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This paper investigates the influence of the leg afferent input, induced by a leg assistive
robot, on the decoding performance of a BMI system. Specifically, it focuses on a decoder
based on the event-related (de)synchronization (ERD/ERS) of the sensorimotor area. The
EEG experiment, performed with healthy subjects, is structured as a 3 × 2 factorial design,
consisting of two factors: “finger tapping task” and “leg condition.” The former is divided
into three levels (BMI classes), being left hand finger tapping, right hand finger tapping and
no movement (Idle); while the latter is composed by two levels: leg perturbed (Pert) and
leg not perturbed (NoPert). Specifically, the subjects’ leg was periodically perturbed by an
assistive robot in 5 out of 10 sessions of the experiment and not moved in the remaining
sessions. The aim of this study is to verify that the decoding performance of the finger
tapping task is comparable between the two conditions NoPert and Pert. Accordingly,
a classifier is trained to output the class of the finger tapping, given as input the features
associated with the ERD/ERS. Individually for each subject, the decoding performance
is statistically compared between the NoPert and Pert conditions. Results show that the
decoding performance is notably above chance, for all the subjects, under both conditions.
Moreover, the statistical comparison do not highlight a significant difference between
NoPert and Pert in any subject, which is confirmed by feature visualization.

Keywords: brain robot interface, assistive exoskeleton robot, ERD/ERS of the sensorimotor hand area, lower limb
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1. INTRODUCTION
Brain-machine interfaces (BMI) have recently raised much inter-
est in that they can help improve the quality of life of people with
severe motor disabilities. In previous studies, the brain signal has
been used to control devices that affect the surrounding envi-
ronment such as wheelchairs or neuroprosthesis (Mussa-Ivaldi,
2000; Daly and Wolpaw, 2008; Pfurtscheller and Solis-Escalante,
2008). Regarding the nature of ERD/ERS, movement or prepa-
ration for movement is typically accompanied by a decrease in
mu and beta rhythms, particularly contralateral to the move-
ment (Wolpaw et al., 2002). This phenomenon has been named
event-related desynchronization or ERD (Babiloni et al., 1999).
Its opposite, rhythm increase, or event-related synchronization
(ERS), occurs after movement and with relaxation (Pfurtscheller
and Lopes da Silva, 1999). To note that similar ERD/ERS patterns
in the sensorimotor area can be elicited also by motor imagery
(Pfurtscheller and Neuper, 1997; Pfurtscheller and Lopes da Silva,
1999; McFarland et al., 2000). These features make it possible to
use a BMI system based on ERD/ERS for the control of an external
device (Pfurtscheller et al., 2000b; Wolpaw et al., 2003; Babiloni
et al., 2007). If this is done irrespectively of any system cues, the
control paradigm is called asynchronous and allows the subject to
make self-paced decisions (Müller-Putz et al., 2006; Zhao et al.,
2009; Solis-Escalante et al., 2010).

A similar control paradigm has yet to be carefully investigated
for a lower limb exoskeleton robot. Of particular interest would

be a BMI system, based on the ERD/ERS of the sensorimotor area,
able to control an assistive robot (downward arrow of Figure 1).
Similarly, Tsui et al. (2011); Huang et al. (2012) have succeeded
in controlling a wheelchair by means of a BMI based on event-
related (de)synchronization (ERD/ERS). Nonetheless, one of the
differences between a wheelchair and a lower limb assistive robot
is that the latter induces movements of the legs. In this context,
the ERD/ERS phenomenon is not only related to active move-
ments or motor imagery, but also to passive movements (upward
arrow of Figure 1; Cassim et al., 2001; Müller et al., 2003; Müller-
Putz et al., 2007; Wagner et al., 2012). Especially, Müller-Putz
et al. (2007) highlighted that passive movements of the feet pro-
duce a significant ERD/ERS not only at the vertex, but over the
whole sensorimotor cortex. This raises the question whether the
somatosensory afferent input, induced by the periodic leg pertur-
bation, interferes with the decoding ability of a BMI system based
on the ERD/ERS of the sensorimotor hand area (horizontal arrow
of Figure 1).

Specifically, in this paper, we investigate whether the peri-
odic perturbation of lower limbs produces a significant decrease
in the classification performance of actual right and left hand
finger movements. The reason for decoding the right and left
sensorimotor hand area stands in the reliability of the contralat-
eral ERD/ERS spatial distribution (Wang et al., 2007) and in
the fact that this approach is exhaustively discussed in literature
(Guger et al., 2000; Pfurtscheller et al., 2000b; Blankertz et al.,

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 85 | 1

SYSTEMS NEUROSCIENCE

http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/about
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnsys.2014.00085/abstract
http://community.frontiersin.org/people/u/141027
http://community.frontiersin.org/people/u/131142
http://community.frontiersin.org/people/u/115421
mailto:beppelisi@gmail.com
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lisi et al. ERD/ERS-decoding: leg afferent input influence

FIGURE 1 | Conceptual representation of the problem. Understanding
how the leg afferent input, induced by a leg assistive robot, influences the
decoding of the ERD/ERS of the sensorimotor hand area. The paper
focuses on the concepts represented by the solid arrows of this figure.

2008a). Moreover, the Idle class is considered in order to simu-
late the behavior of the system in an online asynchronous setup
(Müller-Putz et al., 2006).

Furthermore, the motivation for using real movements instead
of motor imagery, is that the latter cannot be mechanically
measured nor visually assessed by the experiment operator. As
such, in case of misclassification, there is no certainty about
whether the subject failed in generating a significant ERD/ERS
by motor imagery or if the somatosensory afferent input of the
leg actually affected the decoding. On the other hand, for real
upper limb movements, the motor output is visible; therefore,
we are certain that the motor cortex has produced a control
command.

To note that even though patterns of mu and beta
de/synchronization associated with actual movements are sim-
ilar to those with motor imagery, they differ in magnitude
(McFarland et al., 2000). Specifically, the spectral perturbations
associated with motor imagery are considerably smaller than
the ones of actual movements (Solis-Escalante et al., 2010).
Nonetheless, according to Pfurtscheller et al. (1998), the beta ERS
is significantly larger with hand as compared to finger movement.
Therefore, the latter is chosen in this experiment, so as to deal
with a spectral perturbation that is as close as possible to the one
associated with motor imagery, while preserving the necessary
property of objective measurability by the experiment operator.

Previous studies have dealt with EEG-based neuroprosthesis
control (Pfurtscheller et al., 2000a; Müller-Putz et al., 2005, 2006,
2009), but to our knowledge this is the first time that the possi-
bility of interference between the rhythms associated with passive
and active movements is investigated.

2. METHODS
Five healthy subjects were asked to perform real right/left-hand
brisk finger tapping, or not to move (idle), while their brain activ-
ity was recorded by EEG. Each task lasted 2 s and was instructed by
visual cues, interleaved by periods of rest of 8 s. Simultaneously,
the subjects’ leg was perturbed by a periodic swing movement of a
lower limb assistive robot in 5 out of 10 sessions of the experiment.

In this way, the experiment is characterized by two conditions: leg
perturbed (Pert) and leg not perturbed (NoPert).

Therefore, the main question regarding the influence of the leg
afferent input on the decoding of the sensorimotor area ERD/ERS
can be stated as follows: is the performance of finger tapping decod-
ing significantly different between the NoPert and Pert conditions,
for one or more subjects? To answer this question, a classifier
is trained to output the class of the finger tapping (Idle, Left,
Right), given as input the features associated with the ERD/ERS.
Cross-validated Kappa score (see section 2.3) is used to assess the
decoding performance separately for NoPert and Pert. Then, indi-
vidually for each subject, the Kappa scores of the two conditions
are statistically compared by the Z-test (see Appendix). Moreover,
it is important to perform an analysis that is as independent as
possible from the characteristics of a specific decoder. For this
reason, two types of feature extraction methods are used sepa-
rately: Unsupervised feature extraction (ICA, Wavelet and PCA)
and Supervised feature extraction (CSP, Wavelet, LDA).

As discussed in the introduction, actual left/right hand finger
tapping and idle were chosen because of the following reasons:

1. the contralateral ERD/ERS spatial distribution associated with
left or right hand movements can be reliably decoded;

2. actual movements are observable by the experiment opera-
tor, or mechanically measurable, therefore we are certain that
an ERD/ERS activation must have been elicited by the motor
task (with motor imagery the subject may fail to produce
ERD/ERS);

3. finger movements are characterized by a significantly smaller
ERS as compared to hand movements (Pfurtscheller et al.,
1998), which makes the task as close as possible to a motor
imagery one, while preserving the properties at point 1 and 2;

4. the idle class is used to simulate an online asynchronous setup.

2.1. EXPERIMENTAL SETUP
2.1.1. Assistive robot specifications
Our custom made one degree of freedom robot (oneDOF, Noda
et al., 2012) was used as assistive robot (Figure 2A). OneDOF is
actuated using a pneumatic-electric hybrid strategy. In detail, two
antagonistic pneumatic artificial muscles (PAM) generate large
force by converting pressured gas energy into contraction force
through their rubber tube. The advantage of using a PAM is that
it can exert very large torques (maximal 70 Nm), while generat-
ing insignificant electromagnetic noise from the point of view of
the EEG system. Moreover, an electric motor generates parallel
small torque (maximal 5 Nm) in order to make fast and precise
corrections to the torque generated by PAM. This strategy allows
for both a powerful and precise actuation of the robot.

For this specific experiment, OneDOF was mounted on a cus-
tom made support in order to allow subjects to sit near to the
robot (Figure 2B). Moreover a leg-shaped thermoplastic poly-
mer was anchored to OneDOF in order to secure the subject’s leg
(Figure 2C).

2.1.2. Data acquisition
The experiment, which was carried out with five healthy sub-
jects aged 23–27, can be represented by a 3 × 2 factorial design
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(Figure 3) consisting of two factors: “finger tapping task” and “leg
condition.” The former is divided into three levels, being left tap-
ping, right tapping and idle; while the latter is composed by two
levels: NoPert and Pert.

With regard to the “leg condition” factor, five sessions of the
experiment were performed while the assistive robot was stopped
(NoPert) and other five while the robot continuously swung up
and down at a frequency of 0.5 Hz between 5◦ and 50◦ of the knee
joint (Pert).

During all the 10 sessions of the experiment the finger tap-
ping task was carried out as follows: an hyphen was shown on the
screen for 8 s to indicate that the subject should not move (rest).

After this period, a left or right arrow randomly appeared, or the
hyphen was maintained on the screen, for 2 s, indicating respec-
tively that the subject should perform left or right hand brisk
continuous finger tapping, or keep not moving (idle). Within
one session, each of the three tasks, Left/Right tapping and Idle,
was performed 10 times, resulting in 30 trials per session. After
each session, subjects rested for about 5 min. Moreover, the EEG
signal was recorded at a sampling rate of 2048 Hz with a 64-
electrode cap and a Biosemi Active Two system for amplification
and analog-to-digital conversion.

In order to confirm that to each visual cue corresponds
a motor action, the finger tapping performance was visually

FIGURE 2 | Robot used during the experiment. (A) PAM and electric actuators can exert parallel torques to move the leg. (B) Representation of the
experimental setup. (C) Representation of the thermoplastic polymer leg support anchored to the robot and holding up the subject’s leg.

FIGURE 3 | Experimental design. The experiment is structured as a 3 × 2
factorial design, consisting of two factors “finger tapping task” and “leg
condition.” The former is divided into three levels, being left hand finger
tapping (Left), right hand finger tapping (Right) and Idle, whose temporal
representation is visualized in the “Finger tapping task” column. The “leg

condition” factor is divided into two levels NoPert and Pert, which are
represented, respectively, in the first and second rows of the table. To note that
Rest is the resting period between tasks and that the visual cues of the tasks
are randomly permuted within a session. Moreover, in the last column, the
number of sessions performed for each experimental condition are visualized.
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observed by the experiment operator. Moreover, for the first three
subjects the experiment was recorded on video, while for the
other two subjects the index finger angle was measured by means
of a goniometer sensor (Biometrics Ltd).

Subjects gave written informed consent for the experimental
procedures, which were approved by the ATR Human Subject
Review Committee.

2.2. DECODER TRAINING
In this section, we introduce the methodology to train and test the
decoder that is used in the cross-validation procedure described
in section 2.3. Moreover, we refer to “training set” and “test set,”
detailed as well in section 2.3, but for the time being it is sufficient
to think of them as two independent datasets that are used to,
respectively, fit the parameters of a model (decoder) and evaluate
the predictive power of the trained (fitted) model.

The six steps of the training algorithm (Figure 4) are: 1. prepro-
cessing (section 2.2.1), 2. spatial filter identification (section 2.2.2),
3. wavelet transform for time-frequency feature extraction (section
2.2.3), 4. spatial filter selection (section 2.2.4), 5. feature dimen-
sionality reduction (section 2.2.5) and 6. training of a classifier
(section 2.2.6). In order to produce results that are independent
from the characteristics of a specific feature extraction method,
two types of decoder are used separately:

• Unsupervised feature extraction-based: the spatial filter identifi-
cation step is performed by Independent Component Analysis
(ICA) and feature dimensionality reduction by Principal
Component Analysis (PCA);

• Supervised feature extraction-based: the spatial filter identi-
fication is carried out by Common Spatial Patterns (CSP)
and feature dimensionality reduction by Linear Discriminant
Analysis (LDA).

It is important to stress that the Unsupervised feature extrac-
tion-based decoder is trained and tested independently from the
Supervised feature extraction-based one.

2.2.1. Preprocessing
This step is common to both the Unsupervised and Supervised fea-
ture extraction-based decoders. Only a subset of 35 electrodes,
centered at the motor cortex, is used: all the electrodes posi-
tioned within the ranges F5-F6, FC5-FC6, C5-C6, CP5-CP6,
P5-P6. The training and test sets are resampled at 128 Hz and
bandpass filtered (FIR filter implemented in EEGLAB, Delorme
and Makeig, 2004) in the range from 8 to 30 Hz, encompass-
ing the mu and beta frequency bands, which have been shown
to be most important for movement classification. Epochs are
extracted with respect to the visual cues presented to the sub-
jects. In particular, the epoch starts 0.5 s before the cue onset
and ends 2.5 s after the offset, for a total of 5 s. The time win-
dow after the movement offset is needed to capture completely
the ERS, also considering that, sometimes, this is slightly delayed
due to the subject’s reaction time. In the following subsections
Ej ∈ R

c×t represents the single-trial EEG signals of the train-
ing set, where c is the number of channels, t is the number of
time samples and j = 1 . . . n where n is the number of training
trials.

2.2.2. Spatial filter identification (ICA and CSP)
Previous studies have demonstrated that spatial filters are useful
in single-trial analysis, in order to improve the signal-to-noise
ratio (Blankertz et al., 2008b). For this purpose, Independent
Component Analysis (ICA) is implemented in the Unsupervised
feature extraction-based decoder, while Common Spatial Patterns
(CSP) is used in the Supervised feature extraction-based one. Both
ICA and CSP transform the observed EEG signals as:

FIGURE 4 | Decoder training in a single fold of the cross-validation. In the
Unsupervised feature extraction-based version, ICA and PCA are used,
respectively, for spatial filter selection and dimension reduction, while CSP
and LDA are, respectively, employed in the Supervised feature
extraction-based one. Important to note that the transformation matrices of

spatial filter identification, spatial filter selection and dimensionality reduction
are computed only on the training set of each cross-validation fold. Moreover,
the time-frequency features are vectorized in the algorithm, while in figure
they are kept in matrix form for a visualization purpose: the horizontal axis
represents the time, and the vertical axis represents the frequency.
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Sj = WEj (1)

where Ej represents the observed single-trial EEG signals, W the
unmixing matrix, Sj the recovered single-trial sources and j =
1 . . . n, where n is the number of training trials.

2.2.2.1. Independent Component Analysis (ICA). ICA is an
unsupervised method that finds a linear transformation (W) of
non-gaussian data (E), so that the resulting components (S) are as
statistically independent as possible (Hyvärinen and Oja, 2000).
Hence, the EEG signal is separated into Independent Components
(ICs) accounting for different neural activities, but also stereo-
typed non-brain artifact signals including eye movements, line
noise and muscle activities (Makeig et al., 2004). In this study,
the logistic infomax ICA algorithm, implemented in the EEGLAB
function binica (Delorme and Makeig, 2004), is executed on the
preprocessed training set. This yields an unmixing matrix W ∈
R

s × c and source signals (independent components) Sj ∈ R
s × t ,

where s is the number of sources, c the number of channels, t is the
number of time samples and j = 1 . . . n, where n is the number of
training trials.

2.2.2.2. Common Spatial Patterns (CSP). CSP computes the
unmixing matrix W to yield features whose variances are optimal
for discriminating two classes of EEG measurements (Ramoser
et al., 1998; Blankertz et al., 2008a) by solving the eigenvalue
decomposition problem

�1W = (�1 + �2)WD (2)

where �1 and �2 represent the estimates of the covariance matri-
ces of the EEG signal associated with two different tasks, the
diagonal matrix D contains the eigenvalues of �1 and the column
vectors of W−1 are the filters for the CSP projections. The best
contrast is provided by those filters with the highest and lowest
eigenvalues, therefore the common practice is to retain e eigen-
vectors from both ends of the eigenvalue spectrum (Blankertz
et al., 2008a). CSP is applied in a One-vs-Rest (OvR) fashion, in
order to cope with the multi-class nature of the problem, sepa-
rately (Dornhege et al., 2004) for three different frequency bands
8–13 Hz (μ), 15–25 Hz (β), 8–30 Hz (μ and β), in the time seg-
ment starting 1 s after the cue (Blankertz et al., 2008b). Moreover,
e = 2 eigenvectors from the top and from the bottom of the eigen-
value spectrum are retained. This procedure is performed only on
the preprocessed training dataset, yielding the unmixing matrix
W ∈ R

s × c and source signals Sj ∈ R
s × t , where s = 2 × e × 3

(frequency bands)×3 (classes) is the number of sources (CSP
projections), c is the number of channels, t is the number of
time samples and j = 1 . . . n, where n is the number of training
trials.

It is important to note that, with both ICA and CSP, the
unmixing matrix W is computed only using the training set.

2.2.3. Time-frequency analysis: the wavelet transform
In both the Unsupervised and Supervised feature extraction-based
decoders, the Morlet Wavelet transform (Daubechies, 1990) is
employed to extract time-frequency features, representing the

subject-specific ERD/ERS patterns, from the source signals S. For
each trial, a wavelet coefficient matrix with 50 time samples and
20 frequency bins is computed for the i-th source signal. The
resulting coefficients are squared to get the spectral power and
the 10 log10 transformation is computed to obtain a final time-
frequency representation (ci). Therefore, the feature vector of
the j-th trial (vj) is obtained by the concatenation of the time-
frequency coefficients ci computed from the i-th source signal
inside Sj:

vj =

⎡
⎢⎢⎢⎢⎣

c1

ci
...

cs

⎤
⎥⎥⎥⎥⎦ , ci =

[
c11, . . . , cf 1, c12, . . . , cf 2, . . . , c1t, . . . , cft

]�
(3)

In the equations above, vj represents the j-th feature vector, j =
1 . . . n, where n is the number of training trials, ci is the time-
frequency coefficients vector of the i-th source, i = 1 . . . s where
s is the number of sources in Sj, t is the number of time samples
and f is the number of frequency bins.

2.2.4. Spatial filter selection based on SLR
Not all the spatial filters that have been previously identified by
ICA or CSP are related to the neural processes of the tapping task.
In particular, ICA identifies a large number of independent com-
ponents that account for artifacts and other neural sources, while
CSP might return some spatial patterns that over-fit the training
set. Therefore, in order to avoid over-fitting and to obtain results
that are not influenced by artifacts, it is necessary to reduce the
number of spatial filters to the ones that are strictly indispensable
for the classification of the tapping task.

For this purpose, Sparse Logistic Regression (SLR) is used
to select the most important spatial filters based on their
time-frequency features. SLR is a Bayesian extension of logistic
regression, which simultaneously performs feature selection and
training of model parameters for classification. It utilizes auto-
matic relevance determination (ARD) to determine the impor-
tance of each parameter while estimating its values. This process
selects only a few parameters as important and prunes away oth-
ers. The resulting model has a sparse representation with a small
number of estimated parameters (Yamashita et al., 2008). In this
work we apply the OvR version of the algorithm to cope with
the multi-class problem. Moreover, prior to training, each feature
of the training set is normalized using its mean across trials and
scaled using the respective standard deviation. Furthermore, the
mean and standard deviation of the training features are used to
normalize also the feature vectors of the test set.

SLR can be used to assign scores to spatial filters based on the
classification performance and selection recurrence of their time-
frequency features. In the current study we were inspired by the
method proposed by Yamashita et al. (2008), which selects fea-
tures on the basis of their selection recurrence. Given the fact that
our goal is not to select single features, but spatial filters which are,
in turn, represented by a set of time-frequency features we had
to modify the original algorithm. The revised method considers
the recurrence of the group of time-frequency features belonging
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to each spatial filter. The basic idea is that spatial filters whose
time-frequency features are repeatedly selected with good classi-
fication performance among a variety of training data sets could
be important.

Specifically, the selection of spatial filters is implemented by
estimating SLR weight parameters on 80% of the training set and
evaluating the classification performance on the remaining 20%
of the training set. This process is repeated five times so that each
trial of the training set is used once to evaluate the performance.
Therefore, we can define a score value for each i-th spatial filter
(i = 1 . . . s where s is the number of sources in Sj) based on the
number of selected features that belong to it. More precisely, let
θ j and pj denote the estimated parameter vector and classification
performance (percent) resulting from the j-th repetition of SLR
(j = 1 . . . R, where R is the number of SLR repetitions). Moreover,
θ j(k) = 0 if the k-th feature is not selected (k = 1 . . .

∣∣θ ∣∣ where
∣∣θ ∣∣

is the length of the feature vector) . Then the score value (SC) for
the i-th spatial filter (SF) is defined by:

SCi =
R∑
j

∣∣θ ∣∣∑
k ∈ SFi

I(θ j(k) �= 0) × pj (4)

where I( · ) denotes an indicator function that takes the value
of 1 if the condition inside the brackets is satisfied, 0 otherwise.
R = 5 is the number of SLR repetitions,

∣∣θ ∣∣ is the length of the

feature vector and θ j(k) is the estimate of the k-th parameter
belonging to the i-th spatial filter (SF), with respect to the j-th
repetition. Once SC has been computed for all the spatial fil-
ters, we retain only those whose SC is above a given threshold.
Specifically for selecting independent components the threshold
is μSC + σSC , while for CSP the threshold is simply μSC , where
μ and σ represent respectively mean and standard deviation of
the SC values. The reason for having two different thresholds is
that ICA returns a large number of independent components, not
related to the classification, that need to be removed, such as arti-
facts and other neural sources. On the other hand, being CSP a
supervised method, it selects mainly spatial filters that are impor-
tant for the classification, and we only remove the few ones that
would cause over-fitting.

Supposing that the set D of selected filters contains d < s com-
ponents (s total number of sources in Sj), the new feature vector

vsel
j is obtained by concatenating the time-frequency features of

the selected filters ci ∈ D:

vsel
j =

⎡
⎢⎢⎢⎢⎣

c1

ci

.

.

.

cd

⎤
⎥⎥⎥⎥⎦ , ci ∈ D =

[
c11, . . . , cf 1, c12, . . . , cf 2, . . . , c1t, . . . , cft

]�
(5)

In the equations above, vsel
j represents the feature vector asso-

ciated with the selected spatial filters of the j-th trial, ci ∈ D the
time-frequency coefficient vector of the i-th source belonging
to the set of selected filters D, j = 1 . . . n where n is the num-
ber of training trials, i = 1 . . . d where d is the cardinality of D,

t is the number of time samples and f is the number of fre-
quency bins. Therefore, the j-th feature vector vsel

j is composed
by l = d × f × t elements. Moreover, the spatial filter unmixing
matrix takes the following form Wsel ∈ R

d × c, where c is the num-
ber of channels and d the number of selected spatial filters. To
note that the SLR-based spatial filter selection is performed only
on the training set.

2.2.5. Dimensionality reduction (PCA and LDA)
Even though the spatial filter selection method reduces the num-
ber of sources, the dimensionality of the concatenated time-
frequency feature vector is in the order of thousands elements.
Moreover, the time-frequency features are somewhat redundant,
because the values of adjacent points in the spectrogram are
highly correlated. Therefore, it is important to perform dimen-
sionality reduction. For this purpose, Principal Component
Analysis (PCA) is employed in the Unsupervised feature extrac-
tion-based decoder, while Linear Discriminant Analysis (LDA) in
the Supervised feature extraction-based one.

PCA and LDA are, respectively, the most popular unsupervised
and supervised dimensionality reduction methods in literature
(Wang and Paliwal, 2003) and they both reduce the features
dimension by projecting the original feature vector into a new fea-
ture space through a linear transformation matrix. Nonetheless,
they optimize the transformation matrix with different inten-
tions: PCA optimizes the transformation matrix by finding the
largest variations in the original unlabeled feature space, while
LDA pursues the largest ratio of between-class variation and
within-class variation when projecting the original labeled fea-
tures to a subspace (Wang and Paliwal, 2003). In this study PCA
is implemented by Singular Value Decomposition (SVD), while
LDA is executed by means of the algorithm proposed by Cai et al.
(2008). To note that prior to performing PCA or LDA the mean
of the training set is subtracted, and that in the case of PCA the
mean of the training set is also subtracted from the test set.

The dimensionality reduction step yields a linear transforma-
tion matrix A ∈ R

p × l that projects the original feature vector
vsel

j ∈ R
l to the reduced vector vred

j ∈ R
p, where l is the length

of the original feature vector and p the number of projections
(reduced features, p < l). When dimensionality reduction is per-
formed by PCA, the number of retained principal components
(p) is set so as to achieve 90% of variance (Jolliffe, 2002), bring-
ing the length of the feature vector from the order of thousands to
the order of hundreds elements. On the other hand, when using
LDA, the number of projections p = 2 since the number of non-
zero eigenvalues is bounded by g − 1, where g is the number of
classes (Cai et al., 2008). Once again, it is important to note that,
with both PCA and LDA, the projection matrix A is computed
only using the training set.

2.2.6. Classification
Once the feature vectors of all the trials in the training dataset
(vred

j ) are obtained, it is possible to compute the ones of the test

dataset (v̂red
k ), by the following steps:

1. to generate the source signal matrix of the k-th trial in the test
set (Stest

k ), multiply the preprocessed k-th single-trial EEG of

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 85 | 6

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lisi et al. ERD/ERS-decoding: leg afferent input influence

the test dataset (k = 1 . . . m, where m is the number of test tri-
als) by the spatial filter unmixing matrix Wsel, obtained on the
training set by spatial filter selection (section 2.2.4);

2. to generate the test feature vectors v̂sel
k , compute the time-

frequency matrix for each trial k and source in Stest
k ;

3. to generate the reduced feature vector v̂red
k , multiply v̂sel

k by
the projection matrix A, obtained on the training set by
dimensionality reduction (section 2.2.5).

The reduced feature vectors of the training set vred
j and the one

of the test set v̂red
k are used, with the respective labels, to train and

evaluate a SLR classifier (introduced in section 2.2.4). To note that
the SLR classifier used to decode the finger tapping task is trained
and tested on features and datasets that differ from to the ones
used to select spatial filters in section 2.2.4.

2.3. PERFORMANCE ASSESSMENT
The main objective of this study is to verify that the decoding per-
formance of the upper limb tasks is not affected by the lower limb
periodic perturbation. To do so, we compare the performance of
the finger tapping decoding under the two conditions NoPert and
Pert. In other words, from a factorial point of view, the goal is to
assess the main effect of leg perturbation on the decoding of finger
tapping. Given the fact that the leg perturbation might influence
each subject’s performance in a different way, an intra-subject
analysis is carried out.

Individually for each subject, the datasets of 9 out of 10 ses-
sions are used as “training set,” to train the decoder described in
section 2.2, and the dataset of the remaining session is used as
“test set.” This procedure is repeated 10 times so as to use each
session as test set once and only once , where a repetition is named
“fold” and the whole operation is called 10-fold cross validation.
Therefore, 5 out of 10 folds are characterized by a test set which
belongs to the NoPert condition and the remaining 5 folds are
characterized by a test set belonging to the Pert condition. In
this way, the decoding performance of the test sets belonging to
the NoPert condition is computed separately from the one of the
Pert condition, in order to carry out a statistical comparison of
the two.

Specifically, performance is evaluated by Cohen’s Kappa
(Cohen, 1960), also employed in the BCI Competitions
(Tangermann et al., 2012):

k = Pr(a) − Pr(e)

1 − Pr(e)
(6)

where Pr(a) is the proportion of observed agreements, and Pr(e)
is the proportion of agreements expected by chance. The range
of possible values of Kappa is between −1 and 1, though it usu-
ally falls between 0 and 1. Perfect agreement between the true
target labels and the predicted ones is represented by k = 1.
Agreement no better than that expected by chance is indicated
by k = 0. A negative kappa would indicate agreement worse than
that expected by chance (Sim and Wright, 2005). An advantage of
using the Kappa coefficient is the possibility to perform a Z-test
to compare two classifications and determine if the accuracy level

between the two is significantly different (Congalton et al., 1983,
see Appendix for details).

3. RESULTS
3.1. DECODING PERFORMANCE
Table 1 represent the results obtained, respectively,
by the Unsupervised feature extraction-based decoder and
by the Supervised feature extraction-based one. The table contain
the Kappa values for each subject, relative to the conditions
NoPert and Pert, and the associated intra-subject comparison
(Z-score). We observe that all the Kappa scores are above chance
level (K = 0). Importantly, the comparisons between NoPert and
Pert has always a Z-score <1.96, therefore, for every subject, the
two conditions are not significantly different from a classification
performance point of view.

3.2. FEATURE VISUALIZATION
In order to interpret the results, the features used in the decoding
process are visualized separately for each subject. Specifically, we
focus on the features of the Unsupervised feature extraction-based
decoder, since ICA yields unmixing matrices (W) that are simi-
lar along cross-validation folds. This means that ICA components
can be clustered along folds, and for each cluster, topographies
and time-frequency patterns can be averaged. Nonetheless, CSP
patterns differ along cross-validation folds, given the supervised
nature of CSP and the fact that the training set varies from fold
to fold. Therefore, it is not possible to cluster and average the
CSP features. For these reasons we decided to focus on the fea-
ture visualization of the Unsupervised feature extraction-method.
Nonetheless, we report that, for each fold and subject, CSP filters
and the associated ERD/ERS activations are compatible with the
ones related to the Unsupervised feature extraction method.

3.2.1. Topographic maps
The spatial filters extracted after ICA and SLR spatial filter selec-
tion (Wsel) are visualized in this section. In order to obtain a
compact representation, they are clustered across folds, separately
for each subject. Specifically, the rows of Wsel are clustered by
means of hierarchical clustering, in such a way that only rows
with a small Euclidean distance are grouped together. Moreover,

Table 1 | Intra-subject comparison of Kappa associated with NoPert

and Pert, and the relative Z-score.

a. Unsupervised feature b. Supervised feature

extraction extraction

Sbj K(NoPert) K(Pert) Z-score Sbj K(NoPert) K(Pert) Z-score

S1 0.95 0.81 1.47 S1 0.97 0.85 1.23

S2 0.85 0.75 1.24 S2 0.79 0.67 1.47

S3 0.59 0.58 0.02 S3 0.58 0.48 1.16

S4 0.79 0.64 1.75 S4 0.63 0.67 0.42

S5 0.68 0.75 0.90 S5 0.76 0.76 0.02

Two conditions are significantly different (α = 0.05) if Z-score is >1.96. The table

shows the results of the Unsupervised and Supervised feature extraction-based

decoders. To note that chance level is K = 0.
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for each cluster C we compute the selection ratio, representing
how frequently a member of the cluster is selected along cross-
validation folds: r = |C| /k, where |C| represents the cardinality of
C and k is the total number of cross-validation folds. In Figure 5
the topographic maps of the average of each cluster and the
respective selection ratio r are displayed separately for every sub-
ject. The figure shows that spatial filters with a selection ratio
r ≥ 50% represent, for every subject, either the activation of the
left or right hemisphere. Moreover, it is important to note that the
selected spatial filters cover areas of the EEG electrode space that
are different from subject to subject.

3.2.2. Time-frequency features
In order to visualize the time-frequency features of the
Unsupervised feature extraction-based decoder, the event-related
spectral perturbation (ERSP, Grandchamp and Delorme, 2011) is
employed:

ERSP(f , t) = 10log10

(
ERS(f , t)

μB(f )

)
,

ERS(f , t) = 1

n

n∑
k = 1

∣∣Fk(f , t)
∣∣2

(7)

where ERS is the event related spectrum and is obtained by aver-
aging across trials the time-frequency power estimate computed

FIGURE 5 | Topographies of the automatically selected ICA

components. Each row represents one subject, and each topographic map
represents a cluster of ICA components obtained by hierarchical clustering
along cross-validation folds. On top of each map there is the selection ratio
r representing how frequently a member of the cluster is selected along
folds. Spatial filters with a selection ratio r ≥ 50% represent, for every
subject, either the activation of the left or right hemisphere. Moreover, it is
important to note that the selected spatial filters cover areas of the EEG
electrode space that are different from subject to subject.

by wavelet (F), μB(f ) is the mean spectral estimate at baseline,
n is the total number of trials, Fk(f , t) is the spectral estimate at
frequency f and time point t for trial k.

The ERSP is computed separately for the test datasets of NoPert
and Pert, for each subject and class (Idle, Left trapping, Right
tapping). Thus, Figure 6 is organized so that it is possible to com-
pare the spectral perturbation associated with the two conditions
(NoPert, Pert), while appreciating the features that character-
ize each class, individually for each subject. To note that only
the ERSP of the spatial filters with a selection ratio r = 100%,
discussed in the previous section, are visualized. The ERSP visu-
alization does not highlight differences in the ERD/ERS pattern
between NoPert and Pert conditions. Moreover, we observe that
the spectral perturbations are actually informative for the classi-
fication. In particular, the ERSP of the Idle class does not contain
ERD/ERS, while the remaining two classes are characterized by
strong spectral perturbations. Furthermore, we note subject-
specific differences in the ERSP of the Left and Right classes as
well. Subject 1 (S1) is characterized by a stronger beta ERS of
the right hemisphere when left tapping is performed and by beta
ERS of the left hemisphere in case of right tapping (contralateral
activation); S2 displays a similar class-specific contralateral mu
and beta ERS; for S3 we observe a stronger mu ERD of the left
hemisphere when left tapping is executed (ipsilateral activation),
compared to the mu ERD of the right hemisphere associated with
the right tapping; for S4 we observe a stronger contralateral mu
ERD and, lastly, for S5 we note a stronger contralateral beta ERS.

4. DISCUSSION
The aim of this study is to investigate the main effect of the leg
afferent input, induced by a lower limb assistive robot, on the
decoding performance of the sensorimotor hand area ERD/ERS.
To do so, we devised an experiment to compare the finger tapping
decoding performance under the conditions of leg perturbation
(Pert) and no perturbation (NoPert). From the experimental
results we find that the classification performance is always above
chance (K > 0) and we do not observe intra-subject significant
difference (Z-score <1.96, p-value >0.05) between the conditions
NoPert and Pert.

To note that, in each cross-validation fold, a decoder is trained
on both conditions. This is motivated by the fact that it is
important to evaluate the performance on a common model.
Training and testing a decoder separately for NoPert and Pert
wouldn’t allow for a sound comparison, since the underlying
models would be different. Moreover, the datasets representing
the two conditions might differ due to non-stationarities that are
not related to the leg perturbations (e.g., electrode impedance
variation, Wojcikiewicz et al., 2011). Training across both condi-
tions should minimize the effect of those non-stationarities, while
testing separately between NoPert and Pert should highlight the
actual differences caused by leg perturbations.

In order to corroborate the interpretation of the quantita-
tive analysis carried out so far, we visualize only the features of
the Unsupervised feature extraction-based decoder in Figures 5, 6.
This is motivated by the fact that spatial filters obtained by ICA
are more stable along cross-validation folds. Therefore, they can
be clustered and the ERSP of each cluster can be computed in a
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FIGURE 6 | ERSP visualization. In each ERSP image, the abscissa
represents the time (−0.3 to +4.3 s), while the ordinate represents the
frequency (from 8 to 30 Hz), the red color portrays power increase with
respect to the baseline (dB), while the blue color power decrease (dB).
For each subject, only the ERSP of the spatial filters with a selection
ratio r = 100% are visualized. The figure is organized so that it is

possible to compare the ERSP of NoPert (NoP) and Pert (P), while
appreciating the features that characterize each class. To note that the
ERD/ERS patterns are subjects-specific and informative for the
classification. Moreover this representation do not highlight differences
between the two conditions NoPert and Pert, confirming the
quantitative results of the Z -test.

meaningful way. From this analysis we confirm that the spatial
patterns with high selection ratio (r ≥ 50%) are compatible with
the spatial mapping of the sensorimotor hand area ERD/ERS sug-
gested by (Pfurtscheller and Lopes da Silva, 1999). Moreover, the
fact that spatial topographies are different from subject to subject
is in line with the thesis of Blankertz et al. (2008b), asserting that
subject-specific spatial filters are important to enhance the decod-
ing performance. Not only spatial patterns, but also the ERD/ERS
patterns are highly subject-specific (Pfurtscheller and Neuper,
2006): compatibly with Pfurtscheller and Lopes da Silva (1999),
for some subjects the discriminability between the three classes is
to be inputed to strong post movement mu and/or beta ERS (S1,
S2, and S5), while for other subjects we observe a predominance
of mu ERD (S3 and S4). Importantly, the ERSP visualization does
not highlight differences in the ERD/ERS pattern between NoPert
and Pert conditions, which confirms the quantitative results of the
Z-test.

One possible explanation to the fact that the ERD/ERS pat-
terns associated with upper limb movements are not significantly
changed by lower limb afferent input is that periodic lower
limb passive movements do not produce EEG perturbation that
are as significant as the ones of active movements. This is in
line with other studies (Wagner et al., 2012; Jain et al., 2013)
reporting a significant mu and beta desynchronization, at the pri-
mary motor cortex, associated with active periodic movements
as opposed to passive periodic movements of the lower limbs.
Nonetheless, in Müller-Putz et al. (2007) it is observed that for

non-periodic passive and active movements, the beta ERD/ERS
have similar levels of significance at the central sensorimotor
and surrounding areas (electrodes Cz, C2, and Fcz). Therefore,
it is possible that in the current study, being the leg perturba-
tions periodic, they did not elicit ERD/ERS significant enough to
interfere with the EEG perturbations associated with the upper
limb task.

This paper focuses on one of the many aspects regarding the
implementation of a brain-controlled assistive robot. Especially,
it is important to highlight that, even though EEG topographies
and ERD/ERS patterns are shared between actual movements
and motor imagery (Pfurtscheller and Lopes da Silva, 1999;
McFarland et al., 2000), the latter is characterized by a signif-
icantly smaller ERD/ERS magnitude (McFarland et al., 2000;
Solis-Escalante et al., 2010). This raises the question, whether the
EEG decoding of a motor imagery task might be affected by the
leg afferent input. This issue will be investigated in future studies.
Nonetheless, we need to stress the necessity of the current study,
which establishes a “ground truth” understanding of the possible
interference between the ERD/ERS of the sensorimotor area and
the lower limb afferent input. In this context, the term “ground
truth” is related to the fact that actual movements are observable
by the experiment operator, or mechanically measurable, there-
fore we are certain that a motor command is elicited for every cue
presented to the subject. On the other hand, motor imagery can-
not be visually observed by the experiment operator, therefore, in
case of misclassification it is impossible to say whether the subject

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 85 | 9

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lisi et al. ERD/ERS-decoding: leg afferent input influence

failed to elicit motor imagery ERD/ERS or the leg perturbation
actually inhibited it.

Moreover, it is important to note that finger movements are
characterized by a significantly smaller EEG power perturbation
as compared to hand movements (Pfurtscheller et al., 1998). This
means that the finger tapping task is a good compromise in order
to keep the spectral perturbation magnitude as close as possible to
the one of motor imagery, while preserving the necessary property
of mechanical measurability, or observability by the experiment
operator.

Another issue, that must be addressed in future studies, regards
the influence of a multi-DoF assistive robot on the ERD/ERS
decoding. Especially, it remains an open question how the affer-
ent input, induced by the passive movement of the whole lower
limbs, affects the EEG decoding. An fMRI study by Newton et al.
(2008) found a substantial overlap of the motor representations of
ankle dorsiflexion, ankle plantarflexion and knee extension. This
supports the notion that the afferent input induced by a multi-
DoF robot should not differ significantly from the one induced by
OneDOF robot. Nonetheless, further investigations are required
to clarify this point.

Additionally, it is of interest whether reflex responses of the
major leg muscles could influence the EEG patterns. For this pur-
pose, in future experiments the electromyographic (EMG) signal
will be recorded from the lower limbs. In this way, it would be
possible to detect the onsets of possible reflex muscle activa-
tions at the leg, and further analyze the EEG signal based on this
information.

Moreover, another concern regarding the application of our
approach to a multi-DoF assistive robot is represented by the
mechanical artifacts affecting the EEG signal. However, other
researchers have shown that artifacts during walking (Gwin et al.,
2010) and robotic-assisted treadmill walking (Wagner et al., 2012)
can be significantly reduced by means of ICA, encouraging fur-
ther studies with the multi-DoF assistive robot.

In conclusion, this study does not find a main effect of the
leg afferent input, induced by a lower limb assistive robot, on
the decoding performance of the sensorimotor area ERD/ERS.
This establishes a solid ground for future experiments and stud-
ies aimed at controlling a multi-DoF assistive robot by motor
imagery. A possible future application of such a Brain Robot
Interface (BRI) system would be to modulate, by left or right
motor imagery, the walking speed of an exoskeleton robot once
it started moving.

ACKNOWLEDGMENTS
This research reflects the results of the “Brain Machine Interface
Development” carried out under the auspeces of the Strategic
Research Program for Brain Sciences by the Ministry of
Education, Culture, Sports, Science, and Technology of Japan.
Part of this research was supported by MIC-SCOPE and a con-
tract with the Ministry of Internal Affairs and Communications
entitled “Novel and innovative R&D making use of brain struc-
tures.” This research was also partially supported by MEXT
KAKENHI grant Number 23120004, JSPS KAKENHI Grant
Number 24700203 and Strategic International Cooperative
Program, Japan Science and Technology Agency (JST) and

by JSPS and MIZS: Japan–Slovenia research Cooperative
Program.

REFERENCES
Babiloni, C., Carducci, F., Cincotti, F., Rossini, P. M., Neuper, C., Pfurtscheller,

G., et al. (1999). Human movement-related potentials vs desynchronization of
EEG alpha rhythm: a high-resolution EEG study. Neuroimage 10, 658–665. doi:
10.1006/nimg.1999.0504

Babiloni, F., Cichocki, A., and Gao, S. (2007). Brain-computer interfaces: towards
practical implementations and potential applications. Comput. Intell. Neurosci.
2007, 62637. doi: 10.1155/2007/62637

Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., and Muller, K.-
R. (2008a). The berlin brain–computer interface: accurate performance from
first-session in BCI-naive subjects. IEEE Trans. Biomed. Eng. 55, 2452–2462. doi:
10.1109/TBME.2008.923152

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Muller, K.-R. (2008b).
Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal
Process. Mag. 25, 41–56. doi: 10.1109/MSP.2008.4408441

Cai, D., He, X., and Han, J. (2008). SRDA: an efficient algorithm for large-
scale discriminant analysis. IEEE Trans. Knowl. Data Eng. 20, 1–12. doi:
10.1109/TKDE.2007.190669

Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J. L., Defebvre, L., Derambure, P.,
et al. (2001). Does post-movement beta synchronization reflect an idling motor
cortex? Neuroreport 12, 3859–3863. doi: 10.1097/00001756-200112040-00051

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol.
Measur. 20, 37–46. doi: 10.1177/001316446002000104

Congalton, R. G., Oderwald, R. G., and Mead, R. A. (1983). Assessing landsat
classification accuracy using discrete multivariate analysis statistical techniques.
Photogramme. Eng. Remote Sens. 49, 1671–1678.

Daly, J. J., and Wolpaw, J. R. (2008). Brain-computer interfaces in neurological reha-
bilitation. Lancet Neurol. 7, 1032–1043. doi: 10.1016/S1474-4422(08)70223-0

Daubechies, I. (1990). The wavelet transform, time-frequency localization and
signal analysis. IEEE Trans. Inform. Theor. 36, 961–1005. doi: 10.1109/18.57199

Delorme, A., and Makeig, S. (2004). Eeglab: an open source toolbox for analy-
sis of single-trial EEG dynamics including independent component analysis. J.
Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Dornhege, G., Blankertz, B., Curio, G., and Muller, K. (2004). Boosting bit
rates in noninvasive EEG single-trial classifications by feature combination
and multiclass paradigms. IEEE Trans. Biomed. Eng. 51, 993–1002. doi:
10.1109/TBME.2004.827088

Grandchamp, R., and Delorme, A. (2011). Single-trial normalization for event-
related spectral decomposition reduces sensitivity to noisy trials. Front. Psychol.
2:236–236. doi: 10.3389/fpsyg.2011.00236

Guger, C., Ramoser, H., and Pfurtscheller, G. (2000). Real-time EEG analysis with
subject-specific spatial patterns for a brain-computer interface (BCI). IEEE
Trans. Rehabil. Eng. 8, 447–456. doi: 10.1109/86.895947

Gwin, J. T., Gramann, K., Makeig, S., and Ferris, D. P. (2010). Removal of move-
ment artifact from high-density EEG recorded during walking and running. J.
Neurophysiol. 103, 3526–3534. doi: 10.1152/jn.00105.2010

Huang, D., Qian, K., Fei, D.-Y., Jia, W., Chen, X., and Bai, O. (2012).
Electroencephalography (EEG)-based brain-computer interface (BCI): a
2-d virtual wheelchair control based on event-related desynchroniza-
tion/synchronization and state control. IEEE Trans. Neural Syst. Rehabil. Eng.
20, 379–388. doi: 10.1109/TNSRE.2012.2190299

Hyvärinen, A., and Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural Netw. 13, 411–430.

Jain, S., Gourab, K., Schindler-Ivens, S., and Schmit, B. D. (2013). EEG during ped-
aling: evidence for cortical control of locomotor tasks. Clin. Neurophysiol. 124,
379–390. doi: 10.1016/j.clinph.2012.08.021

Jolliffe, I. T. (2002). Principal Component Analysis, 2nd Edn. New York: Springer.
Makeig, S., Debener, S., Onton, J., and Delorme, A. (2004). Mining event-

related brain dynamics. Trends Cogn. Sci. 8, 204–210. doi: 10.1016/j.tics.2004.
03.008

McFarland, D. J., Miner, L. A., Vaughan, T. M., and Wolpaw, J. R. (2000). Mu and
beta rhythm topographies during motor imagery and actual movements. Brain
Topogr. 12, 177–186. doi: 10.1023/A:1023437823106

Müller, G. R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H. J., and Pfurtscheller,
G. (2003). Event-related beta EEG changes during wrist movements induced by

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 85 | 10

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lisi et al. ERD/ERS-decoding: leg afferent input influence

functional electrical stimulation of forearm muscles in man. Neurosci. Lett. 340,
143–147. doi: 10.1016/S0304-3940(03)00019-3

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., Neuper, C., and Rupp, R. (2009).
Non-invasive control of neuroprostheses for the upper extremity: temporal cod-
ing of brain patterns. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 3353–3356. doi:
10.1109/IEMBS.2009.5333185

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2005). EEG-based
neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 382,
169–174. doi: 10.1016/j.neulet.2005.03.021

Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2006). Brain-
computer interfaces for control of neuroprostheses: from synchronous to
asynchronous mode of operation. Biomed. Tech. (Berl) 51, 57–63. doi:
10.1515/BMT.2006.011

Müller-Putz, G. R., Zimmermann, D., Graimann, B., Nestinger, K., Korisek, G.,
and Pfurtscheller, G. (2007). Event-related beta EEG-changes during passive
and attempted foot movements in paraplegic patients. Brain Res. 1137, 84–91.
doi: 10.1016/j.brainres.2006.12.052

Mussa-Ivaldi, S. (2000). Neural engineering: real brains for real robots. Nature 408,
305–306. doi: 10.1038/35042668

Newton, J. M., Dong, Y., Hidler, J., Plummer-D’Amato, P., Marehbian, J.,
Albistegui-Dubois, R. M., et al. (2008). Reliable assessment of lower limb motor
representations with fMRI: use of a novel MR compatible device for real-
time monitoring of ankle, knee and hip torques. Neuroimage 43, 136–146. doi:
10.1016/j.neuroimage.2008.07.001

Noda, T., Sugimoto, N., Furukawa, J., Sato, M., Hyon, S., and Morimoto, J. (2012).
“Brain-controlled exoskeleton robot for BMI rehabilitation,” in Proceedings
of IEEE-RAS International Conference on Humanoid Robots (Osaka). doi:
10.1109/HUMANOIDS.2012.6651494

Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., and Neuper, C. (2000a). Brain
oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292, 211–214.
doi: 10.1016/S0304-3940(00)01471-3

Pfurtscheller, G., and Lopes da Silva, F. H. (1999). Event-related EEG/MEG syn-
chronization and desynchronization: basic principles. Clin. Neurophysiol. 110,
1842–1857. doi: 10.1016/S1388-2457(99)00141-8

Pfurtscheller, G., and Neuper, C. (1997). Motor imagery activates primary sen-
sorimotor area in humans. Neurosci. Lett. 239, 65–68. doi: 10.1016/S0304-
3940(97)00889-6

Pfurtscheller, G., and Neuper, C. (2006). Future prospects of ERD/ERS in the
context of brain-computer interface (BCI) developments. Prog. Brain Res. 159,
433–437. doi: 10.1016/S0079-6123(06)59028-4

Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlogl, A., et al.
(2000b). Current trends in Graz brain-computer interface (BCI) research. IEEE
Trans. Rehabil. Eng. 8, 216–219. doi: 10.1109/86.847821

Pfurtscheller, G., and Solis-Escalante, T. (2008). Could the beta rebound in the
EEG be suitable to realize a brain switch? Clin. Neurophysiol. 120, 24–29. doi:
10.1016/j.clinph.2008.09.027

Pfurtscheller, G., Zalaudek, K., and Neuper, C. (1998). Event-related beta syn-
chronization after wrist, finger and thumb movement. Electroencephalogr. Clin.
Neurophysiol. 109, 154–160. doi: 10.1016/S0924-980X(97)00070-2

Ramoser, H., M§ller-Gerking, J., and Pfurtscheller, G. (1998). Optimal spatial fil-
tering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil.
Eng 8, 441–446. doi: 10.1109/86.895946

Sim, J., and Wright, C. C. (2005). The kappa statistic in reliability studies: use,
interpretation, and sample size requirements. Phys. Ther. 85, 257–268.

Solis-Escalante, T., Müller-Putz, G., Brunner, C., Kaiser, V., and Pfurtscheller,
G. (2010). Analysis of sensorimotor rhythms for the implementation of a
brain switch for healthy subjects. Biomed. Signal Process. Control 5, 15–20. doi:
10.1016/j.bspc.2009.09.002

Tangermann, M., Müller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner,
C., et al. (2012). Review of the BCI competition IV. Front. Neurosci. 6:55. doi:
10.3389/fnins.2012.00055

Tsui, C. S. L., Gan, J. Q., and Hu, H. (2011). A self-paced motor imagery based
brain-computer interface for robotic wheelchair control. Clin. EEG Neurosci.
42, 225–229. doi: 10.1177/155005941104200407

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G., and
Scherer, R. (2012). Level of participation in robotic-assisted treadmill walk-
ing modulates midline sensorimotor EEG rhythms in able-bodied subjects.
Neuroimage 63, 1203–1211. doi: 10.1016/j.neuroimage.2012.08.019

Wang, X., and Paliwal, K. K. (2003). Feature extraction and dimensionality reduc-
tion algorithms and their applications in vowel recognition. Pattern Recogn. 36,
2429–2439. doi: 10.1016/S0031-3203(03)00044-X

Wang, Y., Hong, B., Gao, X., and Gao, S. (2007). “Implementation of a brain-
computer interface based on three states of motor imagery,” in Engineering
in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE (IEEE), 5059–5062.

Wojcikiewicz, W., Vidaurre, C., and Kawanabe, M. (2011). “Stationary common
spatial patterns: towards robust classification of non-stationary EEG signals,”
in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011 (Prague), 577–580. doi: 10.1109/ICASSP.2011.5946469

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain-computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Wolpaw, J. R., McFarland, D. J., Vaughan, T. M., and Schalk, G. (2003).
The wadsworth center brain-computer interface (BCI) research and devel-
opment program. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 204–207. doi:
10.1109/TNSRE.2003.814442

Yamashita, O., Sato, M. A., Yoshioka, T., Tong, F., and Kamitani, Y. (2008). Sparse
estimation automatically selects voxels relevant for the decoding of fMRI activ-
ity patterns. Neuroimage 42, 1414–1429. doi: 10.1016/j.neuroimage.2008.05.050

Zhao, Q. B., Zhang, L. Q., and Cichocki, A. (2009). EEG-based asynchronous BCI
control of a car in 3D virtual reality environments. Chin. Sci. Bull. 54, 78–87.
doi: 10.1007/s11434-008-0547-3

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 03 March 2014; accepted: 22 April 2014; published online: 14 May 2014.
Citation: Lisi G, Noda T and Morimoto J (2014) Decoding the ERD/ERS: influence of
afferent input induced by a leg assistive robot. Front. Syst. Neurosci. 8:85. doi: 10.3389/
fnsys.2014.00085
This article was submitted to the journal Frontiers in Systems Neuroscience.
Copyright © 2014 Lisi, Noda and Morimoto. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 85 | 11

http://dx.doi.org/10.3389/fnsys.2014.00085
http://dx.doi.org/10.3389/fnsys.2014.00085
http://dx.doi.org/10.3389/fnsys.2014.00085
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lisi et al. ERD/ERS-decoding: leg afferent input influence

A. APPENDIX
A.1 Z -TEST
Being kN and kP the Kappa scores, respectively, of the NoPert
and Pert conditions, the Z-score of their difference can be
computed as:

zNP = |kN − kP|√
var(kN ) + var(kP)

(A1)

where var(k), the variance of k, can be computed according to
the original formula in Congalton et al. (1983). Thus, two Kappa
values are considered significantly different, with a significance
level of p-value <0.05 if their Z-score is bigger than 1.96.
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