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The neural criticality hypothesis states that the brain may be poised in a critical state at
a boundary between different types of dynamics. Theoretical and experimental studies
show that critical systems often exhibit optimal computational properties, suggesting
the possibility that criticality has been evolutionarily selected as a useful trait for our
nervous system. Evidence for criticality has been found in cell cultures, brain slices, and
anesthetized animals. Yet, inconsistent results were reported for recordings in awake
animals and humans, and current results point to open questions about the exact nature
and mechanism of criticality, as well as its functional role. Therefore, the criticality
hypothesis has remained a controversial proposition. Here, we provide an account of
the mathematical and physical foundations of criticality. In the light of this conceptual
framework, we then review and discuss recent experimental studies with the aim of
identifying important next steps to be taken and connections to other fields that should
be explored.
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1. INTRODUCTION
The brain can be studied by two complementary approaches:
Bottom-up approaches start on the level of single neurons or
small groups of neurons, and then generalize upwards to the level
of the brain. Hypotheses on the macroscopic level are formed
based of the microscopic dynamics. For example, the observation
of resonance in electrophysiological recordings can predict oscil-
lations on the network level. By contrast, top-down approaches
start by considering the properties of the brain on the level of
brain areas or the whole brain, and infer downwards to the prop-
erties of its constituents. Hypotheses on the microscopic level are
formed based of the macroscopic dynamics. For example, corre-
lated activity in EEG recordings predicts a connection between
the underlying brain areas.

A central concept connecting the microscopic and macro-
scopic levels is criticality. In the investigation of neural criticality,
the word critical is used in the sense of statistical physics, which is
distinct from other meanings, including the colloquial use. In sta-
tistical physics, criticality is defined as a specific type of behavior
observed when a system undergoes a phase transition.

Physics characterizes the behavior of systems into qualitatively
different phases. This classification scheme has its origin in the
phases of classical matter, i.e., solid, liquid, and gaseous phase.
The different macroscopic properties of, say, ice, liquid water, and
steam can be explained by the microscopic forces between single
water molecules. The discovery of this connection inspired the
application of the concept of phases in a broader context and led
to the identification of many more phases and different types of
phase transitions.

To distinguish different phases, one considers macroscopic,
measurable properties of the system, so-called order parame-
ters. One then observes how these order parameters change as
an ambient property, the so-called control parameter, is varied.
In general, a smooth change in the control parameter leads to
a smooth change in the order parameters. However, there are
certain points where the values of the order parameters jump
or make sharp turns, see Figure 1. These points mark bound-
aries between different phases, and moving the control parameter
across such a boundary causes a phase transition. If the transi-
tion is marked by a jump in the order parameters of the system
(mathematically-speaking, a discontinuity in the phase diagram),
the phase transition is called discontinuous. Such transitions are
sometimes called transitions of first order. If the phase diagram
is continuous and the transition is marked by a sharp corner
(a point of non-differentiability), then the phase transition is
continuous (second order).

If a system has a continuous phase transition, then the sys-
tem can reside exactly at the transition point between two phases.
This state on the edge between two qualitatively different types of
behavior is called the critical state, and in this state the system is
at criticality. Because phase transitions usually break certain sym-
metries of the system, they often separate an ordered state from
a less ordered state. Critical states are therefore said to be on the
edge of chaos.

As we discuss in detail below, systems at criticality are
believed to have optimal memory and information process-
ing capabilities. This general theoretical prediction was ver-
ified in many specific models such as boolean networks
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FIGURE 1 | Phase plot. Network activity versus connectivity for the steady
state solution of Equation (1) (straight line) and a simulated network with
n = 500 (dashed line) or n = 100 (lower dashed line) neurons. A phase
transition is observed at z∗ (see main text) for the analytical solution with
infinite n, whereas the transition appears in finite systems at slightly higher
values of the control parameter and is smoothed out over a small interval.
In the event-based simulation of Equation (1), the steady state network
activity A was measured as A = sτ/nT , where s is the number of spikes
recorded during the time period T following an initial relaxation period, and
τ is the period over which the neuron remains active.

(Kauffman, 1984; Derrida and Pomeau, 1986), liquid state
machines (Langton, 1990), and neuronal networks (Maass et al.,
2002; Bertschinger and Natschläger, 2004), for a review also see
Legenstein and Maass (2007). These findings inspired the critical-
ity hypothesis, which proposes that the brain operates in a critical
state because the associated optimal computational capabilities
should be evolutionarily selected for.

Deviations from criticality could be symptomatic or causative
for certain pathologies. This may pave the way for new diagnos-
tics and treatments. For instance, Meisel et al. (2012) showed
that hallmarks of criticality disappeared during epileptic seizures.
Furthermore, insights into criticality in the brain could yield valu-
able design and operating principles for computation more in
general, for example for unstructured artificial systems such as
computers build from randomly-deposited nanowire memristors.

However, the criticality hypothesis is far from undisputed and
many open questions remain. In particular, for a system to be
at criticality, one parameter needs to be tuned exactly to the
right point. One can therefore ask how a complex dynamic and
variable system such as the brain can remain correctly tuned to
this state. For a plausible answer, first note that the theory of
phase transitions typically considers infinite systems. In large but
finite systems, phase transitions occur not at a single point, but
are smoothed out over a small parameter range. Instead of the
unique critical state, we find a small region that is not techni-
cally critical, but still retains many properties of criticality, see
Figure 1 (Moretti and Muñoz, 2013). However, even remaining
in this “critical” region should require mechanisms that actively
retune the brain. The general idea of systems tuning themselves to
critical states through active decentralized processes is known as
self-organized criticality (SOC) (Bak et al., 1988), and is illustrated
in Figure 2. After a burst of activity in this area in the 1990s, the

theory of self-organized criticality encountered some obstacles
and interest slowly subsided (Vespignani and Zapperi, 1998). It
was revived by Bornholdt and Rohlf (2000), who discovered an
elegant mechanism of self-organized criticality in networks and
already suggested it as a plausible mechanism for neural criticality.

The criticality hypothesis can thus build both on evolution-
ary arguments and on a plausible general mechanism that can
explain the self-organization to the critical state. Although inves-
tigated analytically and numerically for numerous toy models,
it is still unclear whether and how such a mechanism is imple-
mented in the brain. Evidence for criticality has been found in
experiments on cell cultures (e.g., Beggs and Plenz, 2003; Tetzlaff
et al., 2010), animals (e.g., Petermann et al., 2009; Hahn et al.,
2010) and humans (e.g., Kitzbichler et al., 2009; Meisel et al.,
2012). However, it has been pointed out that some evidence may
be misleading and could potentially be explained by alternative
mechanisms (Botcharova et al., 2012). Some experimental stud-
ies also report negative results where characteristics of criticality
were not observed in the neuronal activity (e.g., Bédard et al.,
2006; Dehghani et al., 2012, but see criticism in Yu et al., 2014).
In general, the relationship between the theoretical framework
and its biological realization remains unclear. While models have
demonstrated the plausibility of self-organized criticality in the
brain, it is not clear to which of the many conceivable phase tran-
sitions the brain organizes, if and how different forms of plasticity
drive the brain to this state, and whether different brain regions
organize independently. Resolving these questions could lead to a
much deeper understanding of neural criticality, explain appar-
ent contradictions in experimental findings, and open up new
connections with other fields.

Neural criticality has been reviewed in recent articles (Beggs,
2008; Kello et al., 2010; Beggs and Timme, 2012; Shew and Plenz,
2013; Marković and Gros, 2014) and is the topic of a contributed
volume (Plenz and Niebur, 2014). In this review, our aim is to
present a clear picture of the underlying concepts and ideas from
statistical physics and nonlinear dynamics. We do not attempt
to provide a comprehensive survey, but instead highlight specific
papers to illustrate general insights that are evident in much of the
recent literature. We first present a simple toy model that provides
the essential concepts in front of which much of the recent work
can be discussed. We then review self-organized criticality in ner-
vous systems with a special focus on the interaction of theoretical
and experimental work in this field. We point out several current
questions and connections to other phenomena. Because of the
emerging connections, we believe that the criticality hypothesis
inspires discussions and the development of tools for the analy-
sis of brain dynamics which will proof useful independent of the
validity of the hypothesis itself.

2. EXAMPLE OF A PHASE TRANSITION IN A NETWORK
Phase transitions and criticality can already be observed in simple
network models. In physics, such highly simplified models have
proven useful to distill the essence of a phenomenon, before inves-
tigating how this essence is reshaped through additional details
present in the real system.

Consider a large directed network of excitable nodes that can
be seen as a crude model of neurons. In average, each node has
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FIGURE 2 | The sandpile model. The classical thought experiment
motivating self-organized criticality is the sandpile model (Bak et al., 1988),
which was experimentally reproduced using rice piles (Frette et al., 1996).
Consider a pile of sand on a small table. Dropping an additional grain on the
pile may set off avalanches that slide down the pile’s slopes. The outcome
of the avalanche dynamics then depends on the steepness of the slopes.
Either all the sand will come to rest somewhere on the table or avalanches
continue until some grains fall off the table’s edge. In the former case, we
have added one grain to the pile, so in average the steepness of slopes has
increased. In the latter case, we have removed some grains from the pile,
so in average the steepness of slopes has decreased. In the long run, the
slopes evolve to a critical state where a single grain of sand that is dropped
is likely to just settle on the pile, but also has a non-negligible probability to
trigger a huge avalanche. This experiment already suggests that the critical
state is very sensitive to stimuli, because a small (internal or external)
variation can cause a large effect.

z outgoing links that can propagate activity to other nodes. In
analogy to neural systems, we refer to the source of a given link
as the presynaptic node and to the destination of a given link as
the postsynaptic node. For a given link, activity is not transmit-
ted instantaneously; instead, there is a small probability p that an
activation of the presynaptic node activates the postsynaptic node
in a small time interval of length τ . Active nodes decay back to the
inactive state within the same time interval.

Clearly, this model is excessively simplistic and omits many
additional effects and factors that are present in real nervous sys-
tems. However, as we show below, the model already contains all
ingredients to exhibit a phase transition, and thus provides us
with a simple model of a phase transition to play with.

Let us now try to understand the macroscopic dynamics of
the system based on its microscopic rules. We define the net-
work activity A(t) as the mean proportion of activated nodes at
time t. Higher values of A imply that there are more active nodes,
which can serve as sources of activity, but less resting nodes, which
can still be activated. Mathematically, we can capture the ensuing
dynamics by the differential equation

dA

dt
= − 1

τ
A

︸ ︷︷ ︸
inactivation

+ pz (1 − A)
1

τ
A.

︸ ︷︷ ︸
activation

(1)

The system approaches a dynamical equilibrium dA
dt = 0. Setting

the left hand side of Equation (1) to zero reveals two qualita-
tively different steady states. In one of them, the activity dies
out, A0 = 0, whereas in the other, a stable level of activity A0 =
1 − 1/pz is maintained. Generally, a system will only approach
steady states which are stable to small perturbations. Stability
analysis (Guckenheimer and Holmes, 1983) reveals that the sta-
ble state is the quiescent state for pz < 1 and the active state for

pz > 1, such that the activity is non-negative. We can thus say that
we observe an active state of the network when the connectivity z
is greater or equal than z∗ = 1/p.

Plotting the level of activity observed in the system’s long term
behavior, A0, as a function of the connectivity z reveals a typi-
cal phase diagram (Figure 1). In this context, the connectivity z is
the control parameter, and the activity A0 is the order parameter.
The diagram shows a subcritical quiescent phase and a supercrit-
ical active phase. The critical connectivity z∗ = 1/p corresponds
to a phase transition between these two phases. We note that even
in this simple model the relation between phase transitions and
symmetry breaking is evident. In the quiescent phase, all nodes
are in the same (inactive) state, whereas this symmetry is broken
in the active phase. In the quiescent phase, the system is com-
pletely static, whereas in the active phase, the individual nodes
are activated stochastically, and seemingly chaotically. The phase
transition point therefore marks the edge of chaos.

The analytical solution only holds for the limit of large net-
works. In small networks, network activity is difficult to sustain
near the critical point, where the sustained network activity is so
low that it easily dies out by chance. The abrupt change at the crit-
ical point is smoothed out and the observed phases are no longer
perfectly distinct (Figure 1). Analog effects are seen in any finite
system. In a large but finite system such as the brain, one would
therefore not expect to find a single isolated point that expresses
perfect criticality, but rather a small region that shows properties
of critical systems in an approximate sense.

We emphasize that the simple model discussed here only
exhibits one type of phase transition, the onset of activity.
Additionally, there can be many other types of phase transitions.
Another example that is commonly encountered in models, and
may be more relevant for neural information processing, is a
transition that marks the onset of synchronous (i.e., correlated)
activity in the network (e.g., Meisel and Gross, 2009; Yang et al.,
2012). One implication of the presence of such additional transi-
tions is that labels such as subcritical and supercritical can only be
applied with respect to a certain transition. For instance, a system
that shows activity, but not correlated activity, can be considered
supercritical with respect to the activity transition, but subcritical
with respect to the synchronization transition.

3. PROPERTIES OF PHASE TRANSITIONS
In the following, we discuss how phase transitions and critical
dynamics can be detected in experiments. The most direct evi-
dence for a phase transition is certainly provided by a phase
diagram (Figure 1) (Dickman et al., 2000). In this type of dia-
gram, the existence of a phase transition can be seen directly in
the response of the order parameter to variations of the con-
trol parameter. However, for creating such a diagram the control
parameter must be accessible (controllable) in the experimen-
tal setting. For instance, it is difficult to imagine an experiment
where the connectivity of the brain (our parameter z from above)
can be varied in vivo. Yet, it might be possible to control the
effective connectivity (e.g., pz) by pharmacological interventions
in in vitro experiments. Although some studies discussed below
report results for such modifications of control parameters, most
of the evidence for criticality comes from experiments that show

Frontiers in Systems Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 166 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hesse and Gross Self-organized neural criticality

criticality indirectly by the observation of certain hallmarks. In
this section, we discuss these hallmarks of criticality in the context
of the simple model introduced above.

One commonly used hallmark comes from the theory of
branching processes (Harris, 1963). Suppose we could observe
only a tiny portion of the system, which only rarely lights up with
(possibly spontaneous) activity. Under the assumption that the
connections are sufficiently short-ranged to be within our obser-
vation window, we can still estimate the number of secondary
activations that a given focal activation triggers, the so-called
branching parameter σ . In the subcritical phase, this number is
in average less than one. In the supercritical phase, the dynamics
persists in the system and thus there must be in average as many
activations as deactivations, which implies a branching parame-
ter of one. In a spatially extended system that is not too far in the
supercritical phase, a branching parameter greater than one may
be observed over short times in response to an artificial excitation.
Therefore, the observation of a branching parameter σ = 1 in
response to an artificial excitation in a sufficiently quiescent sys-
tem may be seen as evidence for criticality. However, compared to
other hallmarks, this evidence is relatively weak because a branch-
ing ratio of one does not necessarily imply critical dynamics, but
is also observed in supercritical states.

Another hallmark of criticality is related to the response of the
system to external stimuli. In our model, the sensitivity to inputs
(the dynamic range) is maximal at criticality. This can be shown
by considering the temporal development of a small perturbation
δ. The dynamical evolution of the perturbation of the steady state
A0 is given by inserting A0 + δ into Equation (1), which yields

dδ

dt
= ( −1 + pz (1 − (A0 + δ))

) 1

τ
(A0 + δ)

= − 1

τ

( ±(1 − pz)δ + pzδ2 )

≈ − 1

τ

( ±(1 − pz)δ
)
,

where the plus applies if z < 1/p and the minus otherwise.
The approximation in the last line holds for sufficiently small
perturbations. The resulting equation is a linear differential equa-
tion, which implies that after the perturbation the system relaxes
rapidly (exponentially) back to A0. In this case, the half-life of a
sufficiently small perturbation is |τ ln (2)/(1 − pz)|. Any memory
of the perturbation disappears therefore quickly. When the system
approaches criticality, pz → 1, such that the half-life increases.
At criticality, z∗ = 1/p, such that the first order term 1 − pz van-
ishes, and the approximation leading to the third line no longer
holds. In this case, the system relaxes only geometrically back to
the state A0, which means that the memory of the perturbation is
retained for a long time. This property is often called critical slow-
ing down. Let us emphasize that critical slowing down is not only
a property of the specific model considered here, but a general
feature of critical phase transitions in the dynamics of a system
(Scheffer et al., 2009). It lends critical systems a long memory and
may play an important role for their computational properties.

In the example system, we can also understand the emergence
of memory in the critical state on a microscopic level. Consider
a situation in which we artificially activate a small number of
neurons. We now ask how long the memory of this activation
lasts in the time evolution of the system. Let us first consider
a system in a subcritical state. Here, we already know that the
branching parameter is less than one and hence the initially acti-
vated neurons will activate only a smaller number of neurons
such that the signal from the initial activation quickly (i.e., expo-
nentially) decreases over time. Consider now a supercritical state.
We recognize that the branching parameter is equal to one, so
we expect that the initial artificial activation of the small group
of neurons triggers a cascade that stays in average roughly con-
stant in size. We could therefore naively expect that the memory
of the activation persists in the system. However, the truth is a
bit more subtle: While the cascade indeed persists, some of the
neurons involved in the cascade would have been activated any-
way due to the ongoing self-sustained activity of the system. Thus,
the difference between the artificially excited system and a sys-
tem where the artificial activation did not take place shrinks in
time; again the memory of the activation is lost exponentially.
By contrast, the critical system already has a branching param-
eter of one, allowing the cascade that we have set off to persist for
a long time, and it has also negligible background activity, allow-
ing the information transmitted by the cascade to persist without
interference.

The slowing down leads to another observable characteristic
of critical systems, called 1/f -noise, which is commonly observed
in nature (Hausdorff and Peng, 1996). If a critical system is con-
stantly perturbed by weak random inputs, the dynamics is a
superposition of a multitude of geometric responses. The power
spectrum of this noisy response then follows a power-law, which
means that the energy dissipated at frequency f is approximately
1/f α , where α is some constant. While every critical system
should exhibit power-law noise, the observation of this type of
noise alone does not constitute a proof of criticality, as it is also
observed in certain other processes (Cencini et al., 2000; Bédard
et al., 2006).

Power-laws appear in critical systems also in a different way.
Loosely speaking, phase transitions occur at the points where the
line between macroscopic and microscopic dynamics is blurred,
e.g., where avalanches initiated on the microscopic level become
so large that they affect the dynamics on the macroscopic level.
For several reasons this is only possible when the size distribu-
tion of avalanches obeys a power-law (Levy and Solomon, 1996).
Let us once again consider the simple model proposed above.
Since the branching ratio is one independent of the size of the
current avalanche, the probability distributions describing the
cascades of events downstream from an activated node are inde-
pendent of whether the node is the initial node that sparked the
avalanche or a node that is only activated as the result of a long
sequence of events. This is one aspect of the self-similarity found
in critical processes (Marković and Gros, 2014). The cascade
of subsequent activations caused by a given node is statistically
identical to the cascades of subsequent activations triggered by
the activated nodes. This in turn causes power-laws to appear
in many observables of the system. Thus, criticality is generally
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associated with the appearance of power-law distributions of the
form f (x) = Cx−α for many different observables.

The observation of power-laws in multiple observables with
consistent exponents constitutes a relatively strong proof for criti-
cality. Although it is often pointed out that also these relationships
could arise in non-critical systems, this criticism is much weaker
for microscopic observables than for macroscopically recorded
power-law noise. We note that some of the examples that are often
quoted for spurious are wrong. For instance, it is often held that
the Barabasi-Albert model (Barabási and Albert, 1999) leads to
networks with a power-law degree distribution but does not cor-
respond to a critical state. However, the Barabasi-Albert model
is indeed in a critical state that marks the transition between
exponential and star-like networks (Krapivsky and Krioukov,
2008).

A consequence of the blurring of the line between global
and local scales, and part of the reason for the appearance
of power-laws, is the so-called scale independence (Goldenfeld,
1992). This phenomenon captures the observation that critical
systems show similar patterns at all scales. For example, the shapes
of avalanches of any size resemble each other (Marković and Gros,
2014). As one approaches criticality, correlations occur between
distant parts of the system, which means that external pertur-
bations or spontaneous fluctuations can influence large parts of
the system. For instance, stimulations induce small avalanches
already in the subcritical region of our simple model. As we
slowly increase the connectivity, these avalanches get bigger and
bigger and reach the scale of the system at criticality. In this
case, the avalanches occur on all scales up to the system size,
which implies that the typical length of correlations diverges. If
we increase the connectivity further, activity in the system con-
tinues to increase, making simultaneous occurring avalanches
likely. As a node cannot be activated twice at the same time,
one of the avalanches effectively stops whenever two avalanches
reach the same node. These collisions between the avalanches
decrease long-ranged correlations and destroy the divergence of
the correlation length.

In summary, criticality occurs at phase transitions for which
the order parameter changes non-smoothly but continuously
with the control parameter. Proper phase transitions are an ideal-
ization only expected in the infinite size limit—in real systems, the
transition is less well defined and smoothed out over a finite inter-
val. At criticality, as well as in its proximity, the system dynamics
exhibits critical slowing down, and the distributions of observ-
ables and fluctuations follow power-laws. These hallmarks of
criticality lend critical systems their optimal information process-
ing and storage capabilities, reviewed by Shew and Plenz (2013).
Critical slowing down allows memories of dynamical patterns to
be retained for a long time (Beggs and Plenz, 2004; Haldeman
and Beggs, 2005; Chialvo, 2006; Chen et al., 2010; Kello et al.,
2010). Furthermore, criticality maximizes the dynamic range of
the response to inputs (Kinouchi and Copelli, 2006; Shew et al.,
2009) and the variability of the neuronal response (Shew et al.,
2011; Yang et al., 2012; Meisel et al., 2013). As scale-independent
systems naturally show both small and large activity patterns,
inputs can be processed in parallel, and integrated over the whole
system (Gutiérrez et al., 2011).

4. SELF-ORGANIZATION TO A CRITICAL BRAIN STATE
To observe criticality, a control parameter has to be tuned to its
critical value. In a variable system such as the brain, and with-
out an external observer, critical dynamics can only be conserved
by self-organized criticality (Bak, 1996), a constant tuning of the
control parameter by a decentralized internal mechanism. For
many systems with a critical phase transition, self-organized crit-
icality is easily implemented by a mechanism that increases the
control parameter in the subcritical phase and decreases it in the
supercritical phase.

We use the term control parameter also in self-organized criti-
cal systems although the control parameter is no longer controlled
externally, but by the system itself. To adjust the control param-
eter appropriately, self-organizing mechanisms have to evaluate
the current phase of the system from an internal perspective. In
the nervous system, the self-organization probably relies on the
dynamics of single neurons or synapses, and not on a global regu-
lation, e.g., by the endocrine system, because evidence for critical
brain dynamics is especially prominent in in vitro studies, where
the neurons are separated from the rest of the brain that could
act as global integrator. A central challenge is therefore to explain
how individual neurons or synapses can infer the phase from local
observations.

To decide whether the system is in the sub- or supercrit-
ical phase, the self-organizing mechanism has to evaluate the
global mean of the order parameter. However, as the information
accessible to a single neuron or synapse is necessarily local, it is
reasonable to expect that the global mean is approximated by a
temporal mean over the dynamics (Bornholdt and Rohlf, 2000).
To allow for an estimation of the global mean based on a tem-
poral integration of local observations, the change in the control
parameter has to be considerably slower than the dynamics of the
system. For example, in the sandpile model presented in the intro-
duction (Bak et al., 1988), criticality is only reached when the next
sand grain is dropped after any dynamics on the pile has ceased.
Self-organized critical systems show in general a time-scale sepa-
ration between changes in the system structure and changes in the
dynamics of the system (Vespignani and Zapperi, 1998).

Theoretical arguments seem to suggest that self-organized crit-
icality can be fully realized only in systems in which the control
parameter is conserved (Dickman et al., 2000). In the brain,
which is constantly subject to external input, the self-organization
never precisely reaches the critical point (Bonachela et al., 2010).
However, the characteristics of criticality, such as computational
capabilities and sensitivity, are already increased in the proxim-
ity of the critical point. Therefore, we use the term self-organized
criticality to refer both to neural networks which are right at
or sufficiently close the critical point, a state that has previously
been called self-organized quasi-criticality (Bonachela and Muñoz,
2009).

For the brain with its highly hierarchical and modular struc-
ture, it is likely that critical points generalize to critical regions
(Griffiths phases) (Moretti and Muñoz, 2013). This relaxes the
requirements on the tuning of the control parameter, which
could also be shown in a realistic model of neuronal network
dynamics (Rubinov et al., 2011). In modular systems, the global
phase transition is spread out because, for a certain range of
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the control parameter, some modules are still in the subcriti-
cal phase, while other modules are already in the supercritical
phase. Properties arising at criticality, such as power-law distri-
butions, large dynamic range and slowing down of the dynamics,
are approximately observed for any value of the control parame-
ter in this critical range. Dynamical states similar to criticality are
therefore likely whenever the self-organizing mechanism tunes
the control parameter to the proximity of this critical region.

Self-organization of plausible neural models to criticality was
demonstrated in a number of papers (e.g., Bornholdt and Rohlf,
2000; Levina et al., 2009; Meisel and Gross, 2009; Droste et al.,
2013). However, many questions remain. First, we do not know
which parameters in the brain are tuned to reach criticality. On a
microscopic scale, synaptic conductances seem to be a likely can-
didate. As a substantial change in the synaptic conductances is
only observed after several spikes, the plasticity acts on a slower
time-scale than the neuronal activity. This provides the time-scale
separation required for a robust tuning of the system to critical
states. A change in the synaptic conductances could directly influ-
ence the excitability of the synapse (basically the parameter p in
our simplified model), which is sufficient to tune the system to
criticality.

A change of individual synaptic weights, which translates
into an overall change in excitability, is only the simplest pos-
sible scenario. The excitability can also be changed directly by
mechanisms of homeostatic plasticity (Stewart and Plenz, 2008;
Droste et al., 2013). Other possible targets for sophisticated self-
organizing plasticity mechanisms are changes in the level of
micro-scale modularity, or of the heterogeneity in the system.
These factors, which we have ignored so far, affect the location
of critical points and can thus be used to tune the system to crit-
icality. The simple picture, in which exactly one global control
parameter is tuned, is thus misleading. In reality, the microscopic
changes in the system are likely to affect tens or hundreds of net-
work level quantities at the same time, which all act as possible
control parameters for phase transitions.

Another open question is to which critical state the network
organizes. While we have so far focused on the phase transi-
tion at the onset of activity, some evidence suggests the onset
of synchrony as a more likely candidate. Some insights into this
question can be gained based on the relation between the nature
of the transition at which the system resides and efficient coding
of information. For the activity transition considered so far, the
optimal computational properties are likely to be realized if the
information is presented in a rate code, where the activity of a
node represents directly an input. To achieve optimal informa-
tion representation for a synchronization code, where an input is
represented by synchronous activity, the system needs to be tuned
to the phase transition at the onset of synchronization.

In a system with many parameters, the term critical point is
misleading. From a mathematical perspective, the critical point
is a bifurcation point of the macroscopic dynamics, and as such
is characterized by its codimension, which is one in this case
(Kutsnetsov, 1998). What this means is that the critical point
is actually a manifold which has one dimension less than the
embedding parameter space. So, in a one-dimensional param-
eter space, i.e., when only one parameter is varied, the critical
point appears as a (zero-dimensional) point. However, in a

two-dimensional parameter space, where a second parameter
is varied, we find a (one-dimensional) line of critical points.
In a three-dimensional parameter space, criticality occurs on a
surface, and so on.

In complex networks, there is an abundance of parameters
that affect the dynamics, including for instance the mean degree
and mean outgoing link weights, which are often considered, but
also clustering coefficients, modularity, and abundances of larger
motifs. The precise number of parameters that play a role in neu-
ral criticality is hard to determine. However, let us point out that
the one dimensional picture (Figure 1), which is usually drawn,
is particularly misleading. Consider that in one dimension the
probability that two different phase transitions occur at the same
parameter value is of measure zero. However, in two parame-
ter dimensions, each phase transition occurs on a critical line in
the parameter space, and crossings between the lines are likely.
Thus, if there are two processes of plasticity that tune the sys-
tem to two different critical states, there is generally a possibility
to observe both forms of criticality at the same time. Some evi-
dence for such double criticality was already observed by Yang
et al. (2012) and Meisel et al. (2013). This can potentially explain
why characteristics of both activity (e.g., Beggs and Plenz, 2003,
2004) and synchronization (e.g., Linkenkaer-Hansen et al., 2001;
Kitzbichler et al., 2009) phase transitions have been observed
in experiments.

So far we have talked about the brain as a critical system.
However, there is at least the possibility that different regions of
the brain are tuned to criticality separately, and perhaps to dif-
ferent phase transitions. Working at the activity transition seems
particularly advantageous for the detection of weak stimuli, as it
allows a single spike to trigger a cascade of activity. On the other
hand, working at the synchronization phase transition appears
advantageous for cognitive processes.

5. EXPERIMENTAL EVIDENCE FOR THE CRITICALITY
HYPOTHESIS

The demonstration of self-organized criticality in the brain is
controversial. Several experimental studies support the critical-
ity hypothesis, others interpret their results in contradiction. In
this section, we discuss common measurements used to support
criticality in the brain and stress their potential shortcomings.

The best proof of criticality would be provided by a phase dia-
gram as in Figure 1, where the critical point appears as a kink in
the curve. However, in self-organized critical systems, the control
parameter is set by the dynamics itself. If the control parameter
is deviated experimentally, it starts to return to its critical value,
such that it cannot be set freely. However, if the return is suffi-
ciently slow, phase diagrams can be obtained approximately by
monitoring a suitable order parameter while the system relaxes to
the critical state.

In recent studies, most evidence for the criticality hypothe-
sis in experiments and simulations is based on power-laws. As
power-laws are expected in virtually every critical system, the exis-
tence of power-laws is a fundamental prerequisite for criticality,
but as such not sufficient to prove criticality. Power-laws have
been explained alternatively by different non-critical mechanisms
(Touboul and Destexhe, 2010; Marković and Gros, 2014), such as
filtered neural activity (Bédard et al., 2006; Bédard and Destexhe,
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2009), noise (Bonachela and Muñoz, 2009; Miller et al., 2009),
or noisy feed-forward structures amplifying small perturbations
(Benayoun et al., 2010). For an educational review on the topic
see Beggs and Timme (2012).

A major concern is the inference of power-law behavior from
data. When plotted on a log-log plot (Figure 3), power-laws fol-
low a straight line with a slope equal to their critical exponent α.
However, visual inspection of a diagram can lead to false positives
and it has been pointed out that conventional goodness-of-fit tests
are ill suited for power-laws (Newman, 2005). The identification
of power-laws is thus delicate and demands for advanced fitting
procedures because power-laws are difficult to differentiate from
other heavy-tail distributions (Clauset et al., 2009; Klaus et al.,
2011; Marković and Gros, 2014). Furthermore, power-laws are
truncated in systems of finite size (Bonachela et al., 2010) and
are influenced by subsampling (Priesemann et al., 2009; Ribeiro
et al., 2010; Priesemann et al., 2014; Ribeiro et al., 2014).

Most experimental and numerical studies on self-organized
criticality concentrate on the identification of neuronal avalanches
(Beggs and Plenz, 2003), i.e., bursts of activity that spread through
the network and are predicted to follow power-law distribu-
tions in certain critical states (e.g., Harris, 1963; Eurich et al.,
2002; Larremore et al., 2012). As the precise network topology
is often not known in experimental observations, events are con-
sidered as part of the same avalanche if they occur in temporal
and spatial proximity. This is justified in systems without long-
range connections. In this case avalanches form local wave-like
structures. If long-range connections are present it is difficult to
assign observed activity to a particular avalanche. Avalanches with
power-law size distribution can then still be present in the system
although no local outbreaks that follow a power-law distribution
are detected, which may explain why wave-like activity propaga-
tion is for example not observed in acute slices (Stewart and Plenz,
2006).

If the spontaneous activity and the stimulation rate are low,
which is the case in most models, one avalanche is temporally

FIGURE 3 | Scale independence of power-laws. Plotted is the power-law
f (x) = xα with α = −1.5 on a log-log plot, where x is some observable of
the system. Independent of the range or scale over which the distribution is
measured, power-laws with the same critical exponent are observed.

separated from the next. In this case, the size of the avalanche is
defined as the number of neurons activated by the initial stimula-
tion. In experiments, the definition is not straight-forward as the
time-scale separation between dynamics initiation and dynamics
progression is less clear (Shew et al., 2009; Ribeiro et al., 2010;
Priesemann et al., 2014). Instead, avalanches are declared sepa-
rated if the dynamics is interrupted for at least one pre-defined
time bin. The dynamics is evaluated based on specific events seen
in multi-electrode recordings, for example spikes or strong nega-
tive deflections of the local field potential (LFP). Resulting event
time series are binned and a sequence of consecutive active bins is
defined as avalanche, see Figure 4.

In models, in which a time-scale separation between dynamics
initiation and dynamics progression is given, the avalanche size
distribution is independent of the chosen threshold and bin size
(Priesemann et al., 2014), which is a consequence of the scale
independence of critical processes. In experimental data, how-
ever, avalanche size distributions depend on the chosen event
threshold and on the bin size used for the binning process
(Pasquale et al., 2008; Touboul and Destexhe, 2010; Priesemann
et al., 2013). The avalanche size distribution changes with the
bin size when subsampling introduces artificial pauses in sin-
gle avalanches and when the external input is large enough to
initiate multiple avalanches simultaneously (Priesemann et al.,
2014). Most studies use a bin size that fits the time that the neu-
ral signal takes to spread between electrodes (Beggs and Plenz,
2003; Stewart and Plenz, 2006; Pasquale et al., 2008), some stud-
ies also report power-law fitting for different bin sizes (Hahn
et al., 2010; Tetzlaff et al., 2010). As expected at criticality, neu-
ronal avalanches show further scale-free properties. Importantly,
the avalanche distributions overlap when rescaled by the number
of recording electrodes (finite-size scaling, Klaus et al., 2011; Yu
et al., 2013). Results are furthermore independent of the record-
ing electrode number and distance (Beggs and Plenz, 2003; Hsu
et al., 2008; Pasquale et al., 2008; Tetzlaff et al., 2010) and long
range spatial and temporal correlations can be shown (Petermann
et al., 2009; Hahn et al., 2010; Yu et al., 2013).

For LFP-recordings, critical neuronal avalanche distributions
are reported for various animals and brain regions, both in vitro
(Beggs and Plenz, 2003, 2004; Mazzoni et al., 2007; Pasquale et al.,
2008) and in vivo (Petermann et al., 2009; Hahn et al., 2010).
Neuronal avalanches can be formed by nested oscillations (slices
and anesthetized rat Gireesh and Plenz, 2008) and the variability
in the synchronization is maximal (Yang et al., 2012). The criti-
cal exponents of the avalanche size distributions (e.g., Beggs and
Plenz, 2003; Hahn et al., 2010; Klaus et al., 2011; Friedman et al.,
2012) fit theoretical predictions (e.g., Harris, 1963).

When spikes are evaluated, the picture is less consistent.
Power-law distributed avalanches were not observed in awake ani-
mals (Bédard et al., 2006; Dehghani et al., 2012; Priesemann et al.,
2014), which is consistent with theoretical models which predict
criticality in a resting state. Indeed there is some evidence that the
brain’s critical state deteriorates during wakefulness and recov-
ers during sleep (Meisel et al., 2013, compare also Priesemann
et al., 2013). In anesthetized animals or cultures, power-law dis-
tributions for the spiking activity can be observed (Hahn et al.,
2010; Ribeiro et al., 2010), but most recordings do not support
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FIGURE 4 | Avalanche analysis. Recordings are scanned for specific
events such as a negative deflection of the local field potential, which
results in a time series for every recording electrode. The event trains are
binned and a bin is declared as active (cross) if an event was registered at
least at one recording electrode. A suite of active bins is considered as
neuronal avalanche (bracket), whose size corresponds to the number of
events. For critical neuronal avalanches, the size distribution follows a
power-law with a critical exponent close to −1.5.

power-law fitting (Bédard et al., 2006; Hahn et al., 2010; Ribeiro
et al., 2010; Dehghani et al., 2012). Avalanche distributions as
observed for spiking activity can however be reproduced by sub-
sampling models implementing self-organized criticality with
increased external input and tuned to a slightly subcritical regime
(Priesemann et al., 2014). An alternative explanation for non-
critical avalanche distributions may be recordings that are biased
toward a specific subset of neurons, for example if cell types
with particularly clear spike shapes in the extracellular signal are
preferentially identified. Furthermore, it is questionable whether
we can expect hallmarks of criticality if just a few neurons are
recorded simultaneously, because criticality is intrinsically a net-
work effect. In many real-world systems, the scale-independence
breaks down if we get too close to the level of single dynamical
units.

Apart from properties of the critical state, implications of the
self-organization to criticality can be examined. For instance,
models of self-organized criticality reproduce developmental
phases of cell cultures. Starting from an unconnected state, the
temporal development of avalanche distributions in neuronal cul-
tures can be fitted by models of self-organized criticality (Tetzlaff
et al., 2010). Also slices from newborn rats of different ages show
a temporal development from subcritical to critical dynamics
(Gireesh and Plenz, 2008; Stewart and Plenz, 2008). Organotypic
cell cultures can develop to subcritical, critical or supercritical
states (Pasquale et al., 2008; Tetzlaff et al., 2010). Intriguingly, only
the critical cultures show scaling of the mean temporal profile of
avalanches, i.e., the data collapse when normalized appropriately
(Friedman et al., 2012). The scaling also predicts the relation-
ship between exponents, which is a strong indicator of criticality
(Friedman et al., 2012).

Recent results suggest that also in humans, brain dynam-
ics is close to criticality, yet slightly subcritical (Priesemann
et al., 2013, 2014), a possibility first raised by Pearlmutter and
Houghton (2009). Resting state dynamics from human brains

reveal events analogous to neuronal avalanches whose dynamics
fluctuate closely around criticality (EEG Allegrini et al., 2010,
fMRI Tagliazucchi et al., 2012, MEG Shriki et al., 2013, EEG
and MEG during rest and tasks Palva et al., 2013). The result-
ing critical exponents correlate with the critical exponents of the
long-range temporal correlations (Palva et al., 2013). Imaging
data suggests furthermore power-law noise because activity fluc-
tuations (e.g., EEG Novikov et al., 1997, ECoG Miller et al., 2009)
and correlation fluctuations (e.g., EEG and MEG Linkenkaer-
Hansen et al., 2001, fMRI and MEG Kitzbichler et al., 2009) follow
power-laws.

Correlations can also be used to construct functional connec-
tivity maps, whose power-law distributed properties might relate
to self-organized criticality (e.g., Eguiluz et al., 2005; Bassett et al.,
2006; Expert et al., 2010; Lee et al., 2010; Van De Ville et al., 2010).
For example, the duration distribution of functional connections
in EEG recordings follow power-laws, which are stable over sev-
eral states of consciousness (awake, loss of consciousness due to
anesthesia, and recovery) and frequency bands (Lee et al., 2010).

The criticality hypothesis predicts that sufficiently strong per-
turbations of the network dynamics should eliminate the power-
laws found in the previously cited studies. In the following,
we discuss studies showing that observed hallmarks of critical-
ity vanish in response to interventions that change the network
dynamics. Such deviations from criticality, and especially the sub-
sequent return of the network to a critical state, strongly support
criticality, since alternative explanations of power-laws based on
low level features, such as noise and filtering of neuronal tissue,
should be independent of the network dynamics.

Hallmarks of criticality are apparently destroyed during
epileptic seizures. Epileptic dynamics shows hallmarks of super-
critical states, and destroys power-laws observed in healthy brains
(Hobbs et al., 2010; Meisel et al., 2012). If the network adapts
to the supercritical state during the seizure, this may explain
reduced activity and a smaller critical exponent after the seizure
(Hsu et al., 2008). A self-organized criticality model suggests a
relation between epileptic activity and decreased neuronal con-
nectivity (Meisel et al., 2012). While it is thus tempting to equate
epileptic seizures with supercritical dynamics, care has to be taken
as seizures could very well be the result of another, overriding
mechanism that is not captured by current models of neural
self-organized criticality.

In contrast to epileptic seizures, pharmacologically induced
variations in activity do not always destroy power-law distributed
neuronal avalanches. In acute slices, the level of dopamine that
implies maximal activity coincides with critical avalanche size
distributions with a critical exponent of −1.5, while more or
less dopamine preserves the power-law distribution, but shows
steeper critical exponents (Stewart and Plenz, 2006). Steeper
exponents reduce the occurrence of large avalanches and spatial
correlations (Stewart and Plenz, 2006). Steeper critical exponents
are as well observed under reduced spontaneous activity due
to pharmacological interventions with a dopamine D1 receptor
antagonist (Gireesh and Plenz, 2008), but the same antagonist
can also suppress neuronal avalanches (Stewart and Plenz, 2006).
The application of acetylcholine, which increases the sponta-
neous activity, results in exponential avalanche distributions
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(Pasquale et al., 2008). Strong pharmacological interventions
can furthermore change the dynamical state of neural networks
via alterations of excitation or inhibition. As expected from the
idea that balanced excitation and inhibition are required for
critical brain dynamics, this eliminates the observed hallmarks of
criticality (Table 1).

The observation of variable exponents is interesting, as the
critical exponents of phase transitions are usually independent
of system features. This universality typically holds broadly even
across different systems. The exponent of −1.5 is a plausible result
as it is characteristic of the directed percolation universality class
into which many processes of activity propagation fall. Exponents
with a larger absolute value are more difficult to explain. While
a complex real world system can potentially exhibit such expo-
nents, it is also plausible that what is observed here is actually
the breakdown of the power-law as the system is pushed from the
critical state. If this occurs, the underlying distributions return to
exponential behavior and thus exhibit less large events. In a cer-
tain transition region around the critical state, they can therefore
easily be mistaken for steeper power-laws.

The premise of self-organized criticality is that the system is
able to tune itself back to the critical state after moderate per-
turbations. This reorganization to criticality after long-lasting
increases in inhibition has so far not been observed experimen-
tally (Tetzlaff et al., 2010). Over the duration of the experiment,
the network state does not adapt to decreased inhibition (Shew
et al., 2009). Even after the inhibition-decreasing drug is washed
out, neuronal slices take several hours to recover criticality (Shew
et al., 2009). This time-scale is consistent with reorganization on
a slow time-scale, for instance due to slow plasticity mechanisms
such as homeostatic plasticity.

In summary, evidence for self-organized criticality is provided
by critical neuronal avalanches in various animals, power-law
noise in brain imaging data, scale independence and finite-size
scaling. While power-laws can also be explained by alternative
hypothesis, deviations from criticality and subsequent reorga-
nization provide strong evidence for the criticality hypothesis.
Perhaps the most compelling evidence is not provided by any
individual study, but rather by the breadth of experimental results
which provide evidence for criticality in many different systems
using various approaches.

6. MODELS OF SELF-ORGANIZED CRITICALITY IN NEURAL
NETWORKS

Apart from direct experimental evidence, support of self-
organized neural criticality comes from a range of models which
show that self-organized criticality in the brain is plausible.

While simple model networks allow for analytical consid-
erations that show general features, the more complex models
convince with biological detail. Self-organized criticality can be
implemented robustly in networks ranging from simple, binary
units (e.g., Bienenstock and Lehmann, 1998; Bornholdt and
Rohlf, 2000; Bornholdt and Röhl, 2003) up to more biologi-
cally realistic integrate-and-fire neurons (e.g., De Arcangelis et al.,
2006; Levina et al., 2007, 2009; Meisel and Gross, 2009; Rubinov
et al., 2011), for which dynamical switching between subcritical
down-states and critical up-states can be observed (Millman et al.,
2010).

Several models reproduced experimental results on critical-
ity (e.g., De Arcangelis et al., 2006; Millman et al., 2010; Tetzlaff
et al., 2010; Meisel et al., 2012). Yet, if critical models are sug-
gested by parameter fitting based on experimental data, care has
to be taken because the estimation of model parameters shows an
intrinsic trend to apparently critical values because, around the
phase transition, the uncertainty of the estimate is minimized and
the amount of distinguishable models is greatest (Mastromatteo
and Marsili, 2011).

Most numerical studies simulate a network of identical model
neurons, where activity is regulated by the implemented adapta-
tion mechanism. The network dynamics is launched by an initial
stimulation of an arbitrary subset of neuron and analyzed after
a period that allows the network to self-organize. The adap-
tation changes microscopic parameters depending on a given
microscopic rule and depending on local measurements of the
dynamical state. Using plausible rules, it is then observed that one
order parameter of the system approaches the critical point.

If models use activity dependent rules, then the system can
self-organize to the critical point at the onset of activity, where
avalanche distributions follow power-laws. Inspired by the study
of branching processes, these mechanisms change the probability
with which activity is transmitted from one neuron to the next.
This can be realized either through a regulation of the synaptic
connection such as activity-dependent rewiring (Bornholdt and

Table 1 | Deviations from criticality due to unbalanced excitation and inhibition.

Alteration of Effect Network state Study

GABAA receptors Inhibition ↘ Supercritical Bimodal avalanche size distributions (cell cultures, Beggs and Plenz,
2003; Mazzoni et al., 2007; Gireesh and Plenz, 2008; Pasquale et al.,
2008; Shew et al., 2009, 2011; Yang et al., 2012, intact leech ganglia,
Mazzoni et al., 2007, and anesthetized rats, Osorio et al., 2010), with
enhanced synchronization (Pasquale et al., 2008; Yang et al., 2012), in
particular β-oscillations (Gireesh and Plenz, 2008; Yang et al., 2012), and
enhanced correlation (Mazzoni et al., 2007)

Number of inhibitory neurons Inhibition ↗ Subcritical Chen et al. (2010)

NMDA receptors (and AMPA in Shew
et al., 2009, 2011 and Yang et al.,
2012)

Excitation ↘ Subcritical Exponential avalanche size distributions (Mazzoni et al., 2007; Gireesh
and Plenz, 2008; Shew et al., 2009, 2011; Yang et al., 2012) with
decreased long-range correlations and large bursts (Mazzoni et al., 2007)
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Röhl, 2003; Tetzlaff et al., 2010), Hebbian (De Arcangelis et al.,
2006), short-term synaptic plasticity (Levina et al., 2007, 2009;
Millman et al., 2010), or, in a certain parameter range, spike-
timing dependent plasticity (STDP) (Rubinov et al., 2011); or
through a regulation of the neuronal excitability such as internal
homeostatic plasticity (Droste et al., 2013).

If the adaption rule is dependent on relative timing or
phase differences, the system can self-organize to the critical
point at the onset of synchronization. Using phase coherence as
order parameter, such models self-organize to criticality if the
connections are created and retracted as observed for synap-
tic rewiring during development, or if the strength of the
connections are changed as observed for STDP (Meisel and
Gross, 2009). STDP is thus a plausible mechanism that could
organize a system to both activity and synchronization phase
transitions.

Especially with mechanisms based on STDP, the models reach
biologically plausible network structures. They self-organize from
a highly connected state to a sparsely connected state, in which
only few strong synapses survive (Jost and Kolwankar, 2009;
Meisel and Gross, 2009). The resulting networks show power-
law distributed synaptic fluctuations (Shin and Kim, 2006) and
a scale-free network structure (Shin and Kim, 2006; Meisel and
Gross, 2009).

Most neuron models are rather simple, but the self-organized
criticality mechanisms also allow for the implementation of
certain more realistic properties. Models using intergrate-and-
fire neurons can implement delayed synaptic transmission
(e.g., Rubinov et al., 2011) and a refractory period, which
is thought to hinder back-propagation of neuronal avalanches
(e.g., De Arcangelis et al., 2006). In addition, integrate-and-fire
neurons can also have leaky membranes (Meisel and Gross, 2009;
Millman et al., 2010; Rubinov et al., 2011). Up to now, self-
organized criticality has not been reported for conductance-based
neuron models, probably because the network simulations are
constraint by the available computational power; limiting the
self-organization to criticality by restricting either network size
or simulation duration. Just one study reports that a network
of Hodgkin-Huxley model neurons self-organizes to a scale-free
network with STDP (Shin and Kim, 2006). The observation of
self-organized criticality across a wide range of neuron models
is intuitive as the critical state itself should be independent of
microscopic details.

Criticality and self-organized criticality can already be
observed in models with very simple dynamics as the toy model
proposed above. Nevertheless, many current models capture the
complex interplay between inhibitory and excitatory neurons
(De Arcangelis et al., 2006; Shin and Kim, 2006; Tetzlaff et al.,
2010). The resulting dynamics then depends only on the ratio of
inhibitory and excitatory connection strengths such that a regu-
lation of the excitatory connections is sufficient (Bienenstock and
Lehmann, 1998; Shin and Kim, 2006). The exact role played by
the balance of excitation and inhibition in the brain is poorly
understood. It can be shown mathematically that this interplay
in itself is not a prerequisite for criticality (Jost and Kolwankar,
2009). Nevertheless, the interplay between inhibition and excita-
tion could play an important role for the system’s computational
capabilities in the critical state.

A crucial ingredient for robust self-organized criticality is the
ability to sense the global state of the system based on local infor-
mation. For instance, concerning the activity transition, every
local neuron or synapse has a plasticity rule that increases or
decreases the unit’s activity. Self-organized criticality can only
be achieved if the increase is more frequently or more strongly
realized in the subcritical than in the supercritical state, and the
decrease in the supercritical state. Thus, on some level, the global
state has to be detectable on the local scale. Regarding activity,
this is much easier for the supercritical state than for the subcrit-
ical state. Even a single neuron or synapse that experiences a high
level of activity can conclude that the system is in the supercritical
state with high probability. Conversely, the absence of such activ-
ity, observed locally, does not necessitate a subcritical state on the
global level.

Because the subcritical state is difficult to recognize by a local
mechanism, it is likely that criticality in the brain is achieved by
a slow continuous increase of the control parameter, which is
then overcompensated by a decisive decrease once supercritical
dynamics is detected. Such an asymmetric regulation is imple-
mented in models inspired by short term synaptic depression,
where synaptic efficiency is abruptly decrease when a spike occurs,
and afterwards exponentially increased until the next spike occurs
(Levina et al., 2007, 2009; Millman et al., 2010), and in a model
inspired by calcium dependent development of axons and den-
drites with faster dynamics in the direction of subcritical states,
where the rate of the dendritic retraction was twice the rate of
the axonal outgrowth (Tetzlaff et al., 2010). The use of asym-
metric regulation was emphasized in a simpler model by Droste
et al. (2013). Since the dynamics on the subcritical side is slower,
the system spends more time on the subcritical side and thus,
in average, appears slightly subcritical, which is consistent with
experimental findings.

In general, we can expect that self-organized criticality in finite
systems drives the system slightly into the subcritical phase. For
the onset of synchronization, the local detection of synchrony
implies that some degree of synchrony exists in the system such
that the system must be in the supercritical state. By contrast,
the absence of synchrony observed locally does not imply that
the system is necessarily in the subcritical state as synchronous
dynamics may already exist elsewhere in the system. Again, we
expect that self-organization will drive the system to a slightly
subcritical state.

The finding that already highly simplified models reproduce
experimental results suggests fundamental properties of self-
organizing mechanisms for which implementation details do
not matter. The robustness of self-organization to criticality can
increase with system size, suggesting that self-organized criticality
is especially easily implemented in large neural networks (Levina
et al., 2007; Rubinov et al., 2011). While each of the models dis-
cussed here can be criticized in various ways, the observation of
robust self-organized criticality across a broad range of model-
ing assumptions and frameworks lends much credibility to the
criticality hypothesis.

7. DISCUSSION
If self-organized criticality is indeed fundamental for the func-
tioning of the brain, then we expect a link between self-organized
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criticality and other properties of the brain. In the following, we
speculate on the relation of self-organized criticality with sensory
input, learning and sleep.

Most studies of self-organized criticality have so far focused on
systems without input. However, to assess the impact of critical-
ity on the brain’s computational capabilities, inputs need to be
considered. Based on current results, it is likely that high levels of
input will cause hallmarks of criticality to disappear as internal
dynamics is replaced by externally triggered activity. Inputs are
considerably decreased in slice and cell cultures compared to in
vivo preparations, and the same probably holds for anesthetized
animals compared to awake animals (Beggs and Plenz, 2003;
Ribeiro et al., 2010; Touboul and Destexhe, 2010). It is there-
fore not surprising that most evidence for criticality comes from
these systems. Future experimental studies aiming to find hall-
marks of criticality should therefore likewise focus on low-input
situations.

In systems with strong input, the discussion of self-organized
criticality is conceptually more difficult as the definition of the
system now has to include a statistical model of inputs. While it
is still possible to define phases and phase transitions, the phase
transitions become harder to identify and critical states can easily
be mistaken for supercritical states. For instance, if we add inputs
to the toy model proposed above we always observe activity, even
in subcritical states.

In a situation where the brain is exposed to a significant level
of input, we would expect that self-tuning mechanisms fail as the
retuning mechanisms start to compensate for the input by regu-
lating activity down. The system thus departs from the state where
the internally generated dynamics is critical. Indeed, evidence for
critical brain dynamics decreases during prolongated periods of
wakefulness, and increases after a night of sleep (Meisel et al.,
2013). It is thus plausible that sleep is essential for retuning the
brain to the critical state where it can operate effectively.

Both experimental studies (e.g., Bassett et al., 2006; Bédard
et al., 2006; Hahn et al., 2010; Dehghani et al., 2012; Priesemann
et al., 2013, 2014) and models point to self-organization to a sub-
critical state close to criticality. Many authors have suggested that
this is a safety mechanism to prevent pathological supercritical
dynamics. From a theoretical point, another explanation appears
more plausible. Any finite real world system, subject to noise and
inputs, can only self-organize to critical states with given accu-
racy. Due to limitations in the sensing of the global state, systems
spend in average more time in the subcritical phase.

One property that is so far widely ignored in the literature is
the dimensionality of the underlying parameter space. In simple
systems that have only one control parameter the critical state is a
point. However, in general it is a manifold whose dimensionality
is less than the dimensionality of the parameter space. Technically,
the parameter space spanned by a complex network includes all
the individual link weights and is thus almost infinite. Even if we
only focus on the main macroscopic descriptors of networks we
can easily identify tens of parameters that can potentially affect
the dynamics and can be affected by the plasticity. If only ten such
parameters played a role in the real system the critical state would
still be a nine dimensional manifold and thus a huge parameter
space.

One implication of the high dimensionality of the critical
manifold is that the system can change and therefore learn while
remaining in the critical state. However, the connection between
learning and criticality goes apparently deeper than that. For
instance it has been claimed that self-organized criticality is essen-
tial for learning, for review see Hsu et al. (2008), but further
explorations of the detailed connection between learning and
criticality seem necessary.

Another implication of the high-dimensional parameter space
of complex networks is that the system can reside in multiple
phase transitions at the same time. Intriguingly, recent results
suggest that neural networks are organized to both the activity
and synchronization phase transition (e.g., Yang et al., 2012 for
organotypic slices, Meisel et al. (2013), or Linkenkaer-Hansen
et al. (2001); Kitzbichler et al. (2009) compared to Tagliazucchi
et al. (2012); Shriki et al. (2013) for brain imaging). Future mod-
eling work should address whether neural networks can support
multiple or simultaneous critical states.

A central question is whether the brain self-organizes to crit-
icality as a single system, or as a collection of many, potentially
overlapping, subsystems. While simulations consider predomi-
nantly homogeneous networks, anatomical features divide the
brain in clearly defined brain areas. Several authors stress the
possibility that different brain areas self-organize independently
(Bédard et al., 2006; Kitzbichler et al., 2009; Meisel and Gross,
2009; Priesemann et al., 2009; Meisel et al., 2012). If this is
confirmed the next logical questions are if all brain areas self-
organize to criticality, and if yes, do they all organize to the
same phase transition? Resolving these questions could greatly
strengthen the link between self-organized criticality and its
medical implications.

8. CONCLUSION
The neural criticality hypothesis is motivated by the relation-
ship between criticality and optimal computational properties.
The hypothesis is supported by experiments that observed hall-
marks of criticality for a wide range of animals from leech to
humans, over several states of consciousness, and on many dif-
ferent experimental scales from recordings of few neurons up to
the whole brain. However, the experimental evidence is still con-
troversial and more studies are needed to resolve major open
questions and rule out alternative explanations for the observed
phenomena. Based on the presently available work, we judge
self-organized as preferable over alternative explanations because
it provides an evolutionarily-motivated explanation for several
otherwise disconnected observation.

In addition to experiments, the criticality hypothesis is sup-
ported by models which demonstrate that the self-organization
to critical states in the brain is feasible and plausible. While these
models necessarily simplify the brain to various degrees, they
paint a consistent picture where essentially the same phenomenon
is observed independently of specific modeling assumptions.

The criticality hypothesis is intriguing because it opens new
perspectives in several areas. First, deviations from criticality
could be symptomatic of diseases of the central nervous sys-
tem (Meisel et al., 2012; Shew and Plenz, 2013). Understanding
self-organized criticality in the brain could thus lead to new
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diagnostic tools, and possibly treatments. Second, connections
are presently emerging which suggest that understanding criti-
cality in the brain could provide important insights into other
phenomena including sleep, learning, the root-causes of certain
diseases, and a deeper understanding of information processing.
Finally, several results which have been obtained in the context of
self-organized criticality in the brain suggest that criticality is a
prerequisite for efficient information processing in unstructured
systems. This could provide a general principle that is broadly rel-
evant beyond the field of neuroscience and could be valuable for
overcoming various challenges, from understanding swarm intel-
ligence (Ioannou et al., 2012) to constructing microprocessors
that process information using randomly-deposited nano-scale
components. We believe that these perspectives provide a strong
incentive for more experimental and theoretical work in the area
of self-organized criticality.
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