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Brain–machine interfaces (BMIs) using motor cortical activity to drive an external effector
like a screen cursor or a robotic arm have seen enormous success and proven their great
rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled
by endogenous cognitive activity, also called cognitive BMIs. While more challenging,
this approach opens new dimensions to the rehabilitation of cognitive disorders. In the
present work, we focus on BMIs driven by visuospatial attention signals and we provide
a critical review of these studies in the light of the accumulated knowledge about the
psychophysics, anatomy, and neurophysiology of visual spatial attention. Importantly, we
provide a unique comparative overview of the several studies, ranging from non-invasive to
invasive human and non-human primates studies, that decode attention-related information
from ongoing neuronal activity. We discuss these studies in the light of the challenges
attention-driven cognitive BMIs have to face. In a second part of the review, we discuss
past and current attention-based neurofeedback studies, describing both the covert effects
of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we
compare neurofeedback studies based on the amplitude of cortical activity to studies based
on the enhancement of cortical information content. Last, we discuss several lines of
future research and applications for attention-driven cognitive brain-computer interfaces
(BCIs), including the rehabilitation of cognitive deficits, restored communication in locked-
in patients, and open-field applications for enhanced cognition in normal subjects.The core
motivation of this work is the key idea that the improvement of current cognitive BMIs for
therapeutic and open field applications needs to be grounded in a proper interdisciplinary
understanding of the physiology of the cognitive function of interest, be it spatial attention,
working memory or any other cognitive signal.
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INTRODUCTION
Only a couple of decades ago imagining an interface between the
human brain and a machine was more of a science fiction than of
a scientific endeavor. Chapin et al. (1999) pioneered the field with
the first demonstration of a real time motor brain–machine inter-
face (BMI) that is the demonstration that brain activity from the
rat motor cortex can be used to control a robotic arm. This achieve-
ment brought about the realization of the enormous potential of
the field, which up to this day has not ceased to expand.

The main objective of motor BMIs is the rehabilitation of
patients with major motor deficits yet preserved cortical motor
functions. Applications involve for example controlling a screen
cursor using motor or premotor cortex brain activity in monkeys
(Serruya et al., 2002; Taylor et al., 2002; Santhanam et al., 2006;
Kim et al., 2011) and in tetraplegic human patients (Hochberg
et al., 2006) which has been proven feasible with a remarkable
spatial accuracy. As computer-assisted aids continue to perme-
ate our everyday life environments, this approach is expected to
grant patients who have difficulties moving their arms or hands an

increased autonomy and freedom of action. Pushing BMIs yet a
step further, several studies show that motor cortical activities can
also be used to control robotic arms in their reaching and grasping
components with an impressive degree of precision, both in mon-
keys (Carmena et al., 2003; Tillery et al., 2003; Lebedev et al., 2005;
Velliste et al., 2008; Ifft et al., 2013) and in humans. This has for
example allowed a tetraplegic patient to help herself with a drink
with the aid of an artificial arm controlled by her motor cortex
activity (Hochberg et al., 2012).

Several new directions are currently being explored by BMI
research. For example, a recent study demonstrates that incor-
porating sensory feedback to a motor brain-computer interface
(BCI) improves its performance (Suminski et al., 2010). Along
another line, Shanechi et al. (2014) demonstrate that the signals
decoded from the motor cortical activity recorded in a monkey
performing a sensorimotor task can be used to stimulate the spinal
cord and muscles of a second anesthetized monkey giving rise to
directed movements of its limb toward distinct targets. This study
opens new rehabilitation perspectives for paralyzed patients. The
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exhaustive review of the major advances in motor BMIs and their
novel perspectives is however beyond the scope of the present
review.

BASIC PRINCIPLES UNDERLYING BRAIN–MACHINE
INTERFACES
The basic concept behind BMIs is the interpretation, in real
time, of cortical neuronal population activities and their trans-
lation into a goal directed action through a diversity of external
effectors (Figure 1A). Developing a BMI includes two distinct
phases (Figure 1B): (1) a learning or training phase during
which a classifier learns to associate the observed instantaneous
simultaneous activity of a neuronal population with the actual
state of the variable of interest (the position of a stimulus in
space, the direction of an intended motor plan, the spatial
location of visuospatial attention, or the content of short term
memory etc.); (2) a testing phase during which the classifier
defined in the learning phase is used to define the most probable
state of the variable of interest, given the observed instanta-
neous simultaneous activity of the recorded neuronal population.
Above-chance decoding accuracy indicates that the neuronal
population contains reliable information about the variable of
interest.

In its simplest form, the mapping between the neuronal code
and the desired output relies on the interpretation of the subject’s
endogenous neuronal codes. For example identifying the neuronal
codes with which a set of movements is encoded in the motor
cortex allows to associate a given neuronal population activity

FIGURE 1 | From brain signals to controlled external effectors.

(A) Schematic representation of the workings behind brain–machine
interfaces (BMI). (B) Open loop BMI. The subject is here implanted with
intracortical electrodes in the primary motor cortex. The activity of this
cortical region is used to select a target on the screen without the subject
being required to adjust his or her neuronal activity. (C) Closed loop design.
The activity of the motor cortex is used to guide a cursor on the screen. The
subject sees the screen cursor in real time and is required to adapt his or
her brain activity in order to increase the precision of the cursor’s trajectory.

(e.g., corresponding to moving one’s arm left) with a specific spa-
tially congruent external effector output (e.g., moving a cursor
left, Figure 1B). More complex designs are further based on the
adaptive capabilities of the primate cortex and rely on learning
and positive reinforcement procedures. In these designs, sub-
jects learn to produce the neuronal population activities that
best control the effector output, thanks to a sensory feedback
(e.g., seeing the cursor’s trajectory) that allows them to assess
how well they are successful at controlling the external effector
(Figure 1C).

COGNITIVE BRAIN–MACHINE INTERFACES (cBMI)
While most of the research effort in neural prosthetics has con-
centrated on the use of motor signals to drive external devices,
new directions in the field of BMIs are also emerging. For exam-
ple, Musallam et al. (2004) have shown, in the context of motor
behavior, that cognitive signals such as the expected value of a
reward, i.e., the subject’s motivation, can be decoded, at the sin-
gle trial time scale, from parietal neural activity. Jerbi et al. (2009)
show that such signals as attention orientation signals and mental
calculation signals can be used to drive a cognitive BCI. Instead
of decoding movement-related signals from motor specific cor-
tical activity, these cognitive BMIs (cBMIs) seek to access the
content of cognitive processes. One of their principal long-term
goals is to develop therapeutic tools for the treatment of cognitive
disorders.

In healthy subjects, motor cortical commands can be objec-
tified and time-locked to overt limb displacements. In contrast,
cognitive processes, such as planning, holding information in
short-term memory or orienting one’s attention in the envi-
ronment, are essentially internal subjective processes. From a
behavioral point of view, their content is covert and can be inferred
only indirectly from their effects on other overt measures (e.g.,
oral report, reaction time measures, detection rates etc.). From a
neurophysiological point of view, their neural bases are increas-
ingly understood and clear neuronal signatures can be assigned to
them. However, unlike sensory or motor processes, these cogni-
tive processes cannot be precisely time-locked to objective external
events. In addition, they are often multiplexed with sensory, motor
as well as other cognitive signals. As a result, cBMIs currently
appear as more challenging than motor BMIs. The present review
focuses on a major cognitive function, namely visuospatial atten-
tion (Figure 2A), which is known to enhance visual processing
both at the behavioral (Figure 2B) and neurophysiological levels
(Figure 2C, see below). It proposes a precisely quantified compar-
ative overview of the different cBMI approaches that have been
developed to decode this cognitive signal at the scale of the sin-
gle trial (Figure 2D). It also explores the initial steps at using
such cBMIs for cognitive rehabilitation purposes. These studies
are discussed in the light of the accumulated knowledge about
the psychophysics, anatomy, and neurophysiology of visual spatial
attention. The core motivation of the present review is the key idea
that the improvement of current cBMIs for therapeutic and open
field applications needs to be grounded in a proper interdisci-
plinary understanding of the physiology of the cognitive function
of interest, be it spatial attention, working memory or any other
cognitive signal.
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FIGURE 2 | (A) Covert orienting of attention involves selecting a peripheral
location in space (here *) while the eyes remain at the center of the screen.
(B) Attention orientation results in faster response times and higher
detection rates in response to visual stimuli presented at the attended
location, as compared to the non-attended location. (C) Attention
orientation enhances both the phasic and tonic neuronal response
components in several cortical areas including the frontal eye fields (FEF).
Schematic representation of this effect onto multi-unit neuronal activity.
(D) Online monitoring of the spatial locus of attention. On the left: the
subject is covertly moving his attention to covertly explore the screen. On
the right: the decoder interprets in real time the activity related to the
subject’s attention orientation.

VISUOSPATIAL ATTENTION AND ITS NEURAL CORRELATES
Orienting one’s attention toward a given location in space
enhances visual processing at that location (Figure 2B). Reac-
tion times are faster (Posner et al., 1980, but see also Albares
et al., 2011), spatial processing (Bashinski and Bacharach, 1980;
Prinzmetal et al., 2005; Ibos et al., 2009) and spatial resolution
are enhanced at the attended location (Yeshurun and Carrasco,
1998; Gobell and Carrasco, 2005; Carrasco and Yeshurun, 2009;

Anton-Erxleben and Carrasco, 2013) and spatial representation is
distorted up to several degrees away from the attended location
(Wardak et al., 2011a). At the neuronal level, attention is described
to modulate both the baseline (e.g., Armstrong et al., 2009; Ibos
et al., 2013) and the visual responses (e.g., McAdams and Maun-
sell, 1999), to decrease neuronal response latency (Lee et al., 2007),
as well as to modify the neurons’ spatial selectivity profiles (Ben
Hamed et al., 1997, 2002; Anton-Erxleben et al., 2009). At the
neuronal population level, attention is also thought to decrease
interneuronal correlations (Cohen and Maunsell, 2009).

Spatial orienting of attention can be achieved through two dif-
ferent mechanisms. It can either be driven by external stimuli
that capture attention. This mechanism is referred to as exoge-
nous, bottom-up or involuntary attention. Alternatively, attention
can be voluntarily driven by internal goals. This mechanism is
referred to as endogenous, top-down or voluntary attention. Early
on, Posner et al. (1980) and Jonides (1981) suggested that a single
cortical system controls both the endogenous and the exogenous
orientation of attention. In contrast with this proposal, Müller
and Rabbitt (1989) postulated that the endogenous and exoge-
nous orienting of attention are functionally distinct and constitute
separate mechanisms in constant competition with each other
(e.g., Zénon et al., 2008, 2009). Confirming this view, recent func-
tional magnetic resonance imaging (fMRI)-studies demonstrate
the co-existence of two distinct frontoparietal networks involved
in orienting attention (Corbetta and Shulman, 2002): a dorsal net-
work that is active during top-down attentional control, i.e., when
attention is internally maintained or voluntarily driven (Kastner
et al., 1999; Shulman et al., 1999; Corbetta et al., 2000; Hopfin-
ger et al., 2000; Kincade et al., 2005), and a ventral network that is
activated when attention is reoriented both voluntarily and by rele-
vant but unexpected stimuli (Arrington et al., 2000; Corbetta et al.,
2000; Macaluso et al., 2002; Kincade et al., 2005; Vossel et al., 2006).
In the non-human primate, a bilateral frontoparietal attentional
network involving the frontal eye fields (FEF; Bruce and Goldberg,
1985) and the lateral intraparietal area (LIP; Barash et al., 1991;
Ben Hamed et al., 2001) is described. These areas are activated
by both endogenously driven attention and exogenously driven
attention to task-relevant stimuli (Gottlieb et al., 1998; Armstrong
et al., 2009; Gregoriou et al., 2009; Suzuki and Gottlieb, 2013).
Interestingly, during endogenous top-down driven attention, FEF
neurons tend to respond earlier than LIP neurons whereas dur-
ing exogenous bottom-up driven attention, the inverse is observed
(Buschman and Miller, 2007; Ibos et al., 2013). The distinction
between a dorsal and a ventral frontoparietal network is still
unclear in the macaque monkey. The FEF possibly belongs to a
putative monkey dorsal attentional network while area 45, ven-
tral to area FEF, possibly belongs to a putative monkey ventral
attentional network (Wardak et al., 2011b).

VISUOSPATIAL ATTENTIONAL SIGNALS FROM A cBMI
PERSPECTIVE
TIME-LOCKING
The feasibility of cBMIs based on visuospatial attention signals
as compared to motor or sensory BMIs depends on the existence
of neuronal population activity patterns that distinguish between
whether the subject is orienting its attention say to the left or to the
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right of the visual field. The P300 speller is an example of a suc-
cessful non-invasive cBMI driven by the decoding of visuospatial
attentional locus as inferred from the modulation of neuronal
responses to a visual stimulus presented at the specific locus of
attention. Another approach is to decode sustained attentional
brain correlates toward different spatial positions from neuronal
population activities. This approach is different because decoding
such sustained information cannot be precisely time-locked to an
external event. As a result, identifying its precise neuronal activa-
tion pattern during the training phase of the decoding is in itself a
challenge.

DECODING ATTENTION-RELATED CORTICAL INFORMATION
One important question is whether such attentional information,
because of its self-initiated endogenous nature, can be decoded
with an accuracy that is comparable to that obtained from sensory
and motor related activities. Two studies are interesting in this
respect. Armstrong et al. (2009) recorded neuronal responses from
the macaque FEF while the animals were involved in a cued target
detection task. The cue was an exogenous cue, having the same
spatial location as the target. Astrand et al. (2014a) also recorded
neuronal responses from the macaque FEF while the animals were
involved in a cued target detection task, except that in this case, the
cue was calling for an endogenous orienting of attention toward
the cued location (FarbodKia et al., 2011; Astrand et al., 2014a).
An exogenous cue is thought to involuntarily shift the subject’s
attention to its location whereas to shift attention to a location
indicated by an endogenous cue, the subject needs to voluntarily
orient its attention toward it (Jonides, 1981). Both studies thus
manipulate spatial attention but the cue that was used called for
different orientation processes. Armstrong et al. (2009) show that
both visual and sustained attention information can be decoded
from a macaque FEF population of neurons modulated both by
visual stimuli and attention orientation. Specifically, they report
100% accuracy for the decoding of the spatial location of a visual
peripheral stimulus and up to 90% accuracy for the decoding of
the spatial locus of sustained attention. They also describe a lower
decoding variability for a visual stimulus than for sustained atten-
tion. Astrand et al. (2014a) report a similar trend on a random
neuronal population selection including both attention-selective
neurons and attention non-selective neurons. They further quan-
tify the sensitivity of decoding accuracy to neuronal population
size and trial number. In addition, they show that, using popula-
tions of visual-selective and attention-related neurons of the exact
same size, comparable decoding accuracies are obtained for both
variables. This is a strong indication that both exogenous (visual)
and endogenous (attention-related) information are encoded in
the cortex with a similar reliability. As a result, cognitive variables
such as attention can be expected to be decoded from neuronal
population activities with similar accuracies as those achieved
when decoding sensory or motor variables (for example, see Ben
Hamed et al., 2003, 2007).

USING ATTENTION-RELATED SIGNALS TO CONTROL A
BRAIN–MACHINE INTERFACE
In the following, we will present an overview of recent stud-
ies evaluating the accuracy with which attention-related cortical

FIGURE 3 | Different recording methods used to control BMIs. Invasive
methods includes: ECoG electrodes placed on the dura, SEEG electrodes
placed through the skull into the cortex and intracortical electrodes
implanted in the cortex. Non-invasive methods include: EEG electrodes
placed on the scalp and MEG squids placed around the head.

information can be decoded. These range from non-invasive
recording studies in humans [MagnetoEncephaloGraphic record-
ings (MEG), Electroencephalographic (EEG) recordings and
fMRI] to invasive recording studies in human (ECoG) and non-
human primate [ECoG, multi-unit neuronal activity (MUA)
recordings and single-unit neuronal activity (SUA) recordings]
subjects (Figure 3). Whenever possible, we document for each
study the following information (Table 1): (1) the type of signal
component each study relies on, (2), whether attention is driven
endogenously or exogenously, (3) how well each method succeeds
at decoding attentional engagement signals (i.e., the fact that the
subject is focusing its attention as compared to no attentional
focus), (4) how well each method allows to distinguish between
left and right attentional orientation, (5) how well each method
allows to distinguish between attentional loci situated in the same
visual hemifield, and (6) how visual distractors interfere with the
decoding of attention. Points 4 and 5 reflect the spatial resolution
with which attention-related signals can be accessed. All this com-
parative information is presented in Table 1. Importantly, to be
considered as robust, it has been proposed that BCI performance
needs to be above 70% (Kübler et al., 2004, 2006), a threshold
accuracy to keep in mind while analyzing Table 1.

NON-INVASIVE STUDIES IN HUMANS (MEG, EEG, AND fMRI)
The first attempt at decoding attention orientation at the sin-
gle trial level is that of van Gerven and Jensen (2009). The
authors recorded the cortical activity using MEG while subjects
were covertly attending to one amongst four possible locations
in space, previously indicated by an endogenous central cue.
Analyzing these signals offline, and specifically the alpha-band
power (8–14 Hz) of the parieto-occipital captors, they report
an average decoding performance of 69% when discriminating
between two possible spatial locations (chance being at 50%). They
observe better decoding performances at discriminating left/right
locations (78%, average calculated over their best subjects) than
up/down locations (58%, ibid). They additionally report an aver-
age decoding performance of 41% when discriminating between
four possible spatial locations (chance being at 25%). This study
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thus provided the first evidence that endogenous spatial orien-
tation of attention can potentially be monitored in real time. A
subsequent EEG study, using a very similar experimental design
reports an average performance of 75% (chance being at 50%)
based on the alpha power of the recorded signals (Treder et al.,
2011). Morioka et al. (2014), report a slightly higher average
decoding performance (79%) using near-infrared spectroscopy
(NIRS) as prior information for the analysis of the EEG signals.
It is however not clear if this improved performance results from
using the NIRS prior information or is due to the fact that an
exogenous cue was used instead of an endogenous cue. Using
fMRI, Andersson et al. (2011, 2012) take the field one step fur-
ther by decoding, in real time, the spatial orientation of attention
between three endogenously cued locations (one central and two
peripheral locations, 2011) and five endogenously cued locations
(one central and four peripheral locations, 2012).When using an
adaptive threshold on the classification of the real-time BOLD
signal, thanks to a real-time design, they obtain a decoding per-
formance of attention orientation (79, 75% at decoding attention
to the left and 85% at decoding attention to the right) equal to
that obtained with EEG. In contrast with van Gerven and Jensen
(2009), they demonstrate a slightly better performance at discrim-
inating between up/down attention (82%) than between left/right
attention (77%). When reprocessed offline the average decoding
performances reported by Andersson et al. (2011, 2012) reaches
88% (89% at decoding attention to the left and 88% at decod-
ing attention to the right).This sets the ground for a promising
future in the field of attention cBMI. Importantly, it is to be noted
that all of these non-invasive studies aiming at decoding spatial
attention signals from human cortical activities report an impor-
tant intersubject variability, overall attention orientation decoding
performance being high in some subjects and almost at chance in
other subjects. See Table 1 for comparison of the above studies.

INVASIVE STUDIES IN HUMANS (ECoG)
Drawing nearer to the source of the cortical signals, ECoG stud-
ies in patients implanted for clinical purposes predicted higher
performances for decoding spatial attention than non-invasive
techniques. Gunduz et al. (2012) report a performance of 84%
at decoding whether a subject is engaging its spatial attention or
not using the spectral power amplitude from all frequency bands
and a performance of only 48% at decoding the location of atten-
tion amongst three possible spatial positions (chance at 33%).
Andersson et al. (2011) focus on the high gamma power and report
an average of performance of 70% in a similar design (chance at
33%). The discrepancy between these two studies most probably
reflects the dependence of the decoding performance upon the
exact localization of the ECoG electrode arrays in each subject.
Interestingly, Andersson et al. (2011) used the exact same design
to decode spatial attention both from ECoG implanted patients
and from subjects included in the fMRI experiment described in
the previous section. Surprisingly enough, the average decoding
performance is higher in the fMRI-based non-invasive approach
than in the ECoG implanted patient. This is most probably due to
the fact that the fMRI-based protocol specifically relies on the anal-
ysis of the regions of interest (ROIs) that are specifically activated
by attention orientation, while the ECoG recording correspond

to an averaged smoothed analog of these signals. See Table 1 for
comparison of the above studies.

INVASIVE STUDIES IN NON-HUMAN PRIMATES (ECoG, SUA, MUA)
These approaches are expected to yield the highest decoding per-
formances as compared to the two previous approaches, due to
the fact that the recording are specifically targeted to the cortical
regions involved in attention processing (closest to these regions,
on the cortical surface for ECoG, and right within these regions for
MUA and SUA recordings), though the number of simultaneously
recorded signal sources is also a variable to take into account (the
higher the number of recording contacts, the higher the expected
decoding performance). MUA can be considered as averaged SUA,
as MUA represents several neurons at the same time while SUA rep-
resents well identified individual neurons. In a very elegant study,
Rotermund et al. (2013) demonstrate extremely high accuracies
in discriminating between two exogenously driven attentional loci
(average 96%), with slightly better performance for two attentional
loci situated in the same visual hemifield (99%) as compared to
two attentional loci situated in different visual hemifields (94%),
in agreement with the non-invasive fMRI driven study by Ander-
sson et al. (2012). Importantly, Rotermund et al. (2013) placed
the ECoG array onto the visual areas V1 and V4 the activity of
which is known to be strongly modulated by attention, according
to a strict topography matching attention allocation. While these
areas can functionally be considered as downstream from the pari-
etofrontal network described above, the fact that attention can be
decoded with such high performances from these regions is note-
worthy given that these areas are not expected to be subjected to
eye-movement or motor planning interferences that can possibly
degrade the decoding of spatial attention in other cortical regions
(see below). This performance is to be compared with the per-
formance of 90% at predicting the location of attentional locus
amongst two possible locations (inside or outside the receptive
field) following an endogenous cue (Armstrong et al., 2009), when
using the SUA of attention-selective cells recorded in the monkey
prefrontal cortex (FEF). Astrand et al. (2014a) report that it is pos-
sible to predict whether a monkey was orienting its attention to
the right or to the left visual field from the activity of a cortical
population of mixed selectivities (attentional and non-attentional)
with a performance of 82%. Both these studies (Armstrong et al.,
2009; Astrand et al., 2014a) correspond to a coarse approxima-
tion of real-time decoding of attention orientation, as they involve
the artificial concatenation of cells recorded in independent ses-
sions and having different spatial selectivities. More recently,
Astrand et al. (2014b) report, in a real-time decoding design, a
67% performance at discriminating between four possible atten-
tional locations from MUA recordings in the FEF, following an
endogenous cue (79% when attention is oriented exogenously).
The performance with which they can predict whether the mon-
key has engaged its attention or not is around 90% for endogenous
cueing (98% when attention is oriented exogenously).

DEPENDENCE OF DECODING PERFORMANCE ON THE EXPERIMENTAL
DESIGN
Classification accuracy increases as a function of the num-
ber of recorded signals and as a function of the number of
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available training trials (e.g., Armstrong et al., 2009; Astrand
et al., 2014a). The impact of these two parameters on classifi-
cation accuracy depends on the classification algorithm being
used. Indeed, regularized linear regression classifiers appear
to be more resilient to low number of recorded signals and
low number of trials than other decoders (e.g., support vector
machine, reservoir, linear regression, see Astrand et al., 2014a).
The impact of these two parameters on classification accuracy
also depends on how much information about the variable
of interest is present in each recorded signal. For example, a
75% decoding performance of spatial attention can be achieved
with as few as 15 trials per condition when each recorded sig-
nal has been selected on the basis of its high attention-related
content (e.g., attention-related cells in SUA decoding studies).
When no prior selection is exerted onto the recorded signals,
up to 80 trials are required to reach this 75% decoding per-
formance (Astrand et al., 2014a). As the number of recorded
signals and/or the number of trials increases, the impact of fur-
ther increasing any of these two parameters onto the decoding
performance decreases (Astrand et al., 2014a). Table 2 summa-
rizes, for each of the different studies decoding spatial atten-
tion discussed above, the number of recorded signals and how
they are placed with respect to the brain, the classifier being
used as well as the number of available trials for the classi-
fication analysis. In general, there appears to be a trade-off
between the number of recorded signals and the number of tri-
als required to achieve a high decoding performance (Astrand
et al., 2014a). A precise quantification of this trade-off per type
of recorded signal, from non-invasive to invasive, is unfor-
tunately missing and would be extremely useful. This would
allow a more direct comparison between the different types
of studies. But most importantly, this would allow to better
adjust the experimental design to the constraints of the method
being used. One expects for example that a higher number
of trials will significantly improve the decoding performance
achieved in implanted patients. Quantifying this trade-off is
all the more important if we want to move from a two-class
decoding design (e.g., left/right) to a multi-class (e.g., upper
left/upper right/lower right/lower left) or to a 2D continu-
ous decoding design (e.g., x, y), in which case, the number
of available trials per condition clearly becomes a limitative
parameter.

Overall, most of these studies report a decoding perfor-
mance above the 70% criteria for a robust BMI (Kübler et al.,
2004, 2006). However, in spite of the fact that several exper-
imental parameters contribute to the final decoding perfor-
mance, invasive attention-based approaches in the non-human
primate produce the highest decoding performances as com-
pared to both invasive and non-invasive recording approaches
in humans. This provides grounds of improvement for the
latter. This is most probably due to the fact that the record-
ings can be performed closest to the source of the attention-
related signals. Supporting this hypothesis, fMRI decoding
of spatial attention (driven by activations in ROIs specifi-
cally identified based on their contribution to spatial atten-
tion processes) outperforms all other non-invasive decoding
approaches.

CHALLENGES OF ATTENTION-DRIVEN COGNITIVE
BRAIN–MACHINE INTERFACES
ENDOGENOUS VERSUS EXOGENOUS ATTENTION
As seen above, attention can be voluntarily controlled by the sub-
ject or involuntarily oriented by an external event. An efficient
cBMI is expected to be able to infer spatial attention signals inde-
pendently of how attention has been driven. Given the functionally
partially distinct neural bases of endogenous and exogenous atten-
tion orientation, it is thus crucial to quantify, from a cBMI
perspective, (1) whether both types of attention orientation modes
lead to comparable decoding accuracies, i.e., whether the per-
formance of a cBMI driven by endogenous attention signals is
comparable to that of a cBMI driven by exogenous attention sig-
nals; and (2) whether a cBMI driven by say endogenous attention
signals can generalize and also be driven by exogenous attention
signals and vice versa. As discussed above, a recent study shows
that the decoding of spatial attention during a cued target detec-
tion task from MUA recordings in the non-human primate FEF
is partially dependent on whether attention is oriented endoge-
nously or exogenously (Astrand et al., 2014b). Importantly, the
decoding performance of exogenous attention signals (79%) is
higher than that obtained when decoding endogenous attention
signals (67%). Most interestingly, they additionally show that a
classifier trained at decoding endogenous attention successfully
reads out exogenous spatial attention neuronal signals (54%),
though significantly less than if the classifier is directly trained
on exogenous attention (drop of 13%). The relationship is not
symmetrical as a classifier trained at decoding exogenous atten-
tion successfully reads out endogenous spatial attention neuronal
signals with a performance of 62%, again slightly lower than if
the classifier is directly trained on endogenous attention (drop
of 5%).

SUSCEPTIBILITY OF ATTENTION-DRIVEN COGNITIVE BRAIN–MACHINE
INTERFACES TO SENSORY AND COGNITIVE FACTORS
Neuronal signals collected from the primary motor cortex are
only marginally affected by changes in the sensory environment
(e.g., changes in the visual or somatosensory information) or by
changes in the cognitive context (e.g., changes in what the subject
is thinking about or planning to do). As a result, the generaliza-
tion capabilities of motor BMIs are unaffected by such varying
circumstances. It is still unclear whether this is also the case for
cBMIs. While the several studies cited above quantified how well a
cognitive variable, namely spatial attention, can be predicted from
cortical activity response patterns, none directly tested whether
and how this prediction was affected by either a change in the sen-
sory environment or in the cognitive context. A recent report by
Astrand et al. (2013) shows that the decoding of spatial attention
orientation during the delay period of a memory-guided saccade
task is affected by the presence of visual noise. Precisely, they
report a 62% performance at decoding spatial attention orien-
tation and spatial short-term memory information from MUA
activities recorded in the non-human primate FEF during the
delay period of a memory-guided saccade task in the absence of
any visual noise and a performance of 63% in the presence of
visual noise. When a classifier is trained at decoding this spatial
attention orientation in the absence of visual noise and is tested
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on MUA activities collected in the presence of visual noise
(or vice versa) performance drops by 12%, though it remains
well above chance. The decoding of spatial attention signals are
thus affected by changes in the sensory environment. Astrand
et al. (2013) similarly show that the decoding of the spatial posi-
tion of a visual stimulus from MUA activities recorded in the
non-human primate FEF depends on whether the monkey is for
example performing a memory-guided saccade task or a simple
target detection task (decoding performance across contexts leads
to a drop in 18%, Astrand et al., 2013). Last, as described above,
the authors also show that the decoding performance of spatial
attention depends on whether attention is oriented endogenously
or exogenously, a situation that can be seen as a change in the
cognitive context (Astrand et al., 2014b).

SUSCEPTIBILITY OF ATTENTION-DRIVEN COGNITIVE BRAIN–MACHINE
INTERFACES TO DISTRACTERS
Another important aspect to consider is how distracters affect the
spatial location of attention and hence the stability of a cBMI based
on spatial attention signals. Such distracters can be considered as a
specific case of a sensory change in the subject’s environment (cf.
above).In an urban environment where we are constantly exposed
to salient stimuli, the endogenous attention that corresponds to an
internal objective that the subject wishes to achieve will be contin-
ually interrupted by a diversity of external stimuli, both relevant
(traffic lights, car horns, your children’s voice etc.) or irrelevant
(christmas lights, traffic flow, strangers passing by etc.).Several
behavioral studies show that peripheral cues automatically cap-
ture attention (Jonides and Irwing, 1981; Christ and Abrams, 2006;
Neo and Chua, 2006; Schreij et al., 2008). However, attentional
capture is not constant. For example, when subjects are explic-
itly instructed to ignore a peripheral cue, attentional capture is
reduced, though not completely abolished (Lambert et al., 1987).
Similarly, if attention is highly focused, for example when the
subject strongly expects a visual event at a certain location (e.g.,
following a 100% validity cue), the attentional capture as mea-
sured from reaction times is extremely weak (Yantis and Jonides,
1990). In contrast, if the subject is expecting a visual event that
can take place at an undefined location (its attention is thus dif-
fuse, e.g., following a 25% validity cue), the attentional capture
is much stronger (Yantis and Jonides, 1990). The same reduc-
tion in attentional capture can also be observed in visual search
experiments where subjects need to distribute their attention over
the whole search display in order to scan the scene efficiently
(Schreij et al., 2008). Last, attentional capture also depends on
the complexity of the visual scene (which is the case of our every-
day environment). Cosman and Vecera (2009) show that, when
subjects need to search for an item in a complex environment,
attentional capture declines as the complexity of the visual scene
increases.

These behavioral observations are in agreement with single
cell recordings in the monkey parietal cortex. For example, the
neurons of the LIP (Ben Hamed et al., 2001), an area function-
ally associated with attentional processes (Wardak et al., 2002,
2004), are specifically activated by behaviorally relevant visual
events independently of whether relevance is due to the intrin-
sic properties of the stimuli (e.g., an abrupt onset high contrast

stimulus) or to its extrinsic properties (e.g., a low contrast stim-
ulus, the processing of which is important to the ongoing task,
Gottlieb et al., 1998; Kusunoki et al., 2000). Spatial attentional
priority is suggested to be encoded by the differential response
between the neurons encoding a specific spatial location against
the response of the entire LIP population (Bisley and Goldberg,
2003). Consequently, the selection of a spatial location by attention
can be biased by focal LIP optogenetic or electrical microstimu-
lation, mimicking an attention interference or capture (Dai et al.,
2014). A recent study by Suzuki and Gottlieb (2013) further sug-
gests that these suppression mechanisms might differ between the
prefrontal and parietal nodes of the parietofrontal attentional net-
work. Specifically, the neuronal response to distractors is weaker in
the prefrontal cortex than in parietal cortex, indicating a stronger
suppression. Additionally, the degree of this suppression with
behavioral suppression markers is stronger in the prefrontal cor-
tex. Last, reversible inactivation of the prefrontal cortex leads to
a more severe distractability than observed following inactivation
of the parietal cortex.

From a decoding perspective, Astrand et al. (2014b) show that a
distracter interferes with the performance with which spatial atten-
tion can be decoded from FEF MUA recordings in the non-human
primates performing a cued target detection task. As observed
by others (Armstrong et al., 2009; Zhang et al., 2011), distrac-
tors interfere with the accuracy with which spatial attention can
be decoded on correct trials. Astrand et al. (2014b) further show
that this interference is maximal on false alarm trials, i.e., on tri-
als in which the monkey erroneously responded to the distractor
instead of waiting for the target. The distractor interference is sim-
ilar between correct trials and trials on which the monkey missed
the target. Remarkably, the accuracy with which spatial attention
can be decoded is much lower on incorrect trials than on correct
trials, whether attention has been oriented endogenously (25%)
or exogenously (40%), a trend also reported by Armstrong et al.
(2009).

SUSCEPTIBILITY OF ATTENTION-DRIVEN COGNITIVE BRAIN–MACHINE
INTERFACES TO EYE MOVEMENTS
The last constraint that needs to be discussed in the context of
attention-driven BMIs is eye movements. Indeed, the attentional
frontoparietal network described above is highly overlapping with,
though distinct from, the cortical oculomotor network (Corbetta
et al., 1998; Wardak et al., 2006). In all of the studies considered
above, the subjects are required to maintain eye fixation during the
decoding procedure. As a result, they are behaviorally constrained
to suppress an oculomotor-related signal. Studies evaluating the
impact of eye movements on cBMIs are yet missing. Treder et al.
(2011) demonstrate that high accuracy for EEG-based classifi-
cation is often associated with low accuracy for eye movement
electrooculography (EOG)-based classification, and vice versa.
This suggests a dissociation between EEG- and EOG-based classi-
fication. It also indicates that eye movements disturb the decoding
of attention orientation if not taken into account. Gunduz et al.
(2012) further show that, in the absence of any prior processing,
the performance with which attention orientation can be decoded
in ECoG-implanted patients drops from 48 to 35% when the sub-
jects are planning their motor response (i.e., hardly above the
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33% chance level). This suggests that a “naïve” attention decod-
ing performance is most probably disrupted by other signals than
just eye-movements, including motor planning. The exact loca-
tion of the recording sensors is expected to highly impact on such
interferences. However, generally speaking, real-time denoising
algorithms minimizing the impact of eye movement signals over
the attention-related signals are potentially promising. Extremely
simple strategies such as analyzing cortical signals only at a distance
from eye movements might also prove sufficient.

Overall, in spite of the notable progress in the field of attention-
driven cBMIs, several challenges need to be faced before large field
therapeutical applications can be considered. A tight interaction
between the field of real-time decoding of cortical activity and
cognitive neurosciences is expected to have a major impact on fac-
ing these challenges, the growing understanding of how the brain
functions playing a crucial role toward refined machine learning
strategies to handle and analyze massive cortical recordings. This
being said, prospective therapeutical application for such cBMIs
can already be foreseen, as will be described below.

NEUROFEEDBACK AND COGNITIVE CONTROL
The capacity of the brain to restore and ameliorate its function-
ing after a major trauma or disease is still poorly understood.
It is known that after a CNS disease or trauma (such as a
stroke), the brain undergoes extensive functional reorganization
(Murase et al., 2004; Nudo, 2006; He et al., 2007; Grefkes et al.,
2008; Wang et al., 2010). Building on these impressive adaptive
capabilities of the brain, researchers have, in the last 50 years,
investigated the ability of the brain to modulate its activity and
improve overt behavioral performance thanks to neurofeedback
techniques. Initially, this technique consisted in continuously pro-
viding the patient with a feedback on the level of activity of a
specific cortical region (e.g., thanks to an auditory or visual feed-
back correlating with the intensity of this cortical activity) and
instructing the patient to increase or decrease this activity by their
own volition. It has been proven efficient in treating patients with
attention disorders and in reducing seizures in epileptic patients
(reviewed below). More recent feedback techniques are not based
on the raw cortical signals but rather use decoding procedures
as described above in order to quantify the exact information of
interest contained in the neuronal signals and provide this infor-
mation as a feedback to the subjects. The subject’s goal is then
to improve this specific information through cognitive control.
This is a very promising tool that could be used to target spe-
cific functions in order to enhance the activity in the brain, both
in patients with cognitive deficits arising from acute brain dam-
age or neurodegenerative or neurodevelopmental conditions, as
well as in normal subjects seeking to enhance their own cognitive
functions.

NEUROFEEDBACK AND COVERT NEURONAL ACTIVITY
When we are trained on a specific task, our performance often
becomes better. Several studies have investigated the underlying
neural bases that account for this behavioral improvement. In
visual perceptual tasks that involve difficult discriminations, it
has been observed that a behavioral improvement in perceptual
sensitivity is strongly coupled with improved neural sensitivity in

early and intermediate visual areas (Schoups et al., 2001; Yang and
Maunsell, 2004; Hua et al., 2010) as well as in higher visual deci-
sion areas (Law and Gold, 2008). The idea behind neurofeedback
is precisely grounded on such observations. Indeed, if the brain
is capable of modulating its activity through learning, why not by
voluntary control of the neuronal activity of specific brain areas?
Several fMRI studies have approached this question by providing
participants with a visual feedback of the level of activity (BOLD
signal) in a specific area of the brain and asking them to increase
or decrease this level. These studies have all come to the conclu-
sion that brain activity can be regulated and enhanced volitionally
by the subject (Weiskopf et al., 2003; deCharms et al., 2004, 2005;
Caria et al., 2007; Scharnowski et al., 2014), even when trading the
continuous visual feedback for a monetary reward feedback the
value of which correlated with the level of activity of the cortical
area of interest (Bray et al., 2007). On a neuronal level, electro-
physiological studies not only confirm the above results but reveal
a remarkable plasticity of individual neurons to modulate their
activity under volitional control (Fetz, 1969, 2007; Cerf et al., 2010;
Kobayashi et al.,2010; Schafer and Moore,2011). For example, Fetz
performed, in 1969, a visual and auditory feedback experiment
where monkeys were rewarded for increasing the activity of newly
isolated neurons in the precentral motor cortex. They observe that
the activity could be increased with as much as 50–500% above
the initial spike rates.

NEUROFEEDBACK AND OVERT BEHAVIORAL PERFORMANCE
The above studies demonstrate the feasibility of modulating the
activity of our own brain by voluntary control. The next ques-
tion is thus whether this neuronal modulation has an impact on
overt behavior? Being able to increase or decrease the activity in the
brain is amazing but quite useless if it does not lead to a measurable
change in cognitive performance. In the field of EEG neurofeed-
back, it has actually been known for a long time that a voluntary
change in the EEG rhythm, i.e., in the frequency content of the
scalp EEG signals, can improve behavior (Wyrwicka and Sterman,
1968; Sterman et al., 1969). For example, Sterman and colleagues
highlighted the specific impact of the sensorimotor rhythm (SMR:
12–14 Hz) on the capacity to inhibit ongoing behavior. They used
neurofeedback to regulate this electrophysiological signature and
thereby the frequency of the refractory seizures of a female patient.
Specifically, after several months of EEG neurofeedback training
to enhance the SMR, the authors noted that the seizures essen-
tially ceased at the same time that a significant increase in the
11–15 Hz frequency band and a corresponding decrease in lower
frequencies were observed (Sterman and Friar, 1972). This initial
study was followed by a wave of studies describing the clinical
benefits of using EEG driven neurofeedback over placebo exper-
imental designs on patients with seizure disorders refractory to
pharmacological treatments (Sterman et al., 1974; Kaplan, 1975;
Seifert and Lubar, 1975; Kuhlman and Allison, 1977; Kuhlman,
1978; Sterman and Macdonald, 1978; Lantz and Sterman, 1988;
Andrews and Schonfeld, 1992; Hansen et al., 1996). A differ-
ent line of research using the same technique has tried to treat
attention disorders such as attention deficit/hyperactivity disorder
(ADHD). The first study conducted by Lubar and Shouse (1976),
showed that SMR training improved inattentive symptoms in an
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11-year old boy with hyperactivity. Further studies confirm that
neurofeedback training has a significant effect on reducing hyper-
activity or impulsivity symptoms in ADHD (Lubar, 1991; Lubar
et al., 1995; Lindén et al., 1996; Thompson and Thompson, 1998;
Kaiser and Othmer, 2000). Remarkably, this SMR-driven neuro-
feedback has further been proven as equally effective as medication
(Rossiter and La Vaque, 1995).

Several recent fMRI-based neurofeedback studies show that the
operant control of cortical activity can also lead to changes in
behavior and to interesting therapeutical applications. For exam-
ple, Rota et al. (2009) show that the self-regulation of the activity
of the right inferior frontal gyrus improves the identification of
emotional prosodic intonations. Haller et al. (2010) show that the
operant control of the activity of the auditory cortex allows to
improve chronic tinnitus, a condition in which subjects perceive
more or less constantly an aversive tone or noise, in the absence of
any objective external sound source. More recently, Subramanian
et al. (2011) show that the clinical motor symptoms of Parkinson
disease patients can be improved thanks to neurofeedback driven
by the fMRI activity of their supplementary motor area.

In a single-cell recording study in the non-human primates,
Schafer and Moore (2011) show that monkeys can learn to
modulate the firing rate of individual prefrontal neurons (specif-
ically recorded in the FEF). Importantly, they show that during
up-regulation sessions (as compared to down-regulation), an
increased firing rate leads to enhanced target discrimination in
the receptive field of that neuron. This is a nice demonstration
that the voluntary control of FEF neuronal activity is specifically
associated with an enhancement of selective spatial attention. It is
interesting to compare the finding to Schafer and Moore (2011) in
the non-human primate to those obtained by Scharnowski et al.
(2012) using fMRI-driven neurofeedback in human subjects. In
this study, Scharnowski et al. (2014) demonstrate that the control
of the ongoing spontaneous activity as estimated by the BOLD
fMRI signal in the visual cortex results in improved visual percep-
tion. The authors further show that these observations correlated
with increased effective connectivity between the visual cortex and
the superior parietal lobe, suggesting that the improved visual
perception resulted from enhanced top-down attentional control
processes. Top-down attention has been repeatedly shown to mod-
ulate the activity of early visual areas (Brefczynski and DeYoe,1999;
Kastner et al., 1999; Li et al., 2008; Gregoriou et al., 2009). The fact
that operant control of the activity of visual cortex did not exclu-
sively involve local processes restricted to this cortical region but
also involved long-distance and large-scale networks is an indica-
tion that the behavioral effects of neurofeedback are maximized
by the involvement of the adaptive capabilities of higher level
associative cortical regions such as the parietal or the prefrontal
cortex.

The above studies all have in common to require the subjects
to either increase or decrease the cortical activity being recorded.
Cerf et al. (2010) use a concept that is completely different. Instead
of just modulating the level of activity, they ask the subjects to
actually enhance the information content of the recorded popu-
lation activity. Specifically, they show that by focusing attention
on a concept represented by a target image, neurons in the medial
temporal lobe (MTL), an area involved in generating memories

of fact and events (Squire and Zola-Morgan, 1991), increase their
activity. In this study twelve patients implanted with intracranial
electrodes were instructed to manipulate the display of two super-
imposed images by modulating the firing rate of four MTL units
in their brain. The initial visibility of the two images was 50% and
the patients were instructed to enhance a target image so as to
make it 100% visible. The visibility of the two images was contin-
uously updated via a real-time decoding procedure reflecting the
information contained in the spiking activity of these four neu-
rons about either images. This nicely designed experiment is yet
limited because the authors only used four units in the decoder
which leads to a straightforward interpretation of the decoding
performance. Indeed, in this configuration, an increased decoding
performance directly translates into an increase in the activity of
the unit specifically tuned to the target image and/or decreased
activity for the other units. A decoding performance based on the
increases or decreases in the information content of hundreds of
neurons would result in a much more complex pattern of neuronal
changes, possibly more based on functional population synergies
than on the mere increase in the activity of selective cells asso-
ciated with a decrease in the activity of the non-selective cells.
Shibata et al. (2011) demonstrate the feasibility of such an exper-
imental design. Participants were given feedback based on the
real-time decoding of BOLD fMRI activity. The decoder was con-
figured to discriminate between different angles of a Gabor patch
(10◦/70◦/130◦) based on the fMRI BOLD signal recorded from V1
and V2 prior to the neurofeedback procedure. During the neu-
rofeedback sessions, the participants were instructed to enlarge a
green circle presented on the screen. For each subject, the size of
the green circle was manipulated by how well they could encode a
given Gabor patch orientation in their fMRI BOLD activity. The
specific angle driving the change in the circle’s size changed from
one subject to the other. All participants succeeded in increasing
the circle. They were therefore all able to increase the informa-
tion content related to the assigned specific angle even though the
strategies they overtly reported were far from the true workings of
the experiment. Importantly, this led to an increased perceptual
sensitivity specific to the angle used during feedback in contrast
with the two other angles. The results of this experiment are
important in several aspects. First, they prove the feasibility of
human subjects voluntarily increasing their cortical information
content relative to a specific visual feature. Second, they suggest
that training the brain to increase its information content directly
leads to an improvement in overt behavior. Third, they indicate
that the improvements are specific to the exact feature that is being
trained, similarly to what can be obtained through perceptual
learning.

FUTURE DIRECTIONS
COGNITIVE BRAIN–MACHINE INTERFACES FOR COGNITIVE
REHABILITATION
As covered in the previous section, neurofeedback applications
based on the raw or interpreted (decoded) cognitive informa-
tion have already been proven efficient for several rehabilitation
applications ranging from auditory tinnitus to Parkinson’s disease,
seizures, ADHD. These applications are progressively infusing
off the laboratory patient care protocols. For example, several
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start-ups are now providing ADHD EEG-based neurofeedback
game platforms integrating enriched immersive virtual 3D envi-
ronment technologies with neurofeedback training. A challenge
facing these future directions is constructing neurofeedback envi-
ronments that are optimally targeted to specific pathologies. In the
above discussed examples, Parkinson’s disease clinical symptoms
were improved using the activity of the supplementary motor area.
ADHD was improved using the sensory motor rhythm involved
in overt behavior inhibition. These conditions were thus crit-
ically improved by targeting the specific cortical nodes of the
dysfunction which have been associated with the overt clini-
cal symptoms. The further development of such rehabilitation
methods based on neurofeedback will require a tight interaction
between fundamental neuroscience research providing an ever
growing understanding of the neural bases of cognition and its
deficits and clinical neuroscience research evaluating the impact
of specific neurofeedback designs on well identified groups of
patients (as defined by clear-cut genotypes, functional deficits or
behavioral deficits). For example, while SMR-based neurofeed-
back has been shown to reduce impulsivity in hyperactive ADHD
patients, it is expected that ADHD patients with low hyperactivity
symptoms but high inattention symptoms will not benefit by this
approach, due to a different functional deficit underlying their
symptoms.

COGNITIVE BRAIN–MACHINE INTERFACES TO PALLIATE FOR A DEFICIT
IN COMMUNICATION
Most of these above foreseen applications will rely on non-invasive
cBMI designs. However, in the case of extremely severe cog-
nitive deficits, cost–benefit recommendations will be needed to
evaluate whether invasive cBMIs are ethically acceptable. Two
such conditions come to mind. The first condition is the case
of total locked-in patients, who are unable to move any mus-
cle of their body including their eyes, while they are otherwise
aware and awake. The motor recovery is extremely rare and often
very minimal. In a recent report, a locked-in patient was able
to communicate via sniffing (Plotkin et al., 2010). Using a direct
brain-interface, another total locked-in patient was able to answer
yes-or-no questions (Parker, 2003; Keiper, 2006).The second con-
dition that could justify invasive cBMIs corresponds to minimally
conscious patients. Unlike patients in a persistent vegetative state,
these patients have partially preserved conscious awareness. Recent
studies indicate that the overall brain metabolism of these patients
is 20–40% lower than that of normal subjects, though slightly
higher than that of patients in a vegetative state (Schiff et al., 2005).
In addition, several studies indicate some degree of preserved cog-
nitive functions. For example, sounds result in a more widespread
activation of the primary auditory and prefrontal associative areas
in minimally conscious patients than in vegetative state patients
(Laureys et al., 2004), more so when narratives were presented
as compared to meaningless narratives played backward (Schiff
et al., 2002; Coleman et al., 2007). More recently, and in tight rela-
tion with the attention-driven cBMIs discussed above, preserved
exogenous attention functions and preserved underlying brain
processes have been described in these patients, in association
with a marked deficit in endogenous attention processes (Chennu
et al., 2013). From a therapeutical perspective, deep brain thalamic

stimulation has been described to improve the condition of mini-
mally conscious patients (Laureys et al., 2007). Invasive cBMIs are
also potentially interesting in this respect. In a first step, cBMIs can
serve to assess and quantify the information content of the baseline
or stimulus-induced cortical activity of these patients, and possi-
bly serve to interpret part of their phenomenological experience
(pain, surprise, attention, etc.). In a second step, cBMIs associated
with focal stimulation approaches such as electric or optogenetic
stimulations can help increase the information content of specific
cortical regions. As soon as consciousness is high enough for the
subject to express a preference (e.g., hearing the name of her loved
ones instead of the names of strangers), this activity can be used for
feedback-cBMI designs that can further help reinforce the weak yet
meaningful endogenous cortical activities of minimally conscious
patients. While this can seem like science fiction, all the theoretical
and experimental grounds are set to make this possible.

OPEN FIELD COGNITIVE BRAIN–MACHINE INTERFACES FOR
ENHANCED COGNITION
In addition to rehabilitation, there is a growing social pressure
for healthy individuals to increase their cognitive performance or
preserve it from aging. Several tools are already being used to this
goal, ranging from cognitive training (through a growing range
of enriched video game applications, see for example Cardoso-
Leite and Bavelier, 2014), to cognitive pharmacological enhancers
(i.e., drugs primarily developed to treat people with cognitive or
motor function difficulties that are used by healthy subjects to
improve memory, attention, concentration, and planning, see for
example Greely et al., 2008), to off-the-laboratory brain stimula-
tion (transcranial direct current stimulation – tDCS-kits are now
commercially available). In this context, given its consequences on
behavioral performance as described above, non-invasive neuro-
feedback applications can be considered as a safe improved alter-
native to cognitive training, as compared to cognitive enhancers
or brain stimulation.

SHARED COGNITION
In a recent report, Pais-Vieira et al. (2013) describe an astound-
ing brain-to-brain interface (BTBI). The cortical activity of
an “encoder” rat, performing a learned sensorimotor task was
injected, using intracortical microstimulations, into the match-
ing cortical area of a “decoder” rat that was able to learn to use
these alien activity patterns to perform the sensorimotor choices
as the “encoder” rat. This opens amazing perspectives. From a
rehabilitation point of view, one can think of injecting in target
cortical regions of the brain of a patient suffering from a severe
cognitive deficit the activity patterns recorded from healthy sub-
jects in well-defined contexts. This is not very different from deep
brain stimulation procedures now classically used in Parkinson
Disease patients for example or from trans-cranial direct current
stimulation applied in severe refractory depression, except that
the stimulations would in this case correspond to the cognitive
information content of healthy subjects.

CLOSING THE LOOP
Overall, this review brings together several studies that not only
demonstrate the feasibility of decoding spatial attention in real
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time using a diversity of experimental set-ups, but that also show
that this real-time decoding can further be used for rehabilita-
tion purposes. As a concluding note, we would like to highlight
the fact that this field of cBMIs, and specifically attention-driven
BMIs, is still young and that the reviewed studies mostly represent
proofs of concept. We believe that the real-time access to spa-
tial attention signals (and other cognitive information) also has
the potential to bring about a novel understanding of the neural
bases of these cognitive processes that cannot be accessed by more
classical investigation methods. Taking this fundamental neuro-
science perspective on cBMI research will also provide a better
understanding of why and how neurofeedback improves cogni-
tion. These are the crucial challenges the field will need to face in
the coming years.
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