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In self-organized critical (SOC) systems avalanche size distributions follow power-laws.
Power-laws have also been observed for neural activity, and so it has been proposed
that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo,
evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings
from awake rats and monkeys, anesthetized cats, and also local field potentials from
humans. We compared these to spiking activity from two established critical models: the
Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental
differences between the neural and the model activity. These differences could be
overcome for both models through a combination of three modifications: (1) subsampling,
(2) increasing the input to the model (this way eliminating the separation of time scales,
which is fundamental to SOC and its avalanche definition), and (3) making the model
slightly sub-critical. The match between the neural activity and the modified models held
not only for the classical avalanche size distributions and estimated branching parameters,
but also for two novel measures (mean avalanche size, and frequency of single spikes), and
for the dependence of all these measures on the temporal bin size. Our results suggest
that neural activity in vivo shows a mélange of avalanches, and not temporally separated
ones, and that their global activity propagation can be approximated by the principle that
one spike on average triggers a little less than one spike in the next step. This implies
that neural activity does not reflect a SOC state but a slightly sub-critical regime without
a separation of time scales. Potential advantages of this regime may be faster information
processing, and a safety margin from super-criticality, which has been linked to epilepsy.

Keywords: self-organized criticality, human intracranial recordings, spike train analysis, highly parallel recordings,

spiking neural networks, multiunit activity, cortex, monkeys

INTRODUCTION
Avalanches, earthquakes, and forest fires are all cascades of activ-
ity in otherwise quiescent systems (Gutenberg and Richter, 1944;
Bak et al., 1987; Drossel and Schwabl, 1992; Frette et al., 1996;

Measures, variables, and abbreviations: α, connection strength or synaptic
strength; β, scaling exponent (DFA); σ , branching parameter; σ ∗, estimated
branching parameter; τ , critical exponent of the avalanche size distribution; bs,
bin size; DFA, detrended fluctuation analysis; f(s), avalanche size distribution; f (s =
1, bs), frequency of avalanches of size s = 1 and their dependence on the bin size; h,
rate of input spikes, also called drive (Hz); <s>, mean avalanche size; <IEI>, aver-
age inter event interval; <IEI> = 1/R; N, number of sampled (model) neurons;
r, rate per unit (Hz); R, population rate (Hz); STS, separation of time scales.

Dickman et al., 2000). Most of the time, the size of these cas-
cades, or avalanches, is small, but sometimes avalanches are large
enough to span the entire system. The size s of an avalanche is
the number of units activated during a cascade, and interestingly,
the distribution f(s) of avalanche sizes in the systems mentioned
above precisely follows a power law:

f (s) ∼ s−τ (1)

where τ is the critical exponent. Critical exponents determine
the macroscopic behavior of a system, and indicate the system’s
universality class (Wilson, 1975).
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Power law distributions are characteristic for second-order
phase transitions, where the system is in a “critical” state. If the
system evolves to reach a critical state without fine-tuning of
control parameters, the system is termed self-organized critical
(SOC) (Bak et al., 1987; Jensen, 1998; Nagler et al., 1999; Beggs
and Plenz, 2003; Frigg, 2003; Beggs and Timme, 2012; Pruessner,
2012).

SOC models show avalanches or cascades of activity across
their units, which may arise from simple local interactions (Bak
et al., 1987; Drossel and Schwabl, 1992; Olami et al., 1992). These
avalanches can include all units in the system. However, most
avalanches are small or intermediate in size. Note that avalanches
of size one, i.e., only one unit is active and no further activity
is triggered, have the highest chance of occurring (see Equation
1). Overall, avalanches are not characterized by an average size,
i.e., the size distribution is scale-free, and only the true size of the
system restricts the avalanche size range.

In nervous systems, scale-free properties have been observed
in local field potentials (LFP), electro- and magnetoencephalo-
graphic (EEG, MEG) activity, and BOLD signals (Linkenkaer-
Hansen et al., 2001; Beggs and Plenz, 2003; Petermann et al.,
2009; Hahn et al., 2010; Ribeiro et al., 2010; Tetzlaff et al., 2010;
Friedman et al., 2012; Poil et al., 2012; Tagliazucchi et al., 2012;
Priesemann et al., 2013; Shriki et al., 2013). They have been found
in different preparations, ranging from cultures to in vivo prepa-
rations, and across different species and phyla: leeches, rats, cats,
monkeys, and humans (Linkenkaer-Hansen et al., 2001; Beggs
and Plenz, 2003; Mazzoni et al., 2007; Pasquale et al., 2008;
Petermann et al., 2009; Priesemann et al., 2009, 2013; Hahn et al.,
2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al.,
2012; Poil et al., 2012; Tagliazucchi et al., 2012; Shriki et al., 2013).
The prevailing hypothesis is that scale-free neural activity arises
from SOC behavior (Linkenkaer-Hansen et al., 2001; Beggs and
Plenz, 2003; Mazzoni et al., 2007; Beggs, 2008; Pasquale et al.,
2008; Petermann et al., 2009; Shew et al., 2009; Hahn et al., 2010;
Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al., 2012;
Poil et al., 2012; Tagliazucchi et al., 2012; Gal and Marom, 2013;
Shriki et al., 2013). However, there are also studies that reported
deviations from scale-free activity: Neural activity was shown to
exhibit sub-critical and super-critical behavior during develop-
ment in vitro (Pasquale et al., 2008; Tetzlaff et al., 2010; Friedman
et al., 2012); and there are also studies in which in vivo neural
activity appeared as sub-critical (Bedard et al., 2006; Priesemann
et al., 2013). Thus, healthy brains seem to be capable of organizing
themselves into a range of states that are not necessarily SOC.

Nevertheless, because neural activity from coarse scale mea-
sures (e.g., population spikes, LFP, MEG, BOLD) often do
show power law scaling, the same was expected for more
basic constituents of neural activity, namely the spiking activity.
Surprisingly, however, spike avalanches often deviated from
power law scaling (Bedard et al., 2006; Pasquale et al., 2008;
Hahn et al., 2010; Tetzlaff et al., 2010). In fact, to the best of our
knowledge, there is not a single study that demonstrated power
laws for spikes in awake animals. The deviations from power law
scaling in previous studies were attributed either to sub- or super-
critical states (Pasquale et al., 2008; Tetzlaff et al., 2010), or to
subsampling effects (Ribeiro et al., 2010). Subsampling refers to

the technical constraint that only a fraction of all neurons in a
given area can be measured. Subsampling can impede the obser-
vation of power law distributions in SOC models (Priesemann
et al., 2009, 2013; Ribeiro et al., 2010; Girardi-Schappo et al.,
2013) and hence a critical system can be misinterpreted as sub- or
super-critical (Priesemann et al., 2009). Therefore, subsampling
effects need to be taken into account when interpreting spike
avalanches.

An important property of SOC systems, which is potentially
absent in neural activity, is the separation of time scales (STS)
(Bak et al., 1987; Drossel and Schwabl, 1992; Clar et al., 1996;
Dickman et al., 2000; Pruessner, 2012; Hartley et al., 2013)
whereby pauses between avalanches last much longer than the
avalanches proper. For example, forest fires last for a much shorter
time than it takes to regrow the forest. Similarly, earthquakes
are much more rapid than the time it takes to build shear stress
through plate tectonics (Drossel and Schwabl, 1992; Clar et al.,
1996, 1999; Baiesi and Paczuski, 2004). Likewise, in the classical
sandpile model, scale-free avalanche distributions are observed
only if the grains are dropped at a low enough rate (Vespignani
and Zapperi, 1997, 1998). This low rate of external input, called
drive, is a necessary condition for the long pauses and hence for
SOC (Bak et al., 1987; Drossel and Schwabl, 1992; Clar et al., 1996;
Dickman et al., 2000; Pruessner, 2012; Hartley et al., 2013).

Neither the neural activity we analyzed here, nor that from
previous studies of neural avalanches showed STS: There were
no long pauses in the neural activity which could be seen as
natural separations between avalanches. Without such pauses,
unambiguous detection of the beginning and the end of an indi-
vidual avalanche is not possible. Hence, the method of temporal
binning had been introduced as a workaround (Beggs and Plenz,
2003) (Figure 1). Here, the choice of the bin size determines what
is considered to be a pause between avalanches. Consequently,
avalanche sizes necessarily change with the choice of the bin size
(see e.g., Beggs and Plenz, 2003; Priesemann et al., 2009, 2013;
Hahn et al., 2010). This implies that also the avalanche size distri-
butions and, more importantly, power law exponents change with
the choice of bin size (Beggs and Plenz, 2003; Priesemann et al.,
2013). This is in marked contrast to fully sampled SOC systems,
in which the power law exponents do not change under temporal
binning as a result of STS. These differences have to be considered
when comparing neural activity in vivo to that of classical SOC
models.

As indicated above, in classical SOC systems each avalanche
is separated from the next one by a long pause. In contrast, in
driven SOC systems, i.e., SOC systems without STS, avalanches
can meet, merge, intermingle, and split up: They form a mélange.
As we demonstrate in this paper, neural activity indeed resembles
such a mélange of avalanches instead of well-separated ones.

To investigate the differences between in vivo and model activ-
ity, we analyzed spike avalanches recorded in awake rats and mon-
keys, anesthetized cats, and LFP avalanches recorded in humans,
and compared these in vivo avalanches to avalanches from an
established SOC model (Bak-Tang-Wiesenfeld model) (Bak et al.,
1987; Dunkelmann and Radons, 1994; Priesemann et al., 2009,
2013), and to those from a stochastic branching model (Harris,
1963; Haldeman and Beggs, 2005).
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FIGURE 1 | Definition of avalanches sizes, branching parameter σ ∗,

and their change with bin size. (A) To define avalanches, temporal
binning (boxes) is applied to a sequence of spikes (red dots and
diamonds). Empty bins are marked in blue. An avalanche is an ensemble
of spikes in a sequence of non-empty bins. Its size s is the total
number of spikes, as indicated above the bins. The branching parameter
σ ∗

i is the ratio between the number of spikes in one bin, divided by the
number of spikes in the previous bin, as indicated below the bins. If the
previous bin was empty, σi is “not defined” (nd). The estimated
branching parameter σ ∗ for an experiment is the average over all σ ∗

i , σ ∗

= <σ i>. (B) When increasing the bin size, the observed avalanches can
become larger, since pauses “disappear”. The branching parameter σ ∗
also changes with the bin size. (C) Under subsampling, only a fraction of
the units are recorded (red dots), while others are missed (gray). Thereby
subsampling can split a single avalanche into several parts. (A–C) In the
model, spikes are either triggered externally by some drive (red
diamonds), or they are evoked by presynaptic activity (red dots). If a
second avalanche is triggered while the first one is still active [last
avalanche in (A)], then the two avalanches cannot be told apart and are
evaluated as if they were a single one.

RESULTS
As a widely held belief states that mammalian nervous sys-
tems operate in a SOC state, we first briefly recapitulate
the theoretically expected avalanche statistics in this state by
example of a SOC model and a critical stochastic branch-
ing model. We then show that all of the analyzed neural
avalanches in vivo showed clear deviations from the expected
statistics.

The remainder of the results then demonstrates how two sim-
ple and neurophysiologically well-motivated conceptual changes
in the models can serve to align model and in vivo activity with
respect to a large set of measured quantities.

DIFFERENCES BETWEEN NEURAL DYNAMICS IN VIVO AND SOC
The first example model is a simple neural network model, which
is known to have SOC properties (Bak et al., 1987). Furthermore,
this SOC model has been shown to match LFP avalanches in mon-
keys and humans (Priesemann et al., 2009, 2013). In our study,
the model consisted of 2500 non-leaky integrate-and-fire neurons
arranged as a 50 by 50 grid with nearest neighbor connections
of synaptic strength α = 1 (see Methods). In this model, spikes

are either evoked by activity from presynaptic neurons, or by a
random external input to a neuron. This input is termed drive
and has a rate h. For h → 0 and α = 1, this model obeys local
energy conservation (Bonachela et al., 2010), and is equivalent
to the well-known SOC Bak-Tang-Wiesenfeld model (Bak et al.,
1987). h → 0 is necessary for a model to be SOC (Vespignani
and Zapperi, 1997, 1998; Dickman et al., 2000), because it guar-
antees the obligatory STS. h → 0 is implemented by applying
external input only when there is otherwise no activity in the
model. The input triggers an avalanche, i.e., a cascade of events.
The size s of an avalanche is defined as the total number of spikes
evoked by a single input spike. This model is known to show a
power law for f(s) with slope τ ≈ 1 (Figure 2A), and a cutoff at
s ≈ 1000 (Bak et al., 1987). This cutoff reflects the finite size of
the model (Bak et al., 1988; Kadanoff et al., 1989; Ktitarev et al.,
2000).

To later demonstrate that our conclusions are not specific to
the SOC model above, we simulated a second model, namely
a stochastic branching model (see Methods) (Harris, 1963;
Haldeman and Beggs, 2005). Like the SOC model, it was sim-
ulated with 2500 neurons, but in contrast to the SOC model,
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FIGURE 2 | Avalanche size distributions f(s) changed with the bin size for

the in vivo spike trains (D–F), and for the subsampled models (B,C,H,I).

(A) f(s) of the SOC model under full sampling did not depend on the bin size.
(B) Under subsampling (N = 100 neurons), f(s) of the same SOC model
changed with small bin sizes only. (C) In the driven model (h > 0) f(s) changed
for all bin sizes. h was chosen such that the population rate R of the 100

sampled model neurons matched R of the experiments (R ≈ 320 Hz). (D–F)

f(s) recorded in the hippocampus (awake rat), the visual cortex (anesthetized
cat), and the prefrontal cortex (awake monkey). (G–I) shows the same as
(A–C), but for a critical branching model instead of the SOC model. Dashed
lines indicate potential power law slopes to guide the eye. All f(s) are
logarithmically binned and f(s) is in absolute counts.

the k = 4 postsynaptic neurons were chosen randomly at each
step. Activity propagated stochastically, i.e., an active neuron acti-
vated each of its k postsynaptic neurons with probability p =
α/k. Like the SOC model, this model is critical for α = 1, and
sub- (super-) critical for α < 1 (α > 1). The critical stochastic
branching model with STS also showed a power law distribution
for f(s), but with a different critical exponent (τ = 1.5,
Figure 2G).

The results for the stochastic branching model and the SOC
model were qualitatively the same for all measures used below.
The similarity also held when the models were modified analo-
gously. Therefore, in the following, we mainly report results for
the SOC model.

Our critical models were contrasted with highly parallel
recordings from awake rats (hippocampus), awake monkeys (pre-
frontal cortex), and from an anesthetized cat (visual cortex
area 18). The avalanche distributions f(s) from these in vivo
spike recordings were all very similar, but clearly differed from
those obtained from the fully sampled critical models (compare
Figures 2D–F with A,G). In particular, the in vivo f(s) neither fol-
lowed a power law, in contrast to what is expected for a SOC
system, nor an exponential distribution, as would be expected
for independent Poissonian activity (Figures S1 and S2 show the
in vivo f(s) for each experiment in double-logarithmic and log-
linear scales, respectively). Quantitatively, the f(s) were best fit in
16 out of 17 experiments by a lognormal distribution
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f (s) ∼ e
− (ln(s)−μ)2

2σ2

with parameters μ = 0.89 ± 0.25 and variance σ 2 = 1.2 ± 0.1,
given a bin size of 1 average inter event interval (<IEI>) (see
Clauset et al., 2007; Priesemann et al., 2013 for details). Based
on these parameters the maximum of f(s) was at s = 0.87 ±
0.38 (mean ± SD), which means that f(s) was monotonically
decreasing. Two alternative distributions, namely stretched expo-
nentials and power laws with cutoff, also provided reasonable
fits, with likelihoods ∼1% worse than the one for the lognormal
distribution.

Interestingly, all in vivo avalanche distributions were similar
despite changes in the population rate R by a factor of 50 (from
37 to 1560 Hz) across the 17 experiments (Figures S1, S2).

Note that some of the f(s) of the rat experiments could also be
approximated by a power law, but at most for one selected bin
size (Figure S3A). When slightly changing the bin size, the f(s)
clearly deviated from power law scaling (Figure S3B). This is in
stark contrast to the behavior expected for SOC systems.

A second striking difference between critical models and
in vivo activity was that the in vivo f(s) changed with the bin size
across a range from 0.5 to 128 ms. The reason for the bin size
dependence was that in vivo recordings showed pauses of variable
length between the spikes, while SOC activity showed only the
long pauses between avalanches, which are due to STS. In order
to introduce pauses of variable length into the model avalanches,
one can apply subsampling and drop STS (see next two sections).

SUBSAMPLING INTRODUCES PAUSES AT SHORT TIME SCALES
Subsampling refers to the problem that we are far from being
able to sample all spikes from all neurons, even for a single brain
area (Figure 1C). Thus, for a careful comparison between in vivo
recordings and models, the activity from the models should be
subsampled in the same manner as in the experiments. Because
in each experiment around 100 neurons were recorded in paral-
lel, in the model we constrained the sampling also to N = 100
randomly chosen neurons out of the 2500. We fixed the subsam-
pling by the number of neurons, and not the fraction, because
running these critical models with millions of neurons is beyond
our computational capacities, and because the qualitative results
did not change in larger models, i.e., when decreasing the fraction
(see below).

When applying subsampling, the model avalanche size distri-
bution f(s) changed with bin size (Figures 2B,H). A change in
bin size affected f(s), because subsampling introduces apparent
pauses in a single avalanche (Figure 1C). These apparent pauses
were relatively short compared to the duration of an avalanche,
and compared to the pauses between avalanches on the full model
(by definition of STS). Therefore, when subsampling, f(s) changed
only with small bin sizes but stopped to change its shape with
larger ones (Figures 2B,H).

These results also held when using a larger model and sampling
the same number of neurons, i.e., a smaller fraction of neurons. In
this case, the distance and hence the traveling time of avalanches
between sampled neurons became larger and longer, and the inter
spike intervals became unrealistically long. Nonetheless, at large
bin size, a similar fraction of small avalanches was observed (due

to STS). As a consequence, f(s) also stopped changing like in
smaller models, and never became as flat as the in vivo f(s). Hence,
the behavior of a larger model was the same as that of smaller
ones, but on a longer time scale.

Subsampling the SOC model did not only introduce a depen-
dence of f(s) on the bin size, it also affected the cutoff of f(s).
Thereby, the absolute value of the cutoff became more similar for
the model and the in vivo f(s) (Figures 2B,H).

In sum, acknowledging subsampling effects in the model
allowed for a better match between the model and the in vivo
activity, but only for small bin sizes up to a few milliseconds. For
larger bin sizes, the in vivo f(s) continued to become flatter, while
the model f(s) stopped to change their shape. This indicated that a
modification to the model dynamics itself was necessary to match
in vivo activity.

AN INCREASE IN DRIVE RATE h CREATES A MÉLANGE OF AVALANCHES
We hypothesized that in vivo and SOC activity differed because
SOC models have STS (Vespignani and Zapperi, 1997, 1998;
Dickman et al., 2000), which is necessarily absent in vivo. STS
can be eliminated from the models by increasing the drive rate
h. We increased h in such a way that the model population
rate R matched the in vivo population rate under subsampling
(h = 0.02 Hz, and R = 320 Hz; single neuron rate r in the model:
r = R/N = 3.2 Hz). In this driven SOC model, the avalanches
were no longer separated by long pauses (Figure 3B). Instead, at
any point in time, avalanches could start, meet, intermingle, split
into branches, or die out (Figures 1, 3B). In such a mélange of
avalanches, single avalanches can no longer be tracked.

The mélange of avalanches in the driven model hardly showed
any pauses when all neurons were sampled (Figure 3B). However,
under subsampling, pauses were more frequent. Thus, sub-
sampling allowed for an extraction of apparent avalanches by
applying temporal binning (Figure 1). Note that these appar-
ent avalanches do not correspond to the avalanches observed
in classical SOC models in which avalanches are separated by
long pauses, and are thereby defined unambiguously. However,
the apparent avalanches from the driven models are conceptu-
ally the same as those extracted from in vivo recordings because
avalanches in both cases are extracted with the same method.

As expected for the driven, subsampled SOC model, f(s)
changed with all bin sizes (Figures 2C,I), and thereby resem-
bled the in vivo f(s) much better than the original SOC model
(Figure 2).

DRIVEN CRITICAL AND DRIVEN SUB-CRITICAL STATES
In the following, we address the question whether subsampling
and the elimination of STS is sufficient to match the model
activity with the in vivo activity, or whether it is necessary to
introduce in addition deviations from criticality.

To tune models away from criticality, we made use of the fact
that SOC and branching models are only critical in the con-
servative limit (α = 1) (Harris, 1963; Bonachela and Muñoz,
2009; Bonachela et al., 2010). Hence, by introducing dissipation
(α < 1) these models can be made sub-critical. In fact, the model
dynamics showed a smooth transition from the “driven SOC”
state (α = 1) to pure Poisson activity (α = 0) (Figures 3, 4) with
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FIGURE 3 | The population spike rate of the (modified) SOC model

depended on the connection strength α and the rate of input spikes h

(drive). h and α were balanced such that the rate of each unit was r = 5 Hz,
except for (A), where α = 1 and h → 0 (SOC model). In (A), the broken
axes indicate that the pauses between subsequent avalanches are much
longer than the avalanche proper (separation of time scales). (B) α = 1,
h = 0.02 Hz, r = 5 Hz (driven SOC). (C) α = 0.95, h = 0.5 Hz, r = 5 Hz
(driven sub-critical). (D) α = 0, h = r = 5 Hz (Poisson). In (A–D), the
population rate time course is indicated in black; the scale bar indicates the
firing rate per neuron. Black dots show the spike raster from 100 randomly
chosen units; the blue background denotes pauses, i.e., none of the 2500
neurons spiked. Note the absence of pauses in (C,D).

decreasing α. In principle, a decrease in α also decreased the fir-
ing rate r of each unit. To still maintain a constant firing rate r,
a concomitant increase in the drive rate h was applied. In this
way, the model could make the transition from driven SOC to
Poissonian activity without a change in r (Figure 4, black line).
Given a fixed r, a decrease in α decreased the variability of the
models population rate (Figure 3).

To understand which network dynamics between driven criti-
cal and Poissonian accounted best for the in vivo spike avalanches,
we identified those measures in the model which depended most
sensitively on α under subsampling: α had a prominent effect
on the avalanche size distribution f(s), in particular how f(s)
depended on the bin size. We quantified this below using the
following avalanche measures: the mean avalanche size (<s>),
the frequency of avalanches of size s = 1 (f (s = 1)), and the esti-
mated branching parameter σ ∗. The way in which these measures
changed with the bin size depended sensitively on α. In addition,
we estimated the scaling exponent β of the “detrended fluctua-
tion analysis” (DFA) (Peng et al., 1994, 1995; Kantelhardt et al.,
2002). (Note that the scaling exponent (β) is often denoted as α

in the literature). The results of these analyses are presented in
detail below, and compared one by one to the in vivo results.

FIGURE 4 | In the model, the spike rate r of a unit depended on the

synaptic strength α and the rate of input spikes (h). With increasing h or
α, the rate of each unit increased. The black line indicates the parameter
combination of α and h, for which r = 5 Hz.

THE MEAN AVALANCHES SIZE
The mean avalanche size (<s>) from the subsampled model fol-
lowed a power law with increasing bin size for α = 1 (driven
SOC), and followed an exponential for α = 0 (Poissonian activ-
ity) (Figure 5A). For intermediate values of α, the relation
changed gradually.

For the experiments, the observed <s> at a given bin size
depended strongly on the population spike rate R that varied con-
siderably between experiments (R ranged from 37 Hz to 1.5 kHz).
To diminish the impact of R, we used a normalized bin size, i.e., a
bin size in units of average inter-event-intervals (1 <IEI> = 1/R).
Using the normalized bin size, the <s> of all experiments over-
lapped (Figure 5A, gray lines). However, the <s> did not follow a
power law with changing bin size in vivo, in contrast to the driven
critical model. In fact, the in vivo <s> was best matched by the
<s> of the driven, sub-critical models (α ≈ 0.99). Thus, com-
paring the in vivo and model <s> indicated that spike avalanches
resembled a driven sub-critical regime more closely than a driven
SOC state.

THE FREQUENCY OF AVALANCHES OF SIZE ONE
The frequency of avalanches of size s = 1, f (s = 1, bs) quanti-
fies how f(s) decayed with the bin size (bs) at s = 1, i.e., how the
intercept of f(s) with the y-axis in Figure 2 changed. f(s) at s = 1
was equally spaced from bin size 1 to 32 ms for the driven critical
models under subsampling (Figures 2C,I) which is remarkable as
it corresponds to a power law behavior of f (s = 1, bs) for the
driven SOC model (black line in Figure 5B; note that the x-axis
here is in <IEI>, and 1 <IEI> = 2 ms in the model). For the
sub-critical models (α < 1), f (s = 1, bs) decayed more steeply
than a power law. For the Poissonian case (α = 0), it followed an
exponential. In this respect, f (s = 1, bs) and <s> showed similar
behaviors with α.

f (s = 1, bs) is a promising new measure to assess criticality
under subsampling, because in contrast to many other measures,
its behavior did not change with the subsampling strategy: For the
driven SOC model, it showed power law scaling independently
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FIGURE 5 | Two new avalanche measures. (A) The mean avalanche size and
(B) the frequency of avalanches with size s = 1, f (s = 1, bs), changed with the
bin size (bs) in the model (colored) and in the experiments (gray). The colored

lines show f (s = 1, bs) for the model with varying synaptic strength α. In the
model, the drive rate h was adjusted such that each neuron spiked with r ≈ 5 Hz.
In (B), f (s = 1, bs) was normalized such that f (s = 1, bs = 1 <IEI>) = 1.

FIGURE 6 | The frequency of single events f (s = 1, bs). Decreased with
the bin size (bs) as a power law, independently of the subsampling set
in the driven SOC model (α = 1, r = 5 Hz). The subsampling set is indicated
in the right part of the figure. It was chosen as follows: blue f (s = 1, bs):
sampling 64 random units; green f (s = 1, bs): sampling 100 random units
(both, blue, and green units together); red and turquoise: sampling 8 × 8
units arranged in a grid with distance 1, and distance 5, respectively; pink
and beige: sampling 4 × 4 units with distance 1, and 5, respectively.

of the number and spatial arrangement of the sampled units
(Figure 6). However, the slope of the power law did change
due to the model’s next-neighbor topology: With smaller dis-
tances between sampled sites, the power laws became flatter
(red and pink traces in Figure 6). For the stochastic branch-
ing model, the same results held, but the power law slopes did
not change under subsampling, owing to the model’s random
topology.

The in vivo f (s = 1, bs) did not follow a power law (Figure 5B,
gray lines), and for most cases did not follow an exponential
dependency either (Figure 5B). The best approximation for the
in vivo f (s = 1, bs) was the driven, slightly sub-critical model
(α ≈ 0.99). This is in agreement with the results for <s>.

The precise value of α necessary to achieve the best match
between model and experiments potentially depended on a
number of factors (e.g., finite size effects). However, the main

result that <s> and f (s = 1, bs) observed in vivo followed nei-
ther a power law nor an exponential distribution excludes both,
critical and Poissonian states of operation.

THE BRANCHING PARAMETER σ

A widely used measure to estimate whether the in vivo avalanches
reflected a driven SOC brain state is the branching parame-
ter σ ∗, which has been used in many past studies about neural
avalanches to test whether the brain was SOC (Beggs and Plenz,
2003; Beggs, 2007; Plenz and Thiagarajan, 2007; Priesemann et al.,
2009, 2013; Shew et al., 2009; Klaus et al., 2011; Shriki et al.,
2013). The analysis of σ ∗ was initially inspired by the theory of
branching processes (Harris, 1963), in which σ = 1 guarantees
that a branching process is critical. Note, however, that estimating
σ ∗ from data may yield misleading results, because σ ∗ depends
on various factors such as the bin size (Beggs and Plenz, 2003;
Priesemann et al., 2013), the subsampling geometry (Priesemann
et al., 2009), and STS (i.e., h → 0 vs. h > 0). We next show how
σ ∗ depended on these factors in our models, and then use these
results to estimate whether the in vivo avalanches might reflect a
SOC state.

For the modified SOC model, we expect that σ equals α. For
the second model we used, i.e. the stochastic branching model,
we know by definition of the model that σ equals α. However,
when estimating σ ∗ in this model by applying temporal binning
to the model activity, finding the expected σ ∗ = α was the excep-
tion, not the rule (Figure S4; results were very similar to the ones
for the SOC model in Figure 7). In addition, σ ∗ changed with
the bin size, although the model parameter σ proper is obviously
bin size independent (Figures 7, S4). Although the estimated σ ∗
failed to approximate the true σ , σ ∗ may still be a viable approach
to compare model and in vivo activity in the following. Since the
results for both models were basically the same, we again focus on
the results for the modified SOC model.

With STS, σ ∗ always approached zero for large bin sizes inde-
pendently of model state and subsampling approach (dashed lines
in Figures 7A,B, S4). For intermediate bin sizes and under sub-
sampling, σ ∗ varied widely. σ ∗ tended to be smaller for smaller
α, but the absolute value of σ ∗ apparently cannot serve as an
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FIGURE 7 | The estimated branching parameter σ ∗ changed with bin

size. (A,B) In the model, σ ∗ depended on the synaptic strength α and the bin
size. For the driven model, the spike rate was fixed to r = 5 Hz (full lines),
while for the model with separation of time scales the drive was infinitesimal
small (h → 0; dashed lines). For h → 0 and α = 1, the model is SOC (black

dashed lines). (A) Results for the fully sampled model. (B) Results for
subsampling N = 100 neurons from the model. (C) σ ∗ for the spiking activity
recorded in monkeys, cats, and rats varied with the bin size, but was very
similar across species and experiments. It was well approximated by the
driven model with α = 0.98 (green line).

indicator for the state of the system (Figures 7A,B). Thus, under
most analysis conditions, the estimated σ ∗ did not show the
intended result (σ ∗ = α). Note that in theory, σ ∗ should not
change at all with the bin size.

Without STS (full lines in Figures 7A,B, S4), σ ∗ was ≤1 for
small bin sizes, ≥1 for intermediate bin sizes, and approximated
unity for large bin sizes – independently of the state of the model.
This shows that the widely held assumption that an estimated
σ ∗ > 1 (σ ∗ < 1) corresponds to a super-critical (sub-critical)
state of the system is likely incorrect, especially for the ubiquitous
scenario of subsampling.

Although the expected σ ∗ = 1 is neither unique to critical
systems, nor indicative of criticality, σ ∗ and its dependence on
the bin size still reflect the intrinsic dynamics of the system.
Therefore, comparing σ ∗ between in vivo and model activ-
ity may still help to indicate the state of the system. Note
that to estimate the in vivo σ ∗ we used the normalized bin
size (in <IEI>) to account for the different population rates
R in the experiments. σ ∗ was very similar across all experi-
ments (Figure 7C) despite a 50-fold difference in R. This indi-
cates once again that neural avalanches in vivo hardly dif-
fer across mammalian species (from rats to monkeys), across
brain structures (from hippocampus to prefrontal cortex), and
across cognitive states (from anesthetized to awake behaving
animals).

Given the complex dependence of σ ∗ on the bin size, how can
σ ∗ be used to estimate the precise state of the neural network?
First, for all in vivo avalanches, σ ∗ approximated unity for large
bin size (Figure 7C). However, this simply indicates that spiking
activity in vivo lacks STS. Second, the maximum of σ ∗ under sub-
sampling may be an indicator of the state. The maximum of σ ∗
increased with increasing α. For α = 1, σ ∗ showed a maximum
of ≈3 at bs ≈100 ms. [The same values held for the stochastic
branching model (Figure S4)]. For the experiments, the maxi-
mum value of σ ∗ was only around 1.4. Overall, the best match
for the in vivo σ ∗ was achieved by the driven, slightly sub-critical
models (α ≈ 0.98). This result is in line with the previous results
for f (s = 1, bs) and <s>.

FIGURE 8 | The exponent β of the DFA. Depended on the synaptic
strength α in the model (diamonds), and was affected by subsampling
(black: fully sampled model; green: subsampled model). For the
experiments, β (gray circles) and the respective mean values (gray bars)
ranged between 0.55 and 0.9.

THE SCALING EXPONENT β

In DFA, the scaling exponent β quantifies the memory decay
in a time series. β = 0.5 indicates that a time series has no
memory (uncorrelated); β ≈ 1 indicates 1/f (pink) noise; and
β ≈ 1.5 Brownian noise. We estimated β for the population rate
time series of the model (r = 5 Hz), and for each experiment.
As expected, under full sampling the model with α = 1 showed
β ≈ 1 (Figure 8, black diamonds); with decreasing α, β decreased
as well; and for α = 0 (Poisson), we found β ≈ 0.5. Qualitatively,
the same results held under subsampling, but β tended to be
underestimated (Figure 8, green diamonds).

The in vivo activity showed neither β = 1 nor β = 0.5, but β

ranged between 0.55 and 0.9. These β values correspond to those
of the sub-critical, driven model with 0.98 ≤ α < 0.999.

All the above measures indicated that driven, slightly sub-
critical models provided the best match to in vivo spike
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FIGURE 9 | Avalanche size distributions f(s) for in vivo spikes and for

spikes from the driven, sub-critical models. (A) f(s) of one awake
monkey. Dots indicate the raw f(s), while lines are the f(s) with
logarithmic binning. (B) f(s) for the driven, sub-critical models with
α = 0.99, and r = 5 Hz; model 1 denotes the modified SOC model (full

lines), and model 2 the stochastic branching model (dashed lines). (C)

f(s) of all in in vivo spike recordings (rat, cat, monkey), together with the
f(s) of the driven, subcritical models (same as in B). All bin sizes were in
average inter event intervals (<IEI>), and f(s) were normalized such that
f (s = 1, bs = 1):= 1.

avalanches. Most of these measures were derived from the
avalanche size distribution, and hence we expect a good match
between the in vivo f(s), and the f(s) of the driven models with
α ≈ 0.99. Indeed, given a normalized bin size, both sub-critical
models fitted the in vivo f(s) well (Figure 9). The small differences
for large s (s > 100) may potentially be overcome by applying
a more realistic drive instead of uncorrelated Poissonian drive,
for example one that reflects the statistics of neural activity (as
lined out here), or the statistics of our environment (Field, 1987;
Van der Schaaf and van Hateren, 1996; Simoncelli and Olshausen,
2001; Sinz et al., 2009).

LFP AVALANCHES IN HUMANS
Approximate power law distributions have been reported for
coarse measures of neural activity, such as population spikes,
LFP, EEG, MEG, and BOLD activity (Linkenkaer-Hansen et al.,
2001; Beggs and Plenz, 2003; Petermann et al., 2009; Hahn et al.,
2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Friedman et al.,
2012; Poil et al., 2012; Tagliazucchi et al., 2012; Priesemann
et al., 2013; Shriki et al., 2013). In the following, we show
that also LFP recordings in humans indicate a driven, slightly
subcritical regime, despite their approximate power law scaling
of f(s).

LFPs were recorded using intracranial depth electrodes from
five human subjects. Each subject had between 44 and 63 record-
ing contacts implanted. From these recordings, we extracted
avalanches of enhanced activity (see Methods and Priesemann
et al., 2013). The LFP f(s) closely followed a power law
(Figure 10A), and the slope of the power law decreased with
increasing bin sizes. This is in contrast to SOC systems in which
the slope does not change with temporal binning (Figures 2A,G),
and indicates that LFP avalanches, like the spike avalanches, lack
clear STS.

In general, the LFP f(s) showed a better approximation to
power law scaling than any of the spike avalanche distribu-
tions (Figures 2, 10). Despite an approximate power law scaling
for f(s), all the other measures we used here [i.e., <s>, f (s =

1, bs), σ ∗, and β] indicated a sub-critical regime: The <s>
and the f (s = 1, bs) both deviated from power law scaling
(Figure 10B); the branching parameter did not show a pro-
nounced peak (Figure 11); and the scaling exponent β of the DFA
was smaller than unity (mean(β) = 0.6; Figure 7). This is in line
with our previous study on the same data (Priesemann et al.,
2013), and with our results for spiking activity. In sum, despite
approximate power-law scaling in f(s), all the other measures indi-
cated a driven, slightly sub-critical regime on the level of LFP
activity.

DISCUSSION
This study challenges the hypothesis that mammalian brains
operate in a SOC state, as has been repeatedly suggested
(Linkenkaer-Hansen et al., 2001; Beggs and Plenz, 2003;
Haldeman and Beggs, 2005; Levina et al., 2007a; Hsu et al.,
2008; Pasquale et al., 2008; Stewart and Plenz, 2008; Petermann
et al., 2009; Priesemann et al., 2009; Shew et al., 2009; Hahn
et al., 2010; Ribeiro et al., 2010; Tetzlaff et al., 2010; Poil et al.,
2012; Tagliazucchi et al., 2012; Shriki et al., 2013). Despite
these claims, evidence for SOC was found lacking for spik-
ing data, which are generally considered an important and
reliable marker of neural activity. To test the SOC hypothe-
sis, we therefore analyzed in vivo spiking activity from three
mammalian species and local field potential recordings from the
human brain using established measures of criticality, and also
novel ones that are robust to common shortcomings of exper-
imental data, such as subsampling. We particularly focused on
systematic changes of these measures with the choice of the
bin size.

Spike avalanches from rats, cats, and monkeys, and LFP
avalanches from humans showed deviations from the behavior
expected for SOC, thereby contradicting the SOC hypothesis.
To reproduce the in vivo results and provide potential explana-
tions for their deviations from SOC, we modified the models
capable of critical behavior. We found a close match between
in vivo and model behavior (1) if those models were subsampled,
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FIGURE 10 | (A) The size distribution f(s) of LFP avalanches from intracranial
depth electrodes in humans followed power laws. The slope of the power
laws changed with the bin size (see legend). The bin size was changed over
a 1000-fold range, from sampling resolution (400 Hz, i.e., 2.5 ms) to
“gluing” everything together at bs ≈ 2500 ms. The bin size closest to one
inter event interval is marked in purple (bs = 80 ms, see Methods). (B)

Neither the mean avalanche size (<s>), nor the frequency of avalanches of
size s = 1, f(s = 1, bs), showed a power law. Each line represents the
results for one recording session (<s> in black, f (s = 1, bs) in gray).

and (2) if the STS – a fundamental property of SOC sys-
tems – was eliminated, and (3) if the models were tuned to a
sub-critical regime. As these results generalized over two very
different models, we interpret results from the in vivo record-
ings here as evidence that mammalian nervous systems operate
in a driven, sub-critical regime. This regime, albeit not critical,
was, however, remarkably similar across species and experimental
conditions.

UNIVERSAL BEHAVIOR OF SPIKE AVALANCHE DISTRIBUTIONS
ACROSS RECORDING AREAS, VIGILANCE STATES AND SPECIES
The observed avalanche size distributions f(s) were similar across
species and recording areas (hippocampus in rats, visual cortex
in cats, prefrontal cortex in monkeys). A similar universality of
f(s) across recording areas has been reported by Ribeiro and col-
leagues (hippocampus, somatosensory cortex, and visual cortex
in rats) (Ribeiro et al., 2010). Thus, avalanche activity seems to

FIGURE 11 | The estimated branching parameter σ ∗ from the LFP

avalanches in humans changed with the bin size. Each of the lines
shows the results for one recording session. (+) indicates σ ∗ = 1 and
bs = 80 ms ≈ 1 <IEI> to guide the eye.

be independent of the function and the precise anatomy of an
area. This might either indicate that avalanches are not a sen-
sitive measure of neural dynamics, or that activity propagation
must follow principles that are independent of the specific role
that a brain area plays in information processing. The first argu-
ment is not likely applicable, since avalanches change under data
shuffling and they sensitively reflect the correlation structure in
the data (e.g., Figure 1 in Priesemann et al., 2013). The second
argument might indeed hold. Hence, the challenge is to identify
the principle that gives rise to these apparently universal spike
avalanche distributions. This principle may in fact be very simple.
As discussed below, our modified SOC model, as well as a simple
branching model, suggests that on average one spike gives rise to
a little less than one subsequent spike, and that quiescence in the
population activity is prevented by “input spikes” which trigger
avalanches at a low rate. This principle differs from SOC, where
one spike on average gives rise to exactly one subsequent spike,
and the rate of input spikes approaches zero (STS). As a conse-
quence, SOC activity shows only one avalanche at a time, while
the driven, slightly sub-critical regime shows instead a mélange of
avalanches.

EMPIRICAL AVALANCHE DISTRIBUTIONS RULE OUT THE CRITICAL
AND THE POISSON STATES
Let us first summarize the conclusions that can be drawn from
the analyses of the in vivo spike avalanches alone, without refer-
ring to modeling. For f(s), neither was the power law scal-
ing found, that is characteristic for SOC, nor did the novel
measures (f (s = 1, bs), <s>) support the hypothesis of criti-
cal behavior. Thus, the hypothesis that spike avalanches show
signs of SOC can be ruled out. In addition, we can rule out
the hypothesis of largely independent Poissonian behavior of
the spiking units (that is often used in models), because in
this case the avalanche distributions should have shown expo-
nential behavior, which was not observed. We therefore con-
clude that spiking activity is neither (self-organized) critical nor
Poissonian.
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LIMITATIONS OF THE MODELS AND MEASURES
The SOC model used here was admittedly simple – it comprised
neither inhibitory connections nor leakage in the neurons; synap-
tic connections had a homogeneous nearest-neighbor topology
and were all of identical strength α. We chose this model because
the basic variant (σ = 1, h → 0; i.e., the Bak-Tang-Wiesenfeld
model; Bak et al., 1987) is extensively studied in the context of
SOC (De Menech et al., 1998; Jensen, 1998; Vespignani et al.,
1998; Dickman et al., 2000; Dhar, 2006; Pruessner, 2012). The
second model we used was a stochastic branching model (Harris,
1963; Haldeman and Beggs, 2005). It was set up to be compa-
rable to the SOC model, but had a random topology, and the
activity propagated stochastically with p = α/k. In this model,
the number of connections k hardly affected the results (see also
Haldeman and Beggs, 2005).

For both models, the avalanche dynamics was qualitatively
similar. Hence, the model results were not specific to the topology
(local vs. random), the number of connections k, and the pre-
cise spike propagation mechanisms (deterministic vs. stochastic).
In contrast, implementing leaky model neurons may hinder SOC
altogether (Bonachela and Muñoz, 2009; Bonachela et al., 2010).
This in itself is an argument against the hypothesis that neural
activity is SOC, but it could still be “quasi-critical” (Bonachela
and Muñoz, 2009; Bonachela et al., 2010). However, our results
indicate sub-criticality.

We note that the power law scaling observed for the novel mea-
sures (f (s = 1, bs), <s>) in the critical models has not been
derived analytically yet. However, in both critical models the
novel measures showed power law scaling despite the different
topology and the different spike propagation rules, and hence
we expect this behavior to be characteristic for critical dynamics.
Still, for now these measures can only be used as tools to compare
model and in vivo dynamics, and not for determining scaling laws.

ON THE PLAUSIBILITY OF EXTERNAL DRIVE
Spike and LFP avalanches recorded in rats, cats, and primates
were best matched by a driven sub-critical model. The drive in
the model consisted of input spikes, i.e., of spikes not caused by
presynaptic spikes from within the model. Given their impor-
tance for a successful match between in vivo and model activity,
we may ask what the in vivo counterpart of the input spikes in
the models could be. In vivo, such input spikes can be provided
by at least three sources—by sensory input elicited by stimuli
in the outside world, from brain structures other than the one
under consideration, or by internal activation which presumably
occurs spontaneously. Such spontaneous activity can for exam-
ple be generated by pacemaker cell activity (Selverston, 2008;
Longtin, 2013), or vesicle fusion at a presynaptic terminal with-
out a preceding spike (Fredj and Burrone, 2009). With all these
known input sources in vivo, it came as no surprise that the model
required input spikes (i.e., drive) to be able to match in vivo
activity.

INPUT SPIKES MOST LIKELY DO NOT CONSTITUTE A LARGE FRACTION
OF THE OBSERVED ACTIVITY
The fraction of “input spikes” (drive) among all the spikes of the
model is negligible at criticality (α = 1). This fraction, given a

constant spike rate r, increases with tuning toward sub-criticality
(α < 1), until all spikes are input spikes in the Poisson state
(α = 0), and none arises from synaptic transmission. For exam-
ple, in the driven, slightly sub-critical model (α = 0.99), only one
in ∼3600 spikes was an input spike. To illustrate this number,
imagine a neuron that spikes with a rate of 1 Hz. This neuron
fires spontaneously (i.e., an “input spike”) only once an hour.
This example is simplistic, because it assumes that the input is
homogeneous, however, it illustrates well that the fraction of
input spikes (from the external world, other brain structures, or
of stochastic origin; see above) in the driven, sub-critical regime
that reproduced the in vivo findings is extremely small compared
to the overall level of activity.

CONCEPTUAL CONSIDERATIONS ON THE ANALYSIS OF NEURAL
AVALANCHES AND THE CRITICAL STATE
While we have so far discussed how in vivo spike avalanches sug-
gest a driven sub-critical regime of operation for mammalian ner-
vous systems, several neglected but important conceptual issues
with the analysis of neural avalanches surfaced in this study. These
are discussed in the following.

THE TERM “AVALANCHE” REFERS TO DIFFERENT ENTITIES IN SOC
MODELS AND IN THE ANALYSIS OF NEURAL DATA
Although it is rarely fully acknowledged, the term “avalanche”
refers to different entities for activity in SOC models and for
neural activity. In SOC models, an avalanche is a cascade of
events that originates from a single input event (Bak et al., 1987).
Subsequent avalanches are always separated by pauses (STS). In
contrast, for neural activity, avalanches are defined using tem-
poral binning (Beggs and Plenz, 2003), because neural activity
lacks clear pauses that could naturally serve to define the begin-
ning and end of an avalanche. Such avalanches can be defined
on any spike time series, irrespective of its origin. Consequently,
“binning-dependent avalanches” do not correspond to classical
SOC avalanches. Although these two types of “avalanches” are
different entities, it is customary to use the same term when
referring to any one of them. In the present study, we analyzed
the “binning-dependent” avalanches in both cases, in the driven
models and in the in vivo activity. This justifies a comparison
between model and in vivo activity, and was also necessary as
binning-dependent avalanches are the de-facto standard in the
analysis of neural systems, although previous studies frequently
alluded to SOC avalanches.

AVALANCHE DEFINITIONS IN HIGHLY PARALLEL RECORDINGS
For neural activity, avalanches are commonly defined using tem-
poral binning, and this definition relies on pauses. We can expect
that physiologically relevant pauses (i.e., pauses of a few ms) van-
ish in spike recordings, when activity of a large number of neurons
is recorded in parallel. For example, if each neuron spikes with
1 Hz, sampling only 100 neurons in parallel would frequently pro-
duce pauses that are several milliseconds long. However, when
sampling thousands or even millions of such neurons, pauses
would probably be absent. Without pauses, neither the classical
nor the binning-dependent avalanche definition is applicable, and
consequently, alternative approaches to assess criticality have to
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be established. Currently, these approaches threshold the activ-
ity and thereby introduce pauses (e.g., Spasojević et al., 1996;
Papanikolaou et al., 2011; Poil et al., 2012). As an alternative
approach, we propose to apply systematic subsampling. Both
approaches allow using the binning-dependent avalanche defini-
tions again.

CAN WE DETERMINE A SPECIFIC CRITICAL EXPONENT FOR NEURAL
DATA?
Avalanche size distributions of critical branching processes have
an exponent of τ = 1.5 (Harris, 1963). Since branching processes
have some resemblance with propagation of neural activity, it was
hypothesized that neural avalanches should also show τ = 1.5.
Indeed, τ = 1.5 has been observed (Beggs and Plenz, 2003, 2004;
Stewart and Plenz, 2008; Hahn et al., 2010; Priesemann et al.,
2013), but only for specific bin sizes. For example, Beggs and
Plenz showed in their seminal work that τ = 1.5 holds for one
specific bin size (4 ms), but when changing the bin size from 1
to 16 ms, the exponent decreased from 2 to 1.2 (Beggs and Plenz,
2003). Similarly, for the LFP avalanches shown here, τ = 1.5 was
observed only for a bin size of ∼80 ms, and with varying the
bin size from 2.5 ms to ∼2.5 s, the exponent changed from 3
to 1 (Figure 10A) (Priesemann et al., 2013). Changes in τ were
also observed in the driven, subsampled SOC model (Figure 2C).
Thus, drive and subsampling may underlie the variation of τ

in experiments as well. However, irrespective of its origin, it is
an open question how to reconcile the variation of τ in neu-
ral data with the fixed τ in critical systems. One proposal is to
use a specific bin size for neural data, namely one average inter-
event-interval (<IEI>) (Beggs and Plenz, 2003). However, there
is no theoretical underpinning yet why this bin size should be
preferred over others, and even for using this bin size, τ was
found to be 1.8 in spike avalanches in anesthetized cats (Hahn
et al., 2010), instead of 1.5. Thus, in neural data, there is not
a unique τ , and therefore there is no specific critical exponent
for neural activity, which would allow to link neural activity to a
universality class.

Since neural avalanche distributions change with the bin size
(Beggs and Plenz, 2003; Priesemann et al., 2009, 2013; Benayoun
et al., 2010; Hahn et al., 2010), we side with Benayoun et al., who
“do not read any significance into the particular slope observed.
[. . . ] In our view, any good model of neural avalanches must
reproduce the variability in the observed slope of the power law
with temporal bin width.” (Benayoun et al., 2010) Though we
here did not observe power laws for the in vivo f(s), our model
could reproduce the in vivo spike f(s) and their change with tem-
poral binning. It could also reproduce the bin-size dependent
changes of novel and established measures of avalanche dynam-
ics (f (s = 1, bs), <s>, σ ∗, DFA exponent). To the best of our
knowledge, this is the first model that matched not only the
avalanche properties for a single bin size, but also their changes
with changing bin size.

SUBSAMPLING EFFECTS IN THE ASSESSMENT OF CRITICALITY
Subsampling is unavoidable in spike avalanche recordings in vivo,
and is helpful when comparing neural activity to model activity
(Priesemann et al., 2009). However, subsampling was also shown

to complicate criticality analysis because it can distort avalanche
measures (Priesemann et al., 2009, 2013; Ribeiro et al., 2010).
To overcome this problem, we here developed avalanche mea-
sures that are not distorted by subsampling. One example is the
bin size dependence of the frequency of avalanches of size one
(f (s = 1, bs)). This measure robustly showed power-law scal-
ing in the driven SOC states, and exponential scaling in the
Poisson state, independent of subsampling strategies (Figure 6).
Therefore, we propose to use f (s = 1, bs) as a robust measure for
criticality analysis.

Subsampling effects can appear very strong if one uses a fixed
bin size, e.g., 1 ms as in Ribeiro et al. (2014). We used instead
a normalized bin size, which accounts for the problem that the
population rate R changes with the number of sampled neurons.
Using a normalized bin size diminished subsampling effects, and
also allowed for a comparison to the in vivo recordings.

FINITE SIZE EFFECTS IN CRITICALITY ASSESSMENT
The finite size of the critical models limited the correlation
lengths in space and time and thereby caused the cutoff in f(s)
(Figures 2A,G). In analogy, the finite size is expected to also have
caused – in the driven critical models – the cutoff at large bin size
in the novel measures (f (s = 1, bs), <s>). Since finite size effects
decrease with increasing system size, and since the in vivo spikes
were recorded in a far larger system than our model spikes, finite
size effects are unlikely to account for the deviations from power
law scaling found for the in vivo activity.

In critical models, the finite size can change the value of α,
for which the model is critical. For example, Eurich et al. (2002)
showed for their model that the critical α depended on the model
size L as αcrit = 1 − L−0.5. Thus, their finite size models with α →
1 were super-critical and showed peaks in their f(s). This was not
the case for our critical models. Our models, in contrast, appeared
to be slightly sub-critical at α = 1. This is probably due to the
open boundary conditions we used in contrast to Eurich et al.
Hence, since the finite size made our models at most sub-critical
but not super-critical, there is no concern that the observed match
of model and in vivo results at values of α < 1 is due to finite size
effects.

DIFFERENT TYPES OF CRITICAL PHASE TRANSITIONS EXIST
To better understand criticality and potential deviations from it,
it is also important to define which type of criticality one refers
to. Critical phase transitions can occur for example for the tran-
sitions from order to chaos (Bertschinger and Natschläger, 2004;
Haldeman and Beggs, 2005; Boedecker et al., 2012; Lizier, 2013),
from non-oscillatory to oscillatory regimes (Linkenkaer-Hansen
et al., 2001; Poil et al., 2012), from replay to non-replay of spatio-
temporal patterns (Scarpetta and de Candia, 2013), and from a
regime with finite to one with potentially infinite avalanche sizes
(Bak et al., 1987; Drossel and Schwabl, 1992; Olami et al., 1992;
Eurich et al., 2002; Beggs and Plenz, 2003; Haldeman and Beggs,
2005; Levina et al., 2007a,b, 2009), as known from branching
processes (Harris, 1963). One study has found that the transitions
to chaos and to potentially infinite avalanches coincide in their
model (Haldeman and Beggs, 2005), but it is unclear whether this
finding generalizes to other systems. We here want to emphasize
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that our model showed a transition to potentially infinitely large
avalanches.

CONSEQUENCES FOR INFORMATION PROCESSING AND STABILITY OF
BRAIN DYNAMICS
After having discussed evidence from in vivo spike avalanche dis-
tributions for a driven, sub-critical mode of operation, and after
having clarified conceptual issues, we now turn to the question
of what consequences these findings may have on information
processing and dynamic stability in the mammalian brain.

SUB-CRITICALITY, SUPER-CRITICALITY, AND STABILITY
Criticality is characterized by a power-law distribution of its
avalanche sizes. This indicates that avalanches of any size can
occur; even close to infinite-size avalanches may occur, provided
that the system is large enough to sustain them. Infinite-size
avalanches do occur in the super-critical regime, and have been
linked to epileptic seizures (Hsu et al., 2008; Meisel et al., 2012).
Such infinite avalanches produce runaway activity, and could
thereby impair normal brain activity. Therefore, it is unlikely that
it would be good for a normally functioning brain to be super-
critical. Sub-criticality, in contrast, never shows infinitely large
avalanches, and thus offers a safer regime for brain operation.
Thus, a slightly sub-critical regime allows the brain to avoid run-
away activity, while still allowing moderate activity propagation,
and maintaining most of the possible computational advantages
that come with criticality (Haldeman and Beggs, 2005; Kinouchi
and Copelli, 2006; Beggs, 2008; Shew et al., 2009; Shew and Plenz,
2013).

DRIVE AND INFORMATION PROCESSING
There may be good reason why neural activity in vivo does
not show a STS for its avalanches: When eliminating the STS,
avalanches run in parallel, meet, and intermingle. Thereby, the
rate of computations may be increased compared to the SOC
state. In addition, the presence of multiple, potentially interact-
ing avalanches, may enable collision-based computation, which is
one fundamental way of information modification (Lizier, 2013).
Thus, a driven state may increase the rate and capacity of neural
information processing in vivo.

CONCLUSIONS
Our analysis of in vivo data indicated that the mammalian brain
is not SOC because in vivo spiking activity differed fundamentally
from activity expected for SOC. Instead, the mammalian brain
apparently self-organizes to a slightly sub-critical regime with-
out an STS. Mechanistically, such a driven, sub-critical regime
shows a mélange of avalanches, while SOC systems, in contrast,
are characterized by temporally separated avalanches. Operating
in a slightly sub-critical regime may prevent the brain from tip-
ping over to super-criticality, which has been linked to epilepsy.
Regarding computational capabilities, which have been reported
to be optimal for SOC, a slightly sub-critical regime only deviates
little from SOC and therefore its computational capabilities may
still be close to optimal, while the non-zero drive in general may
allow for a higher rate of information processing. Taken together,
a driven, slightly sub-critical regime may strike a balance between

optimal information processing and the need to avoid runaway
activity.

METHODS
SELF-ORGANIZED CRITICAL MODEL
The SOC neural network model we used here is the Bak-Tang-
Wiesenfeld model (Bak et al., 1987), and modified versions of
it. Translated to a neuroscience context, the model consisted of
2500 non-leaky integrate and fire neurons. A neuron i spiked if its
membrane voltage Vi(t) reached a threshold �:

If Vi(t) > �, Vi(t + 1) = Vi(t) − 4

� was set to � = 0 for convenience. Note that the choice of
� does not change the activity of the model at all. The model
neurons were arranged on a 2D lattice, and each neuron was con-
nected locally to its four next neighbors, i.e., the coupling strength
αij = α for all four next neighbors of neuron i, and αij = 0 else.

Vi(t + 1) = Vi(t) +
∑

j

αij · δ(t − Tj) + H(t)

The time t was updated in ms (i.e., 1 ms effective synaptic delay).
Tj denoted the spike times of neuron j, and H(t) was a func-
tion which set a neuron above threshold with a certain Poisson
rate h. h represented the “drive” in the context of SOC. Note
that the neurons at the edges and corners of the grid had only
3 and 2 neighbors, respectively. This model is equivalent to the
well-known Bak-Tang-Wiesenfeld model (Bak et al., 1987) if
h → 0 and α = 1. In contrast, for α = 0, the model represented
independent Poisson units which spiked with rate r = h.

Subsampling (Priesemann et al., 2009) was applied to the
model by sampling the activity of 100 randomly selected neu-
rons only, and neglecting the activity of all other neurons. To
simulate specific subsampling effects, the sampled neurons were
not chosen randomly, but arranged in specific configurations (see
Figure 6, right part). Here the sampled neurons were arranged to
have very small or very large distances. For the small distances,
4 × 4 or 8 × 8 neurons from a compact, central subset were sam-
pled (Figure 6, red and pink), and for the large distances, 4 × 4
or 8 × 8 neurons with distance 5 grid units between them were
sampled (Figure 6, turquoise and beige).

STOCHASTIC BRANCHING MODEL
In addition to the SOC model, we also simulated a classical
stochastic branching model. In this model, a branching process
(Harris, 1963; Haldeman and Beggs, 2005) was mapped on a grid
of neurons. An active neuron activated each of its k postsynap-
tic neurons with probability p = α · 1/k. As in the SOC model,
this model was critical for α = 1 in the infinite size limit, and
subcritical (supercritical) for α < 1 (α > 1). In contrast to the
SOC model, here the postsynaptic neurons were assigned ran-
domly at each step. The other parameters were analogous to the
SOC model: The model had 2500 neurons with k = 4 connections
each, and α and h were balances such that neurons spiked with
r = 5 Hz (except if h → 0). The open boundary conditions were
implemented by defining pdiss = 0.001 as the probability that a
neuron projected “outside of the grid,” i.e., the probability that an
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activation of a postsynaptic neuron was not effective. Note that
pdiss > 0 makes the model slightly subcritical. Subsampling was
implemented in the same manner as in the SOC model. Note
however that spatial distances have no meaning in this model
because of its random topology. Results for this model were qual-
itatively similar to those of the SOC model. Therefore, we usually
reported the results of the SOC model only.

EXPERIMENTS
We evaluated spikes from recordings in three different species,
namely in rats, cats and monkeys. The rat experimental proto-
cols were approved by the Institutional Animal Care and Use
Committee of Rutgers University (Mizuseki et al., 2009). The
cat experiments were performed in accordance with guidelines
established by the Canadian Council for Animal Care (Blanche,
2009). The monkey experiments were performed according to the
German Law for the Protection of Experimental Animals, and
were all approved by the Regierungspräsidium Darmstadt. The
procedures also conformed to the regulations issued by the NIH
and the Society for Neuroscience.

The spike recordings from the rats and the cats came from
the NSF-founded CRCNS data sharing website (Blanche, 2009;
Mizuseki et al., 2009). In brief, in rats the spikes were recorded in
CA1 of the right dorsal hippocampus during an open field task.
We used the first data set of each animal (ec013.527, ec014.277,
ec015.041, ec016.397), and from rat “ec014” we also used a sec-
ond data set (ec014.333). The five datasets provided sorted spikes,
i.e., {37, 77, 32, 58, 58} single units and {4, 8, 8, 8, 8} multi units,
respectively. However, since the identity of a unit does not matter
for the definition of neural avalanches (see below), the single- and
multi-unit activity was combined to one set of spike times. More
details on the experimental procedure and the datasets proper can
be found on Mizuseki et al. (2009).

For the spikes from the cat, neural data were recorded by Tim
Blanche in the laboratory of Nicholas Swindale, University of
British Columbia, and downloaded from the NSF-funded CRCNS
Data Sharing website (Blanche, 2009). We used the data set pvc3,
i.e., recordings in area 18 which contain 50 sorted single units
(Blanche and Swindale, 2006). We used that part of the experi-
ment in which no stimuli were presented, i.e., the spikes reflected
spontaneous activity in the visual cortex of the anesthetized cat.
Details on the experimental procedures and the data proper can
be found in Blanche and Swindale (2006); Blanche (2009).

In the monkey experiments, spikes were recorded simultane-
ously from up to 16 single-ended micro-electrodes (ø = 80 μm)
or tetrodes (ø = 96 μm) in lateral prefrontal cortex of three
trained macaque monkeys (M1: 6 kg ♀; M2: 12 kg ♂; M3: 8 kg♀). The electrodes had impedances between 0.2 and 1.2 M� at
1 kHz, and were arranged in a square grid with inter electrode dis-
tances of either 0.5 or 1.0 mm. The monkeys performed a visual
short term memory task with on average 80% correct behav-
ioral responses which required them to memorize a sample object
and to compare a test stimulus presented after a delay of 3 s to
memory content. The monkeys indicated via differential button
press whether test and sample stimuli matched or not. Each trial
consisted of a 1 s long baseline, 500–900 ms sample stimulus pre-
sentation, a delay of 3 s and a response interval lasting throughout

a 2 s test stimulus presentation. More details of the experimental
procedure can be found in Pipa et al. (2009). In total, we ana-
lyzed spike data from 11 experimental sessions comprising almost
12.000 trials. In M1 and M2 we recorded four sessions each, and
in M3 we recorded 3 sessions. 6 out of 11 sessions were recorded
with tetrodes (2/4, 4/4, and 0/3 from M1, M2, and M3, respec-
tively). Spike sorting on the tetrode data was performed using
a Bayesian optimal template matching approach as described in
Franke (2011) (see Franke et al., 2010 for an earlier version)
using the “Spyke Viewer” software (Pröpper and Obermayer,
2013). On the single electrode data, spikes were sorted with a
multi-dimensional PCA method (Smart Spike Sorter by Nan-Hui
Chen).

MEASURES
Avalanches in SOC systems are cascades of spikes triggered by a
single external spike (Bak et al., 1987). An avalanche can span
the entire system, but can also affect just a few sites before it dies
out. By definition, in SOC models subsequent avalanches are sep-
arated by pauses that are much longer than the avalanches proper
(STS) (Bak et al., 1987; Pruessner, 2012). This means that a new
avalanche is only triggered after the previous one has long died
out. In SOC systems, several avalanche characteristics, such as the
distribution of sizes and durations, follow scaling laws, known
from the framework of “renormalization theory” (Stanley, 1971,
1999; Sethna et al., 2001; Dhar, 2006). In the following, we define
the avalanche measures and describe the expected scaling laws for
the SOC model and the critical stochastic branching model.

The avalanche size s is the total number of spikes in an
avalanche. The avalanche size distribution f(s) is its frequency
of avalanche sizes, and p(s) refers to the respective probability
distributions. f(s) follows a power law in SOC systems:

f(s) ∼ s−τ

τ is the critical exponent and depends on the SOC model. For the
SOC model we use here (α = 1 and h → 0), τ ≈ 1 (Bak et al.,
1987; Priesemann et al., 2009), and for the critical branching
model τ = 1.5 (Harris, 1963; Haldeman and Beggs, 2005).

The definition of avalanche sizes in the driven models (h > 0)
and in vivo relied on temporal binning (Beggs and Plenz, 2003),
since these systems lacked STS. When applying temporal bins to a
spike train, the avalanche size was defined as the total number of
events in subsequent, non-empty time bins (Figure 1). Stating it
differently, an avalanche is by definition the activity in a sequence
of full bins, and is preceded and followed by an empty bin. With
this definition, f(s) changed with the bin size (Figure 1).

As stated above, f(s) changed with the bin size. To quan-
tify the bin-size dependent changes of f(s), we used the mean
avalanche size (<s>), and the measure f (s = 1, bs), i.e., the bin
size dependence of the frequency of avalanches of size s = 1.

A common measure to characterize neural avalanches is the
branching parameter. In a branching process, the branching
parameter σ defines whether activity expands (σ > 1) or dies out
(σ < 1) (Harris, 1963). Between these two regimes, at σ = 1, the
branching process is critical (Harris, 1963). In analogy, the σ ∗
was estimated from spike trains using temporal binning as follows
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(Beggs and Plenz, 2003; Priesemann et al., 2009): σ ∗
i is the num-

ber of events in time bin ti divided by the number of events in
time bin ti − 1. The average over all σ ∗

i (for which the number
of events in ti − 1 is not zero) is defined as the estimated branch-
ing parameter σ ∗ (Figure 1) (Beggs and Plenz, 2003; Priesemann
et al., 2009). Note that σ ∗ depends on the bin size, and may fail to
provide the intended results (see Results and Discussion).

Detrended fluctuations analysis (DFA) (Peng et al., 1994,
1995; Kantelhardt et al., 2002) quantifies long-range correla-
tions in a time-series, which also dominate SOC systems. We
applied DFA to the time course of the summed population activ-
ity. The summed population activity is the total number of
spikes across all neurons at each sampling step. For the DFA, we
used analysis window widths from 24 to 211 ms. Smaller win-
dow widths could not be used because of the limited sampling
resolution, and for windows larger than 2 s the power law scal-
ing broke down, and this impeded the estimation of the DFA
exponent β.

It sometimes is helpful to measure the bin size not in abso-
lute time (e.g., milliseconds), but in “average inter event intervals”
(<IEI>). The <IEI> is the inverse of the population rate R, i.e.,
the rate of all units together, independent of their origin. In con-
trast to the population rate R, the rate of a single unit is denoted
with r.

LFP RECORDINGS IN HUMANS
We evaluated LFP which were recorded with intracranial depth
recordings in humans. We used the very same data and analysis
methods as in Priesemann et al. (2013), and we used the results
from all vigilance states combined, because we already showed
that the differences with vigilance states were small (Priesemann
et al., 2013). We analyzed data from five subjects [3 females (aged
21, 23, and 27), two males; (aged 25 and 48)] with refractory
partial epilepsy undergoing pre-surgical evaluation. The sub-
jects were hospitalized between February 2005 and March 2007
in the epilepsy unit at the Pitié-Salpetrière hospital in Paris.
All patients gave their informed consent and procedures were
approved by the local ethical committee (CCP). Each patient was
continuously recorded during several days (duration range: 9–20
days; mean duration: 16 days) with intracranial and scalp elec-
trodes (Nicolet acquisition system, CA, US). Depth electrodes
were composed of 4–10 cylindrical contacts (2.3-mm long, 1-
mm in diameter, 10-mm apart center-to-center), mounted on
a 1 mm wide flexible plastic probe. Pre and post implantation
MRI scans were evaluated to anatomically locate each contact
along the electrode trajectory. The placement of electrodes within
each patient was determined solely by clinical criteria. Signals
were digitized at 400 Hz. The five subjects were implanted with
(44, 48, 50, 50, and 63) intracranial LFP recording sites. In total
seven recording sites were excluded from the analysis due to
artifacts and thus we used (44, 48, 45, 50, and 61) recordings
sites for data evaluation. All LFP were low-pass filtered at 40 Hz
(4th order butterworth, MATLAB) to reduce the impact of line
noise.

To analyze the neuronal avalanches for these LFP data in
the same manner as the spike data, we extracted binary events
from the LFP. These binary events represent phases of enhanced

synaptic activity. To extract these events, we calculated the area
under the positive deflection lobes between two zero crossings of
the LFP (Figure 2 in Priesemann et al., 2013). As LFP-voltages
reflect current flows via Ohm’s law, this time integral, or area
under the voltage curve, is proportional to the total amount
of displaced charges and hence describes the departure from
equilibrium (charge neutrality) quantitatively—in contrast to
simple voltage peaks. To obtain binary events from the LFP, we
applied a threshold to the area values under the LFP deflec-
tion lobe. The threshold was selected such that each recording
site in each interval of constant vigilance state had the same
event rate r = 1/4 Hz. In contrast to our first paper with these
data (Priesemann et al., 2013), we here used only one value
for r, and combined the results for all vigilance states from
wakefulness to deep sleep, since neither r nor the different vig-
ilance states affected the results qualitatively (Priesemann et al.,
2013).

For the avalanche analysis in the humans, we used a bin size
either in units of average inter event intervals (<IEI>) or in ms.
The <IEI> is a function of the event rate r and the number
of electrode contacts N, <IEI> = 1/(r · N) = 1/R. Since r was
fixed and N did not vary much across patients, the following
approximation holds: 1 <IEI> ≈ 80 ms.
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