationships across
tasks for the TNB scores. Table 3A shows the one-tailed Pearson’s
correlation matrix for TNB scores in Session 1. These show signif-
icant (and marginally significant) correlations between the two
sentence tasks, and between the consonants and vowels tasks,
while the words correlated reasonably well with all other tasks.

A common factor analysis was run on the threshold data,
with maximum likelihood extraction and varimax rotation. The
rotated factor matrix is shown in Table 4A, for those factors pro-
ducing eigenvalues above 1. Two components were extracted. In
the rotated matrix, the first component accounted for 22.6% of
the variance, while the second component accounted for 19.2%.
The pattern of correlations for TNB scores in Session 2 no longer
fitted the processing framework suggested by the Session 1 data
(see Table 3B), with the Words task now somewhat separate from
the others. A common factor analysis was run on the data as for
the Session 1 scores. This converged on two components—see
Table 4B. In this analysis, Factor 1 accounted for 24.4% of the
variance, where Factor 2 accounted for a further 20.4%.

EXPLORING ANALYTIC LISTENING USING IT ANALYSIS
Consonants
The results of the pooled group analysis are plotted in Figure 4,
showing the proportion of Information transferred for each

Table 3 | Pearson’s correlation coefficients between the five tasks in

the experiment, across the two testing session.

BKB IEEE Words Cons Vowels

(A) SESSION 1

BKB – 0.356* 0.259∧ 0.003 −0.100

IEEE - 0.323* 0.069 −0.056

Words – 0.417* 0.331*

Cons – 0.302∧

Vowels –

(B) SESSION 2

BKB – 0.277∧ 0.333* 0.299∧ 0.236

IEEE – -0.025 0.393* 0.296∧

Words – 0.015 0.057

Cons – 0.317∧

Vowels –

Cons, Consonants; ∧p < 0.10, *p < 0.05.

Table 4 | Results of factor analyses on individual TNBs (Threshold

Number of Bands).

Factor 1 Factor 2

(A) SESSION 1

BKB 0.605

IEEE 0.593

Words 0.705 0.469

Consonants 0.558

Vowels 0.562

(B) SESSION 2

BKB 0.520 0.344

IEEE 0.545

Words 0.946

Consonants 0.642

Vowels 0.491

Only factor loadings over 0.3 are shown.

feature, across each difficulty level. The plots give a readily inter-
pretable visual representation of the “cue-trading” behavior of the
listeners as spectral information is manipulated, and as a result of
perceptual learning.

Figure 5 shows the results of the individual analyses for each
feature and session collapsed across difficulty level. A repeated-
measures ANOVA gave significant effects of Session [F(1, 13) =
13.52, p = 0.003] and Feature [F(2, 26) = 64.13, p < 0.001]. A
significant interaction of these two factors [F(1.38, 26) = 4.16,
p = 0.046; Greenhouse-Geisser corrected] was explored using 3
post-hoc t-tests with Bonferroni correction (significance level p <

0.017). These indicated a significant increase in IT for Manner
[t(13) = 2.97, p = 0.002] and Voicing [t(13) = 2.97, p = 0.011]
from Session 1 to Session 2, but not for Place [t(13) = 2.17, p =
0.049].

The individual-subject IT scores for voicing, place and man-
ner in each session were entered as predictors in linear regression
analyses on the TNB scores for the five tasks. In Session 1, a
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significant model with Place and Voicing as predictors offered the
best account of consonant recognition [R2adj. = 0.750; F(2, 11) =
21.71, p = 0.001]. Performance on the vowels task was best pre-
dicted by Voicing [R2adj. = 0.295; F(1, 12) = 6.44, p = 0.026].

FIGURE 4 | Results of the group IT analysis on consonant perception

for (A) Session 1 and (B) Session 2.

FIGURE 5 | Results of the IT analysis on consonant perception, using

individual participant data. For each feature, the darker bars show the
results for Session 1, and the paler bars show the results for Session 2.
Error bars show ±1 standard error of the mean.

In Session 2, Manner and Place predicted TNB scores on the
Consonants task [R2adj. = 0.580; F(1, 12) = 9.98, p = 0.003],
while Manner scores predicted TNB scores on the IEEE sentences
[R2adj. = 0.270; F(1, 12) = 5.80, p = 0.033]. There were no other
significant models.

Vowels
The results of the pooled group IT (Figure 6) show that vowel
Length information is the best transferred (as a proportion of the
information input about this feature) of the five features at low
spectral resolutions (1, 2, and 4 bands), with the other features
more closely bunched. At greater spectral resolutions (16 and 32
bands), this discrepancy is reduced.

Figure 7 shows the results of the individual analyses for each
Feature and Session collapsed across difficulty level). A repeated-
measures ANOVA gave significant effects of Session [F(1, 13) =
23.17, p < 0.001] and Feature [F(1.12, 52) = 34.34, p < 0.001;
Greenhouse-Geisser corrected) with no interaction of the two
factors.

The individual-subject IT scores for each feature in each ses-
sion were entered as predictors in linear regression analyses on
the TNB scores for the five tasks. In Session 1, a significant
model featured Height as the sole predictor of TNB scores on
the Vowels task [R2adj. = 0.743; F(1, 12) = 38.68, p < 0.001]. In

FIGURE 6 | Results of the group IT analysis on vowel perception for (A)

Session 1 and (B) Session 2.
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FIGURE 7 | Results of the IT analysis on vowel perception, using

individual participant data. For each feature, the darker bars show the
results for Session 1, and the paler bars show the results for Session 2.
Error bars show ±1 standard error of the mean. BACK, backness; ROUND,
roundedness.

Session 2, a significant model with Height and Length [R2adj. =
0.772; F(1, 12) = 28.51, p < 0.001] gave the best prediction of
TNB scores on the Vowels task, and a model with Length
emerged as significant for scores on the BKB sentences [R2adj. =
0.308; F(1, 12) = 6.80, p = 0.023]. There were no other significant
models.

DISCUSSION
The current data showed evidence for improved recognition of
noise-vocoded sentences, words and segments, when re-tested
after a 1–2 week period of no exposure, and without any explicit
training. Using individual differences as the starting point for
analyses, we identified a pattern of covariance across levels of
the linguistic hierarchy, which changed with learning. Analyses
of confusion data revealed that participants in the experiment
improved on the reception of acoustic-phonetic features by
Session 2, but exhibited inefficient use of cues available in the
vocoded signal. Further, these suggested predictive roles for spe-
cific phonetic features in the perception of noise-vocoded stimuli.

UNDERSTANDING NOISE-VOCODED SEGMENTS, WORDS AND
SENTENCES: EFFECTS OF LEARNING AND TASK
We found that performance improved significantly between
Session 1 and Session 2 of the experiment, and by an equiv-
alent amount across tasks. As the experiment was primarily
designed to explore individual differences and patterns of covari-
ance across tasks and time, we chose to run the five speech tests
in a fixed order for both sessions. Given that the task order
was not counterbalanced across the group, we therefore can-
not conclude whether the observed improvements are due to
within-session exposure or between-session consolidation—for
example, the BKB test occurred at the start of each session, and
so the improvement observed by Session 2 may reflect adapta-
tion during the remaining four tasks in Session 1 and before
the delay period. However, taken across all tasks, the significant
improvement in performance is, at least, a demonstration of

medium-term retention of adaptation to noise-vocoded speech
in the absence of exposure or training. We also note that, for
the sentences and words tasks, the improved performance reflects
perceptual learning at an acoustic-phonetic level, as recognition
in Session 2 was tested using novel tokens (Davis et al., 2005).

UNDERSTANDING NOISE-VOCODED SEGMENTS, WORDS AND
SENTENCES: EXPLORING COVARIANCE
Simple correlations between the tasks in each session showed,
like Surprenant and Watson (2001), rather modest evidence for
covariation of individual thresholds across the tasks (Table 3).
This once again demonstrates that there is no straightforward,
unitary approach to recognizing degraded speech across levels
of the linguistic hierarchy. However, a factor analysis of Session
1 TNB scores suggested some systematicity—this revealed two
similarly-weighted, orthogonal factors in the Session 1 thresh-
old data, with sentences and words loading on one factor, and
words and segments loading on the other. This suggests two
independent modes of listening: a “top–down” mode making
use of lexical, syntactic and semantic information to generate
hypotheses about stimulus identity, and a “bottom–up” mode
concerned with acoustic-phonetic discriminations. Notably, the
words task occupies an intermediate status, by loading on both
“top–down” and “bottom–up” factors. By Session 2, when per-
formance had improved, all tasks but one—Words—patterned
together. It appears that once the initial learning of sound-to-
representation mappings has taken place, the listener can begin
to approach most stimulus types in a similar way. In this sense,
we suggest that the nature of the underlying factors was different
in Session 2, such that these could no longer be well described
by a greater involvement of “top–down” or “bottom–up” pro-
cesses. However, we note that, in both session, the factors only
accounted for a proportion of the variance, and therefore we
cannot rule out the influence of additional factors underlying
performance.

The plot in Figure 2 shows that the Words task was the
most difficult of the open-set tasks in both sessions, with lis-
teners requiring a greater amount of spectral detail (i.e., larger
numbers of bands) in order to reach the 50% performance thresh-
old. Within the open-set tasks, the overall amount of exposure
to vocoded material across seventy sentences is much greater
than for seventy monosyllabic words. However, Hervais-Adelman
et al. (2008) showed that, even when matched for number of
words of exposure, learning is still slower for noise-vocoded
words than for sentences. These authors interpret such find-
ings in terms of the relative richness of the “teaching signal”
that assists learning. In the current experiment, the listener
could draw upon many sources of knowledge against which to
test hypotheses for sentence recognition—lexical, syntactic and
semantic (Miller, 1947). Furthermore, the segment recognition
tasks provided a learning frame-work through their forced-choice
design. In contrast, the recognition of monosyllabic, degraded
words could be constrained by the expectation of real lexical
items, but with many monosyllables having several real-word
neighbors (bat, cat, sat, fat etc.), any error in phonemic identi-
fication could lead to the participant making the wrong “guess”
in their response to difficult items. In line with Hervais-Adelman
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et al., we argue that the nature of the Words task will have
made it most difficult within each testing session, but also lim-
ited the potential for improved performance with learning. By
the second testing session, listeners have established a sufficient
level of acoustic-to-phonemic mapping that, in combination with
expectancy constraints, allowed for improved performance on
the sentences and segments tasks. However, the recognition of
single words could not be performed using the same listening
strategies(s).

EXPLORING ACOUSTIC-PHONETIC PROCESSING: INFORMATION
TRANSFER FOR CONSONANTS AND VOWELS
The forced-choice design of the consonants and vowels tasks
allowed us to explore performance in terms of the perception of
phonetic features, using an IT analysis. The outcomes of IT anal-
yses on the consonants and vowels recognition data are generally
in agreement with the findings of several previous studies using
noise-vocoded speech (Dorman et al., 1990, 1997; Shannon et al.,
1995; Dorman and Loizou, 1998; Iverson et al., 2007). However,
the current study enabled the assessment of two extra dimensions:
the effect of perceptual learning on the extraction of feature infor-
mation, and the relationship of feature processing to performance
on the five speech recognition tasks.

The group IT analysis of the consonants data suggested that,
numerically, place was the most poorly transferred feature, with
no improvement across sessions. Dorman et al. (1990) tested
identification of consonants by CI patients. They reasoned that,
given the good temporal resolution by implants, envelope-borne
information would be well transferred while the poor resolution
offered by a small number of electrodes (6 in the device tested
in their study) would limit the transfer of spectral information.
Envelope information potentially cues listeners to voicing and
manner, while transmission of place information is dependent on
high-rate temporal structure (fluctuation rates from around 600
to 10 kHz) cueing spectro-temporal dynamics including the abil-
ity to resolve formants in the frequency domain; (Rosen, 1992).
In CIs and their simulations, frequency resolution can be very
poor in the region of formant frequencies, such that both F1
and F2 may be represented by the output of only one chan-
nel/electrode. Even if the first two formants can be resolved,
the ability to differentiate one speech sound from the other can
depend on within—formant transitions in frequency, for exam-
ple in the discrimination of /b/ and /d/. The ability to make
discriminations based on formant-carried frequency information
in noise-vocoded speech will depend on the ability of listen-
ers to compare the relative amplitude outputs of the different
bands. A study by Shannon et al. (1995) with normal-hearing
listeners exposed to noise-vocoded speech demonstrated that,
after several hours of exposure, voicing and manner were almost
completely transferred from spectral resolutions of 2 bands and
upwards, while place IT was around 30% with 2 bands and
did not exceed 70% by 4 bands. It should be noted that the
three phonetic features of voicing, place and manner are not
completely independent of each other, and there is likely to be
some degree of overlap in the corresponding acoustic features.
Dorman et al. (1990) point out that the amount of transferred
place information should vary with the amount transferred about

manner, as some manner cues facilitate place recognition e.g.,
frication manner (i.e., a wideband noise in the signal) poten-
tially allows relatively easy discrimination between /s/ or /

∫
/ and

/f/ or /θ/, as the former pair can be 15dB more intense than the
latter.

The slightly more marked improvement in reception of voic-
ing information than for the other two features in the current
task can perhaps be explained by considering the acoustic nature
of the noise-vocoded stimulus. Voicing can be weakly signaled
by relatively slow envelope fluctations—for example, through
detection of the longer silent periods in voiceless than voiced
plosives, or in the greater amplitude of voiced compared to voice-
less obstruents. However, voicing is also signaled by periodicity,
that is, temporal regularity in the speech waveform carried by
fluctuations primarily between 50 and 500 Hz (Rosen, 1992).
This information is reasonably well preserved after the vocod-
ing scheme used in the present experiment, where the amplitude
envelope was low-pass filtered at 400 Hz. The between-session
improvement shown for voicing at low band numbers could
reflect the participants’ increased ability to use the available tem-
poral information in the stimulus to assist performance in the
absence of cues to place of articulation that are more dependent
on spectral resolution. However, voicing information is also car-
ried by cues to overall spectral balance, as voicing is weighted
toward low frequencies. These cues become apparent as soon
as at least a second band of information is added to the noise-
vocoded stimulus. We note that the duration of the preceding
vowel in naturally-produced VCV stimuli can be a cue to voic-
ing in the upcoming consonant. However, the mean preceding
vowel duration was not significantly different between tokens
with voiced and voiceless consonants in our task [t(15) = 1.09,
p = 0.292].

It is clear that the transmission of spectral shape information,
as is required for identification of height, backness, roundedness,
and diphthongs, is a limiting factor in recognition of noise-
vocoded vowels, and that these four features are closely related in
terms of recognition. However, as neither the amplitude envelope
nor the duration of the signal is distorted by the noise-vocoding
procedure, the information on vowel length should have been
readily transmitted at all channels. Indeed, at lower numbers of
bands, length was the most well recognized feature in the vowels
task. However, overall recognition of this feature was well below
100%, and variable across the participant group. Regression mod-
els identified length as a significant predictor of scores on the
other speech tasks, suggesting that timing and rhythmic infor-
mation are of importance in perception of noise-vocoded speech.
Our findings are similar to those by Iverson et al. (2007), who
measured IT for vowel length in CI users and normal-hearing lis-
teners listening to a CI simulation. Both listening groups in the
Iverson et al. study showed sub-optimal IT. The authors propose
that, given the excellent preservation of durational information
in noise-vocoding, participants should be able to show 100% IT
for length, even at low spectral resolutions. Therefore, while the
evidence suggests that timing and rhythm may be important for
successful perception of some forms of noise-vocoded speech, lis-
teners may require more guidance and training in order to make
better use of durational cues.
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RECOGNITION OF NOISE-VOCODED SPEECH OVER PARTICIPANT, TASK,
AND TIME—IMPLICATIONS FOR TRAINING AND COCHLEAR
IMPLANTATION
The current study presents a number of findings relevant to more
applied settings such as training regimes for CI recipients. We
identified that, on initial exposure to noise-vocoded speech, the
pattern of covariance across tasks was suggestive of two differ-
ent “levels” of processing—one lexico-semantic (or “top–down”),
and the other more acoustic-phonetic (or “bottom–up”). The
words task was implicated in both of these factors. Isolated mono-
syllabic items such as “mice” and “gas” have lexical and semantic
content, and the expectation of meaningful tokens can constrain
the listener’s candidate pool of targets in the recognition task.
However, with all the items bearing the same CVC structure, and
without any higher-order syntactic and semantic cues, the lis-
tener must also engage an analytical, acoustic-phonetic approach
in order to successfully identify the words. It may be this demand
on both approaches that makes the words task the most dif-
ficult in the set. Loebach and colleagues (Loebach and Pisoni,
2008; Loebach et al., 2008, 2009, 2010) argue that training in
analytical, acoustic-phonetic listening offers the most promising
route for adaptation to distorted speech. In a test of vocoded
sentence perception they observed equivalent transfer of learn-
ing after training with semantically anomalous sentences as from
training with real sentences. They suggest that this reflects an
increased demand for attention to acoustic-phonetic aspects of
the signal (rather than higher-order syntactic or semantic cues)
when listening to the anomalous stimuli—their implication is
that learning at this level can then be readily transferred to other
stimulus types (Loebach et al., 2010). However, they also find that
transfer is greatest between stimuli of the same linguistic class
(Loebach and Pisoni, 2008). We have identified two sources of
variability, of similar explanatory power, underlying the recog-
nition of noise-vocoded speech. We suggest that both listening
“strategies” should potentially yield benefits for adaptation, and
that the effects observed by Loebach and colleagues may be asso-
ciated with more generalized attentional engagement rather than
the superior effects of analytic listening. Nogaki et al. (2007)
partly ascribe the variability within normal-hearing participants
listening to CI simulations to variable levels of enthusiasm and
involvement in difficult listening tasks, and contrast this with the
keener sense of urgency shown by CI patients, for whom suc-
cessful training has important consequences for their quality of
life. An experimental modulation of attentional engagement with
noise-vocoded speech might offer greater insight into how this
might differentially affect top–down and bottom–up aspects of
listening. In the context of cochlear implantation, it is important
to recognize that most of what we hear in everyday speech takes
the form of connected phrases and sentences. Therefore, identi-
fying methods of engaging attention in higher-order aspects of
linguistic processing, such as the use of semantic and syntactic
cues to “fill in the gaps” in difficult listening situations, may yield
benefits of a similar magnitude to more bottom–up strategies.

We also identified targets for improved bottom–up process-
ing of noise-vocoded speech from the current dataset. The use
of IT analyses to explore acoustic-phonetic processing produced
findings unattainable from basic recognition scores. We identified

significant predictive roles for voicing and vowel length infor-
mation in recognizing noise-vocoded stimuli across the linguis-
tic hierarchy. Both of these properties were well represented at
low spectral resolutions in the current stimuli—in particular,
vowel length information was fully present even with one band.
However, although perception of these features showed marked
improvement over time, Figures 4–7 show that listeners’ accuracy
in recognizing these features was much less than 100% in both
sessions. This suggests that, in the absence of specific guidance or
instruction, listeners continue to rely on typically dominant cues
to phoneme identification (e.g., formant frequencies in vowels) at
the expense of other information that is more reliably preserved
in the degraded signal. Based on this result, and similar findings
from Iverson et al. (2007), we suggest that if CIs are to be trained
in analytic listening to aid perceptual learning, this should be tar-
geted at the acoustic cues that are most likely to be preserved when
transmitted through the device. We suggest that focused training
on perception of duration, amplitude modulation, and spectral
balance cues could be used to improve acoustic-phonetic pro-
cessing from the bottom–up by maximizing the usefulness of the
information in the acoustic signal.

CONCLUSION
The current study offers some insight into the existence of
overlapping lexico-semantic and acoustic-phonetic processes
underlying the adaptation to a CI simulation in normal-hearing
participants. We suggest that both “top–down” and “bottom–up”
listening strategies have potential validity in settings such as train-
ing for recipients of CIs. To improve “analytic” processing, we
suggest that training should involve targeted attentional engage-
ment with acoustic cues that are well preserved in the degraded
stimulus. Further work is necessary to evaluate the benefits of
such an approach. When considering all of the findings, however,
we must acknowledge that the speech transformation used in the
current study forms only a basic approximation to the signal per-
ceived by most users of CIs. The process of implantation can result
in incomplete insertion of the electrode array and damage to parts
of the basilar membrane (yielding “dead regions”), both of which
have consequences for the mapping of sound to the auditory
nerve. Such effects can be simulated through additional transfor-
mations in the noise-vocoding technique (e.g., Rosen et al., 1999;
Smith and Faulkner, 2006), and future work will need to deter-
mine whether the current findings are borne out for these more
degraded signals.
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