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This article reviews advances in decoding methods for brain-machine interfaces (BMIs).
Recent work has focused on practical considerations for future clinical deployment of
prosthetics. This review is organized by open questions in the field such as what variables
to decode, how to design neural tuning models, which neurons to select, how to design
models of desired actions, how to learn decoder parameters during prosthetic operation,
and how to adapt to changes in neural signals and neural tuning. The concluding discussion
highlights the need to design and test decoders within the context of their expected use
and the need to answer the question of how much control accuracy is good enough for a
prosthetic.
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INTRODUCTION
The field of brain-machine interfaces (BMIs) for control of motor
prostheses is quickly growing (Baranauskas, 2014, for other
reviews, see Tehovnik et al., 2013; Kao et al., 2014). Research in
decoders, the algorithms which translate neural signals to move-
ment commands, has largely switched focus from improving con-
trol accuracy to resolving practical considerations of future clin-
ical deployments of prostheses. The goal of this mini-review is to
briefly highlight recent (2013 to mid-2014) advances in decoding
methodology for extracellular signals recorded from motor areas
of the brain. The review sections are organized by main research
themes, corresponding to important questions and practical con-
siderations. At the end, the importance of developing and testing
decoders in realistic contexts and the question of how much
control accuracy is “good enough” for a prosthetic are discussed.

ALGORITHMS FOR DECODING
Which algorithmic framework should we use for decoding? Differ-
ent algorithms offer different benefits. Figure 1 illustrates three
commonly-used methods. The Kalman filter and point process
filter are state-based (modeling temporal evolution) and proba-
bilistic (modeling and estimating uncertainty). The linear filter, in
contrast, is a linear transformation of neural data to the decoded
variables, with the advantages of simplicity and execution
speed.

The Kalman filter’s Gaussian noise model clearly does not
match the data (spike counts), yet due to its accuracy and
execution speed the method has remained popular since its first
use by Wu et al. (2003) (Aggarwal et al., 2013; Chen et al.,
2013; Dangi et al., 2013a,c; Homer et al., 2013; Ifft et al., 2013;

Jarosiewicz et al., 2013; Kao et al., 2013; Merel et al., 2013; Wong
et al., 2013; Zhang and Chase, 2013; Fan et al., 2014; Golub et al.,
2014; Gowda et al., 2014; Homer et al., 2014). While point process
filters (for a review, see Koyama et al., 2010) offer a more realistic
noise model, their use in decoding is still relatively rare (Shanechi
et al., 2013; Velliste et al., 2014; Xu et al., 2014), due in part to their
heavier computational burden. Recently, Citi et al. (2013) extend
point process methods to model refractory periods of neurons
and allow for coarser time discretization by a factor of 10, which
may ease this burden. However, one feature which current point
process decoders lack is the ability to assign different amounts of
noise or weights to different neurons.

Linear filtering, or discrete Wiener filtering, is fading in popu-
larity. It is still used by some research groups, either because of its
computational form (Badreldin et al., 2013) or when the research
focuses on other aspects of decoding (Chen et al., 2013; Chhatbar
and Francis, 2013; Philip et al., 2013; Suminski et al., 2013; Willett
et al., 2013). A variant of the Wiener filter method, which passes
the Wiener filter output through a fitted non-linear function to
compute the final output, is also used (Flint et al., 2013; Scheid
et al., 2013).

Several other methods have been used in the recent literature:
kernel autoregressive moving average (KARMA; Wong et al.,
2013), quantized kernel least mean square (Li et al., 2014),
support vector machines (Cao et al., 2013; Xu et al., 2013; Wang
et al., 2014), K-nearest neighbors (Brockmeier et al., 2013; Ifft
et al., 2013; Xu et al., 2013), naïve Bayes (Bishop et al., 2014),
and artificial neural networks (Chen et al., 2013; Mahmoudi et al.,
2013; Pohlmeyer et al., 2014). All of these methods allow highly
non-linear neural models.
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FIGURE 1 | Schematic illustration of popular decoding algorithms. The
Kalman and point process filters are based on the notion of a state, which
holds the current estimates of the variables of interest. The state is related
to neural activity through a neural model. Bayesian computations on the
neural model, assuming a distribution for noise, permit probabilistic tracking
of the state based on neural activity. In contrast, the linear filter is
state-less; it linearly maps the recent history of neural activity to estimates
of the variables of interest.

VARIABLES TO DECODE
What values should a decoder predict? Ideally, a prosthetic should
offer accurate, intuitive control that works under all likely usage
contexts. In most prior work, desired positions or velocities of
end-effectors were decoded. Homer et al. (2013) proposed a
method for combining decoded position and velocity, to avoid
choosing between the two. The method defines a quantity ∆r
as the difference between the decoded cursor position and the
previous cursor position. The cursor position’s update is a linear
combination of the decoded velocity and the decoded velocity
vector rotated to the direction of ∆r.

Decoders aim to predict user intentions, and it is possi-
ble that intentions may be slightly different from the observed
limb movements used for parameter fitting. Fan et al. (2014)
showed that the heuristic for guessing user intention during
online recalibration proposed by Gilja et al. (2012), and tested
with human users in a study by Jarosiewicz et al. (2013),
could also be applied to the initial training data for fitting
decoder parameters. This method rotates the cursor’s veloc-
ity vector towards the target and zeroes the velocity when
the cursor is in the target. Fitting Kalman filter parameters
on these estimates of intended movements, instead of actual
limb movements, could achieve comparable gains in accuracy

as online recalibration using the same scheme (Fan et al.,
2014).

Two recent studies have explored decoding torque values,
to allow a prosthetic to interact with objects with mass more
naturally. Chhatbar and Francis (2013) showed that hybrid neural
control by both torque and position produced more natural
movements in novel dynamic environments. Decoding of posi-
tion and torque was performed via a Wiener filter applied to
the largest 20 principal components of neural activity. The final
angular accelerations of the prosthetic joints were calculated by a
weighted sum of the accelerations implied by the predicted posi-
tions and torques. Suminski et al. (2013) decoded position and
velocity as well as torques of a two-link virtual arm with a Wiener
filter. The kinematic variables were converted to torques using
a position-derivative controller and the results were combined
linearly with the directly decoded torques to produce the final
torque output.

Besides kinematics and forces, the target location of a reach
may be directly decoded to improve the trajectory of the reach.
Shanechi et al. (2013) presented a real-time, two-stage decoder
which first decoded target location during an instructed delay
period and then decoded reach trajectory during the reach period.
The decoded target location served as the goal position for an
optimal feedback controller that acted as the movement model
of the point process trajectory decoder.

To address the need for BMI control of limbs with many
degrees of freedom, an important consideration for clinical
deployment, Wong et al. (2013) used principal component analy-
sis to reduce the dimensions of limb movements. They showed
that decoding principal-component-space kinematic variables
with KARMA or Kalman filtering was more accurate than decod-
ing canonical-space kinematic variables. Ifft et al. (2013) decoded
the kinematics of both arms during a bimanual reaching task
using an unscented Kalman filter which included variables for
both arms in its state.

Besides the biomimetic approach of designing a prosthetic so
that it can be controlled like a natural limb, another approach is
to use operant conditioning of neuron ensembles (for a review,
see Sakurai et al., 2014) to let the user learn to control a
new, synthetic actuator. Though more initial training may be
required, greater final control accuracy may be possible using
this paradigm. Balasubramanian et al. (2013) used two groups
of neurons from M1 to control reach and grasp, which were
simplified to one dimension each. The neuron groups were
chosen based on their stability and functional connectivity, and
algorithmic assistance was given during the operant condition-
ing process to assist neuronal learning. Badreldin et al. (2013)
developed an unsupervised method for non-biomimetic linear
filter initialization. The method performs an eigendecomposi-
tion of the sample covariance matrix of the neural data. The
eigenvectors provide a basis for the space of all possible linear
filters that could be fitted from the data. They designed a cost
function to choose a particular linear filter from this space, which
probably differs from the filter which would have been fitted by
supervised linear regression. Their cost function optimizes for
characteristics such as low jitter and evenly distributed weights
among neurons.
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NEURAL MODELS
How should we model neural activity? Recent studies have explored
the aspects of neural models beyond movement tuning, with the
hope of improving user-friendliness. Considering that a system
with high latency is difficult to control, Willett et al. (2013) trained
a decoder to predict intended future movements to compensate
for BMI system latency and shorten the feedback loop. To predict
intended future movements, they fitted a linear filter using kine-
matic values which were temporally offset from the neural data.

In a clinical setting, it is important that a prosthetic can
be turned off when not used, to avoid undesired movements.
Aggarwal et al. (2013) classified behavioral states into baseline,
reaction, movement, and hold using linear discriminant analysis
(LDA) on local field potentials (LFPs), and then decoded arm,
hand, and finger kinematics using a Kalman filter on spike signals.
The position outputs were held constant when the behavioral state
decoder predicted the baseline or hold state. Similarly, Velliste
et al. (2014) used LDA to detect idle (resting) arm states and set
velocity to zero during idle. The baseline or idle states in these
studies could serve as the “off ” mode for a prosthetic.

Xu et al. (2014) included ensemble firing history, in addition
to the standard tuning to kinematic variables, in the neural
model. This paradigm helps model the background activity that
is unrelated to movements. They used parallel computation on
graphics processing units to achieve real-time execution of a point
process particle filter that used this model.

NEURON SELECTION
Which neurons should we include in decoding? BMI researchers
have long sought ways to reduce computational load to decoders
and noise in neural data by excluding irrelevant neurons. Several
recent studies have provided tools for finding relevant neurons.
Chen et al. (2013) used variational Bayesian inference to fit
parameters for a linear filter, a state-space model, and a non-linear
echo state network. Using priors which favor small parameters,
the inference procedure generated sparse parameter fits, and the
zeroes in the fitted parameters can be interpreted as the absence
of tuning.

Cao et al. (2013) determined which neurons modulated for
reach direction versus hand configuration during grasping by
using mutual information. In another study from the same group,
Xu et al. (2013) proposed a supervised metric learning algorithm
to optimize decoding of hand grasp configuration. Their gradient
descent algorithm maximizes the difference between inter-class
and intra-class distances while regularizing by the L1 norm,
resulting in sparse weights which indicate relevance.

Also using a supervised approach, Brockmeier et al. (2013)
proposed a method for computing a linear dimensionality reduc-
tion which maximizes the information between the class labels
and the projected neural data. The low dimensional data can be
used for visualization or decoding via distance-based methods
such as K-nearest neighbors. Brockmeier et al. (2013) proposed an
improved method that only uses inner products between inputs,
allowing non-linear dimensionality reduction via the kernel trick.
Their kernel metric learning algorithm aims to make data points
with the same class labels lay close together in the output
space.

MOVEMENT MODELS
How can we design movement models to assist decoding? Kalman
and point process filters include movement models which can
encode prior beliefs about how variables change over time. Clev-
erly engineering these models may make prostheses easier to
control. Two studies examined how to improve the user’s ability
to stop a BMI cursor when desired. Golub et al. (2014) designed
a speed-dampening Kalman filter which modifies the movement
model to decrease speed when fast changes in movement direction
are detected, with the goal of allowing a quick change in direction
to signal the desire to stop (a “hockey stop”). Using a different
approach, Velliste et al. (2014) added a separate speed variable,
independent of the Cartesian velocity variables, to the state space
of a point process filter. This speed term dynamically adjusts the
filter’s movement model error covariance so that smaller changes
in position and velocity are allowed when the decoded speed is
smaller.

In a general examination of movement models, Gowda et al.
(2014) analyzed the linear models typically used in past studies
and found that some may harbor hidden attractor points, to
the detriment of controllability. They also point out that specific
coefficients in movement model matrices parameterize the speed-
accuracy tradeoff.

LEARNING
How can we improve decoder parameters during decoding? To
handle poor initial parameter fits or changes in neural tun-
ing after practice, continuous learning of decoder parameters
may be required in a clinical device. There has been much
recent work, mostly from Jose Carmena’s Lab (for a review,
see Carmena, 2013), on improving decoder parameter fits dur-
ing BMI operation, called closed-loop decoder adaptation. They
adapted Kalman filter parameters via stochastic updates based on
the likelihood gradient (Dangi et al., 2013a), provided tools for
analysis of adaptive methods (Dangi et al., 2013b), and applied
adaptation to decoding of LFPs (Dangi et al., 2013c).

Information about the target locations of reaches can help
improve the parameter learning process. Kowalski et al. (2013)
proposed an algorithm which uses the joint estimation paradigm
(augmenting tuning parameters into the state space), combined
with the “reach state equation” (Srinivasan et al., 2006) as a way
to incorporate target location in decoder recalibration. Similarly,
Shanechi and Carmena (2013) designed a dual filtering method
which uses the target location to assist movements towards the
target. The method provides the target location, assumed known,
to a linear-quadratic-Gaussian optimal feedback controller which
acts as the movement model of the point process decoder. A
second point process filter updates the decoder parameters.

In Suminski et al.’s (2013) study, incongruence between
decoded kinematics and torques were used as an error signal for
recalibration. The differences between the decoded position (and
velocity) and the virtual arm’s endpoint position (and velocity),
as computed via the decoded torques, were used as an error signal
to update torque decoder parameters via gradient descent.

Merel et al. (2013) modeled co-adaptation in BMIs as two
agents (encoder and decoder) optimizing with respect to each
other, under linear-quadratic-Gaussian assumptions. They derive
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a novel decoder update step which anticipates what the future
encoder will be and updates with respect to that, instead of the
current encoder. They show that this “one step ahead” update rule
reduces error faster in simulations.

SIGNAL STABILITY AND ADAPTATION
Are neural signals stable over long time periods? There has been
controversy as to whether updating of decoder parameters is
required for long-term prosthetic usability. Recent studies have
analyzed stability of signals over long time spans. Flint et al.
(2013) and Scheid et al. (2013) showed that multiunit spiking
activity can be stable over more than six months and LFPs can
be stable for almost a year. Wang et al. (2014) found signal
instability and concluded that LFPs allowed more accurate offline
reconstruction than single- and multi-unit signals 1–2 years
post implantation. Perge et al. (2013) found significant intra-day
changes in neural firing rates and concluded that 85% of these
changes were likely due to physiological mechanisms.

If decoder updates are needed, how can we improve the accuracy
of updates? Recent studies have proposed heuristics to improve
adaptation. Zhang and Chase (2013) used two extensions to a
dual-Kalman filter. First, they updated baseline firing rates of
neurons using a moving window. Second, they normalized the
velocity provided to the parameter updater so that the median
absolute velocity matches that of the initial training data. Kao et al.
(2013) proposed a firing rate normalization that also includes a
regularization term that penalizes neurons with low firing rates.
They also showed that dimensionality reduction via principal
component analysis improves robustness to neuron loss.

Besides updating baseline firing rates via windowed estimates,
other methods for tracking baseline changes have been proposed.
Bishop et al. (2014) found that most changes occur between days.
They designed a classifier for movement direction using the naïve
Bayes algorithm and a hierarchical model; baseline firing rates
are inferred each day while the class-specific parameters and the
prior distributions for the baseline firing rates are learned once on
initial training data. Homer et al. (2014) designed a probabilistic
algorithm for detecting infrequent, rapid changes in baseline
firing rates under the Kalman filtering framework. Their method
first performs a forward stepwise search for neurons which have
changed in baseline firing rate and then determines the magnitude
of changes.

Using a reinforcement learning approach to adaptation, two
studies from the same group (Mahmoudi et al., 2013; Pohlmeyer
et al., 2014) showed that an actor-critic reinforcement learning
BMI that uses Hebbian learning on an artificial neural network
decoder’s weights could learn weights from scratch and maintain
decoding accuracy despite shuffling, loss, or gain of neurons,
using only a one-bit feedback signal. In another study from the
same group, Prins et al. (2013) decoded a one-bit reward signal
from nucleus accumbens by clustering spike counts with k-means.

DISCUSSION
As researchers focus more on practical hurdles to clinical deploy-
ment of neural prostheses, it becomes more and more important
to develop and test BMI decoders in the contexts in which actual
prostheses will be used, i.e., to control artificial limbs, natural

limbs via functional electrical stimulation (Moritz et al., 2008;
Ethier et al., 2012; Nishimura et al., 2013), or computer cursors
in graphical user interfaces. By using more realistic contexts,
questions such as which variables to decode or which algorithms
are sufficiently fast can be answered empirically. Realistic contexts
may also uncover new considerations and obstacles to overcome.

An important question which has been thus far neglected in
the field is how much control accuracy is enough? Full restoration
of human ability in terms of movement accuracy may come
at computational and other costs, e.g., number of recording
channels, which likely trade off against other figures of merit of
a prosthetic system. While we should continually endeavor to
improve BMI technology, from a practical standpoint, we should
also answer the question of how much control is good enough,
so that engineers can design systems with clear requirements in
mind.
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