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INTRODUCTION

The exponential growth in publications represents a major challenge for researchers.
Many scientific domains, including neuroscience, are not yet fully engaged in exploiting
large bodies of publications. In this paper, we promote the idea to partially automate
the processing of scientific documents, specifically using text mining (TM), to efficiently
review big corpora of publications. The “cognitive advantage” given by TM is mainly
related to the automatic extraction of relevant trends from corpora of literature, otherwise
impossible to analyze in short periods of time. Specifically, the benefits of TM are
increased speed, quality and reproducibility of text processing, boosted by rapid updates
of the results. First, we selected a set of TM-tools that allow userfriendly approaches
of the scientific literature, and which could serve as a guide for researchers willing to
incorporate TM in their work. Second, we used these TM-tools to obtain basic insights
into the relevant literature on cognitive rehabilitation (CR) and cognitive enhancement
(CE) using transcranial magnetic stimulation (TMS). TM readily extracted the diversity of
TMS applications in CR and CE from vast corpora of publications, automatically retrieving
trends already described in published reviews. TMS emerged as one of the important
non-invasive tools that can both improve cognitive and motor functions in numerous
neurological diseases and induce modulations/enhancements of many fundamental brain
functions. TM also revealed trends in big corpora of publications by extracting occurrence
frequency and relationships of particular subtopics. Moreover, we showed that CR
and CE share research topics, both aiming to increase the brain's capacity to process
information, thus supporting their integration in a larger perspective. Methodologically,
despite limitations of a simple userfriendly approach, TM served well the reviewing
process.

Keywords: text mining, transcranial magnetic stimulation, cognitive, rehabilitation, enhancement

Our approach was also motivated by the fact that, neuroscience

Gathering accurate and reliable information from web reposi-
tories became increasingly complex because of the exponential
growth in the number of publications. For example, a PubMed
search retrieved 9407 papers including 1172 reviews for TMS
in “All Fields,” and the ratio became 8186/988 when the filter
“[Title/Abstract]” was applied. Reading without some selection
criteria becomes challenging. Even when selectively focusing on
specific topics in a review, this increases the chances to miss trends
shown only by huge bodies of literature. Thus, when processing
vast corpora of publications, we are facing challenges that require
automated solutions. One of the most promising approaches to
alleviate these problems is to assist the human operator with
computers running artificial intelligence applications. Here, we
selected one of these applications, text mining (TM), and showed
that TM will enable us to efficiently deal with huge amounts of
information from the TMS-related literature.

has to make efforts to integrate data mining and TM when deal-
ing with huge and diverse experimental datasets (Akil et al., 2011)
and text documents. TM is able to catch the complexity of all
relevant studies in an efficient manner. Statistical and natural lan-
guage processing (NLP) procedures to “mine” the literature have
been developed to address big data general problems (Dias et al.,
2011). Here, we used a practical approach to promote TM as a
tool for the reviewing process. Specifically, we selected a set of
TM-tools that allowed user-friendly approaches to reveal relevant
outcomes in large corpora of publications. Our intention was to
use TM-tools that are not too demanding on programming skills,
required knowledge and training period. Therefore, the exam-
ple set of TM-tools could serve as an attractive guide map for
researchers willing to incorporate TM in their work.

Next, we demonstrate the use of TM-tools in gaining basic
insights into the relevant literature on cognitive rehabilitation
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(CR) and cognitive enhancement (CE) using transcranial mag-
netic stimulation (TMS). TMS is a valuable non-invasive
perturbation method used to address fundamental and clini-
cal neuroscience questions, both in human and animal models.
Cognitive rehabilitation (CR-TMS) and cognitive enhancement
(CE-TMS) are two important TMS applications. Indeed, TMS
is establishing itself as major tool used in rehabilitation improv-
ing a wide variety of impaired mental functions (Miniussi and
Rossini, 2011; Kammer and Spitzer, 2012; Vicario and Nitsche,
2013). Moreover, recent studies reported TMS-induced enhance-
ments of normal brain functions (Brem et al., 2014; Luber and
Lisanby, 2014).

The TM application to CR- and CE-TMS literature was
focused on two main aspects. First, we aimed to show that TM
could reveal the diversity of TMS applications in CR and CE,
automatically retrieving trends already described in published
reviews. Second, we specifically aimed to find trends only notice-
able in big corpora of publications. The main feature of our
findings is given by the statistical power of such analyses. Detailed
analyses of the CR- and CE-TMS literature revealed relevant
terms in the form of lists, topics and classes of terms associated
with specific subtopics. It also showed relations between the rele-
vant terms in the form of co-occurrences maps, groups of relevant
terms with high probability co-occurrences and lists of relevant
relational verbs. Moreover, the TM approach revealed conclu-
sive sentences that appeared with a high probability. Finally, a
large-scale corpora perspective showed that CR-TMS and CE-
TMS share research topics allowing us to make inferences about
their similarities. Although they start from specific states of the
brain (impaired for CR and normal for CE), both aim to increase
the brain’s capacity to process information and to optimize adap-
tation. This unitary perspective is supported by fields that use
TMS in diagnostic (TMS-DIAG) or in clinical and fundamen-
tal research (TMS-RES), which show that TMS is effective for
changing and studying normal and abnormal brain processes.
Accordingly, CR-TMS and CE-TMS also share research topics
with these fields, showing their appurtenance to a larger con-
text, which integrates diagnostic, fundamental research and fMRI
studies.

TEXT MINING AS A METHOD TO PARTIALLY AUTOMATE THE
REVIEWING OF BIG CORPORA OF PUBLICATIONS

Scholarly journals and data sources are increasingly available
in electronic and Open Access form. Nonetheless, availability is
not enough to extract specific information, mainly due to the
abundance of information. TM comes with solutions for this
problem offering automated methods to extract condensed infor-
mation hidden within huge volumes of publications. TM can be
achieved using several complementary approaches (Cohen and
Hunter, 2008). Co-occurrence-based methods look for concepts
that occur in the same unit of text (sentence/abstract) and posit
a relationship between them. The statistical or machine learn-
ing systems rely on statistic properties of the text and work
by building classifiers that operate on any level, from labeling
part of speech to classifying full sentences or documents. The
rule-based systems use knowledge about how language is struc-
tured and about how domain relevant things, facts and their

relationships are stated in publications. The main areas/stages
of TM are (Lourenco et al.,, 2009): Information Analysis that
includes Information Retrieval and Information Extraction (e.g.,
Name Entity Recognition, Relationship Extraction, document
classification and summarization); Information Synthesis that
uses the databases generated by Information Extraction for
answering simple questions, discovering new information and
generating hypotheses.

A wide variety of publications and software tools approach TM
at different levels of complexity, hampering the selection of rel-
evant TM-tools. We chose a specific set of TM-tools, aiming to
evaluate how they can help the TM-non-specialist accelerate the
review of big corpora of literature, using the following criteria:

a. Allow a user-friendly approach by selecting TM-tools requir-
ing medium investments in training, programming and
specific knowledge.

b. Use free open-source software, selected based on features like:

easiness of installation; quality of the documentation and
support; accessible formats for input and output.

c. Use TM-tools with general functionalities like: allowance of
document corpora; pre-processing the text; built-in biomed-
ical Name Entity Recognition; queries to a document or
corpora; support for ontologies and terminologies.

We used three groups of TM-tools that served different purposes:

I Basic resources that gave foundation to TM: the MeSH
browser; the PubMed repository of publications; reposi-
tories of NLP resources (e.g., Neuroscience Information
Framework, National Institute of Neurological Disorders and
Stroke).

II TM-tools II (Table 1) that are web-based ready-to-use tools
requiring no programming efforts and performing simple
TM tasks (Lu, 2011).

III TM-tools III that were used in the final stage of the study
optimized for the reviewed topics:

1. Statistical or machine-learning-based approaches: Mallet
(McCallum, 2002), Text to Matrix Generator (TMG)
(Zeimpekis and Gallopoulos, 2006) and Matlab applica-
tions for NLP.

2. TM-tools with predefined NLP processing stream: KH
Coder (Higuchi, 2012).

3. Integrated environments for visual programming of NLP:
VisualText (Meyers, 2003; Alfred et al., 2014).

4. Biomedical TM rule-based approaches using fully auto-
mated stages in text processing: Anote2 (Lourenco et al.,
2009) and Biological Research Assistant for TM (BioRAT)
(Corney et al., 2004).

A PRACTICAL APPLICATION OF THE TEXT MINING TO
LITERATURE ON COGNITIVE REHABILITATION AND
ENHANCEMENT THROUGH NEUROSTIMULATION

To show that TM enables us to efficiently deal with big cor-
pora of publications and for publishing practical reasons, the
TM application to CR- and CE-TMS literature was limited
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Table 1 | TM-tools Il presented in the order (indicated by numbers) of their use.

TM tool INPUT Targeted processing Topics
[
-2 ¢ ¢|S|E |8 oZ
SR EHHAE 35
A IE Y <2
O|0|la |k |([O|F|® QF
Mesh 1 1 1 Terms (T)
PubMed 1 1 Search optimization; Corpus (C)
MEDSUM 1 1 1 Statistic
PubReMiner 1 1 Statistic
LingerCat 1 1 T cloud; papers - T relationships
Carrot 1 1 Clustering papers; Plot clusters
Anne O'Tate 1 1 1 1 Clustering papers; statistic; Topics
BioTextQuest 1 1 1 1 Clustering papers; Biomedical T
askMEDLINE 1 1 1 1 1 | Bottom Line summary of abstracts
Ultimate Res. Assistant 1 1 1 | 1 | Text summarization; Taxonomies;
Mind maps
Quertle 2|2 2 2 | Ranking papers; Subject verb -
object relationships
GoPubMed 2 2122 2 | Clustering papers; Statistic
PubMatrix T 8 Matrix of terms co -occurrence
Medline Ranker 3 C|3 3 | 3 [ 3 | Ranking papers; Evaluate ranking
performance
XplorMed © 3 | 8 | 3 | Clustering papers; T relationships
Textpresso Neuroscience . Information Extraction;
Transition to TM-tools |l|

Gray scale qualitatively codes their weights in TM (the darker, the higher the importance). Each subgroup (1-4) includes kernels of TM-tools (circled red) and
“targeted processing” (red text) that have the highest importance for our study. INPUT: query terms (T) = query using combinations of terms; query sentences
(S) — query using free text or questions; predefined = fixed userpredefined input consisting of lists of terms or publications; filters = tuning the search using
supplementary terms, constrains regarding the type/part of the publication to be processed etc. OUTPUT: Statistic about authors, journals, papers per year, topics;
corpus (C) = retrieving sets of relevant papers, terms (T) = extracting lists of frequent and relevant terms and their relationships; sentences (S) = extracting relevant
sentences and paper summaries. Targeted processing = processing from the TM-tool repertoire used for this review. The last 7 columns show topics whose
corpora of publications were studied with TM (gray scale codes the weight of the approach). References: MEDSUM (Bridges-\Webb, 1986), PubReMiner (Koster,
2008), LingerCat (Sarkar et al., 2009), Carrot2 (Carpineto et al., 2009), Anne O’Tate (Smalheiser et al., 2008), BioTextQuest (lliopoulos et al., 2001), askMEDLINE
(Fontelo et al., 2005), Ultimate Research Assistant (Hoskinson, 2005), Quertle (Giglia, 2011), GoPubMed (Doms and Schroeder, 2005), PubMatrix (Becker et al.,

2003), Medline Ranker (Fontaine et al., 2009), XplorMed (Perez-Iratxeta et al., 2001), Textpresso for Neuroscience (Muller et al., 2008).

to few aspects. First, we aimed to show that TM could
retrieve the diversity of TMS applications in vast corpora of
publications about CR and CE (see Cognitive Rehabilitation and
Enhancement Accomplished with TMS), automatically retrieving
trends already described in published reviews (see Discussions
and Conclusions). Second, we looked for trends noticeable only in
big corpora of publications, relying on the statistical power of the
analyses and including results like topics’ occurrence frequency
and relationships, relevant relational verbs, and high proba-
bility conclusive sentences (see Cognitive Rehabilitation and
Enhancement Accomplished with TMS). Furthermore, we ana-
lyzed large context relationships between topics showing how CR-
and CE-TMS integrate with diagnostic, fundamental research and
fMRI studies (see A General Context).

Using TM to efficiently review corpora of publications requires
roughly three stages: pre-TM-processing, TM-processing,
and post-TM-processing. In this paper, we focused on the

TM-processing by showing mainly the “raw” TM results.
Accordingly, the seemingly redundant diversity of results is
determined by our intention to illustrate few similar results given
by different TM-tools.

We used a multi-stage and multi-tool approach ordered by
the complexity in TM, which was gradually increased, starting
with TM-tools II and continuing with TM-tools III. The same
analysis was performed with few TM-tools (Table 2), which can
be regarded as alternative solutions for the same problem. This
helped us to cope with the limited perspective offered by different
TM-tools, to perform comparisons and cross-validations, and to
build synthetic results.

The main classes of TM processing on the selected corpora
were:

— Statistics about the number of publications, authors, jour-
nals; thematic/MeSH headings division of the field; clustering
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Table 2 | Number of publications retrieved from PubMed using search
queries defined previously.

Search query Publications per search filter:
TIAB PBRK TIABREV

CR-TMS 4074 0.913 641
CE-TMS 181 0.956 a1
TMS 8386 0.909 1018
CR 4220 0.896 914
CE 1235 0.895 312
TMS-DIAG 212 0.994 68
TMS-RES 360 0.994 93
TMS-fMRI 875 0.906 211

PBRK, the probability of correct ranking of a random positive-negative pair of
publications determined with Medline Ranker.

of publications; selection and ranking of relevant corpora of
papers necessary for TM-tools III (all performed with TM-
tools II).

— Extract relevant terms and their relationships, involving: cat-
egorization of key concepts; building correlation matrices for
relevant terms and showing the most informative correlations;
showing the topological maps of the main terms, using their
relationships inferred from co-occurrence in the same text
units.

— Retrieve automatically relevant sentences, study their prob-
ability of occurrence, and identify parts-of-sentence (e.g.,
predicates) relevant for deriving conclusions.

— Build a “map of science,” which characterize large-scale rela-
tionships between multiple topics. Each topic-topic rela-
tionship was evaluated based on common relevant terms
retrieved from each corpus, similar thematic clustering of
the publications, common authors, journals and publications
approaching both topics.

To create a larger context allowing a better understanding of CR-
and CE-TMS, we selected topics like TMS, CR, CE, TMS-RES,
TMS-DIAG, and TMS-fMRI. Figurel presents a “qualitative
hypothesis” about the topology of this context and we used TM to
test it. Corpora of publications for each topic were retrieved using
the following PubMed queries:

— For CR-TMS: (“transcranial magnetic stimulation”) AND
(“cognitive rehabilitation” OR “rehabilitation” OR “cognitive
therapy” OR “therapy” OR “cognitive recovery” OR “recov-
ery” OR “cognitive treatment” OR “treatment” OR “cogni-
tive repair” OR “neurorehabilitation” OR “improvement” OR
“decrease”).

— For CE-TMS: (“transcranial magnetic stimulation”) AND
[(“cognitive enhancement”) OR (“cognitive augmentation”)
OR (“cognitive improvement”) OR (“cognitive enrichment”)
OR (“cognitive amelioration”) OR (“neuroenhancement”)].

— For TMS: “transcranial magnetic stimulation.”

— Queries for CR/CE include the second operand of the AND
operator in the CR-TMS/CE-TMS queries.

TMS-DIAG & TMS-RES
Cognitive

enhancement

Cognitive
rehabilitatio:

FIGURE 1 | Qualitative approximation of a larger context for CR- and
CE-TMS. Topics are represented by ellipses with CR-TMS (filled blue) and
CE-TMS (red) representing intersections of topics.

All queries were used separately with two filters (“[Title/
Abstract]” (TIAB-filter) and “[Title/Abstract] AND Review”
TIABREV-filter) creating two separate corpora of abstracts:
TIAB-corpora (the main target for TM) and TIABREV-corpora
(used for comparisons). Empty or less relevant abstracts were
removed from the corpora. Corpora were also compared with
local databases and missing publications were added manually.

Finally, the TM results were evaluated in few ways. First of
all, we used TM-tools that are already tested and evaluated,
building our results on this general basis. Second, we used the
post-hoc judgment of the system outputs (Cohen and Hunter,
2008) in few stages, and compared: results of similar processing
(e.g., term extraction) performed with different TM-tools using
TIAB-corpora (see A Practical Application of the Text Mining
to Literature on Cognitive Rehabilitation and Enhancement
Through Neurostimulation); results of similar processing using
TIAB-corpora vs. TIABREV-corpora (see A Practical Application
of the Text Mining to Literature on Cognitive Rehabilitation
and Enhancement Through Neurostimulation); TM-results vs.
manual-curated results (see Discussions and Conclusions).

A GENERAL CONTEXT

We used TM-tools II to determine relationships that put CR- and
CE-TMS topics in the same neighborhood on a “map of science.”
An outline of the main results includes:

1. MeSH headings mention TMS as a preferred term, defined
by its use in brain mapping, neurophysiology and treatment
of depression (replacing electroconvulsive therapy), while
paired-pulse TMS, rTMS and single-pulse TMS are narrower
concepts. The MeSH tree considers that TMS belongs to the
fields of neurological diagnostic and therapeutic techniques.
CR is related with MeSH headings like Cognitive Therapy,
Rehabilitation and Treatment/Rehabilitation Outcome, and
CE is related with Cognitive Therapy, Nootropic Agents and
Cognitive Enhancers.
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2. The number of the publications retrieved from PubMed
(Table 2) for each topic.

It is noteworthy that a large number of reviews were written for
each topic.

3. The number of publications per year evaluating the inter-
est for each topic (Figure2), which showed the following
trends:

The interest for all topics increased in the last decades;
TMS generated numerous publications per year;

CR-TMS has a stronger representation than CE-TMS;
Across-topics perspectives (CR & CE; CR & CE-TMS; TMS-
DIAG & RES) are less represented.

800 | —Y ™S
CR-TMS

g 6004 4 CE-TMS (x10)

8 400 ’—o—CR&CE-TMS (x10)
g i

(=9

200 -

0 § all
1990 1995 2000 2005

T
2010 2014*

—+— CR&CE (x10)

papers/year

1990 1995 2000 2005 2010 2014%
c —+— TMS-MRI
80 TMS-RES
§ 60 | —#+— TMS-DIAG
g —— TMS-DIAG&RES (x10)
o

\ T
2010 2014*

! \
1990 1995 2000 2005
year

FIGURE 2 | Number of publication per year (2014*, only the first 3
months) for different topics: TMS, CR-TMS, and CE-TMS (A); CE and
CR (B); applications of TMS in research (TMS-RES), diagnostic
(TMS-DIAG) and concurrent TMS-fMRI (C). Results for topics
represented by small numbers of publications are multiplied by 10 (x 10).
We show also results for conjunctions of topics: (CR&CE-TMS) (A);
(CR&CE) (B); (TMS-DIAG&RES) (C).

— Fundamental research (e.g., TMS-RES, TMS-DIAG) is less
represented than practical applications (e.g., CR-TMS).

. Co-occurrence matrix for terms used to build the search

queries, retrieved with PubMatrix (Figures 3A,B). We made
the following observations:

— TMS co-occurred very frequently (publications ~10%) with
terms like therapy, treatment, brain function, brain physiol-
ogy, and diagnostic (mainly CR-TMS);

— TMS co-occurred frequently (publications ~10?) with
rehabilitation, recovery, cognitive treatment, improvement,
decrease, brain anatomy, brain performance, brain net-
works, psychology, brain mapping, MRI, mental disorder,
mental disease and psychiatric disorder (mainly CR-TMS
and CE-TMS);

. Frequent terms co-occurring in different corpora (included

between brackets):

a. Among the first 10 MeSH headings, we mention:
— [CR-TMS]: Motor Cortex/physiology, TMS/methods,
Evoked Potentials, Treatment Outcome, Evoked
Potentials, Electromyography, Functional Laterality,
Stroke, Brain, Motor, (Major) Depressive Disorder;

— [CE-TMS]: TMS/methods, Brain Mapping, Brain,
Functional  Laterality, = Cognition,  Psychomotor
Performance, Reaction Time/physiology, Motor Cortex/
physiology, Cognition Disorders, Prefrontal Cortex/

physiology.

b. Among the first 100 common MeSH headings (average fre-

quency range [51, 2010]) for groups of topics (included

between brackets), we mention:

— [CR-TMS; CE-TMS; TMS; TMS-fMRI]: Brain,
Cognition, Brain  Mapping, Electromyography,
Evoked Potentials, Motor Skills, MRI, Motor Cortex/
physiology, Neural Inhibition, Neuronal Plasticity,
Neuropsychological Tests, Parietal Lobe, Prefrontal
Cortex, Psychomotor Performance, Reaction Time,
TMS/methods, Treatment Outcome;

— [CR-TMS; CR]: Brain, Chronic Disease, Cognition,
(Major) Depressive Disorder, MRI, Motor Cortex,
Neuropsychological Tests, Psychomotor Performance,
Recovery Of Function, Schizophrenia, Severity Of
Illness Index, Treatment Outcome, Neuronal Plasticity/
physiology, Recovery of Function/physiology, Stroke;

— [CE-TMS; CE]: Attention, Brain, Cognition, Learning,
MRI, Memory, Neurons, Neuropsychological Tests,
Psychomotor Performance, Reaction Time, Prefrontal
Cortex, Treatment Outcome, Cognition Disorders/
diagnosis and etiology.

c. Other trends noticed using the TM-tools II:

— Different groups of topics (e.g., [CR-TMS; CE-TMS];
[TMS; TMS-fMRI; TMS-RES; TMS-DIAG]) are con-
nected as shown by common headings/terms;

— CR-TMS related terms: motor cortex, treatment,
excitability, facilitation, antidepressant, plasticity, MEP,
stroke, Parkinson, severity of illness index, treatment
outcome, (major) depressive disorder, schizophrenia,
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FIGURE 3 | Co-occurrence matrix built with PubMatrix. The matrix
(B) represents the decimal logarithm of the number of publications
retrieved from PubMed using queries combining all possible
conjunctions of pairs of terms (e.g., TMS and neurorehabilitation),
which label the lines and the rows of the matrix. Panel (A)
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represents the first line in the matrix, showing co-occurrences
involving the term TMS. Different colors (see the left colorcoding bar)
represent different powers of 10. The color of the text marks terms
associated dominantly with: TMS (black); CR-TMS (red); CE-TMS
(green); TMS-RES (blue); TMS-DIAG (purple).

stroke/complications, neuronal plasticity, rehabilitation,
cognition, recovery, parietal lobe, prefrontal cortex,
psychomotor performance;

CE-TMS related terms: prefrontal cortex, DLPFC, cog-
nition, psychomotor performance, attention, learning,
memory, performance, placebo, cognition disorders,
severity of illness index, treatment outcome, neu-
roenhancement, Hebbian, neurofeedback, enhancement,
improvement;

[CR-TMS; CE-TMS] and [CR; CE] groups of topics
have “mental diseases” and “treatments” as common
subtopics, thus supporting the hypothesis that the rel-
ative improvement of the mental performance is a
common aspect of their definitions.

6. The first 5 authors for different topics (all including
Pascual-Leone A on the first place):

— [CR-TMS]: Fregni F, Daskalakis Z], Fitzgerald PB,

Rothwell JC;

— [CE-TMS]: Walsh V, Fregni E, Cowey A, Miniussi C;

— [TMS]: Rothwell JC, Hallett M, Cohen LG,
Fitzgerald PB;

Some authors covered several of the selected topics (e.g., common
authors for [CR-TMS; CE-TMS; TMS; TMS-fMRI]: Pascual-
Leone A, Cohen LG, Fregni F, Lisanby SH, Miniussi C, Rothwell
JC), and this is an indirect argument for potential connections
between topics.

7. Finally, comparisons between corpora for different topics
showed relevant numbers of common publications (Figure 4),
thus emphasizing a unitary context. Consistently, clustering
the publications for each topic using Carrot2 showed also
different clusters sharing publications.
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FIGURE 4 | Number of common publications (in decimal logarithmic
scale) for pairs of corpora representing topics labeling the rows and
the columns of the matrix. Different shades of gray (see the colorcoding
bar) represent different powers of 10.

COGNITIVE REHABILITATION AND ENHANCEMENT ACCOMPLISHED
WITH TMS
First, we need to reiterate that the relevance of all the retrieved
terms is based on the idea that words co-occurring frequently
in the abstracts are related in ways intrinsically constrained by
the topic of the abstracts. Moreover, our specific selection of
publications guarantees that term like TMS (all protocols) are
present in all abstracts included in corpora. Thus, TMS is strongly
related with all frequent terms retrieved with different TM-tools.
Specifically, if, for example, the frequent terms are treatment and
depression, this means that TMS is used frequently in depression
treatment.

We used TM-tools III to increase our insights in CR-TMS and
CE-TMS literature, and selected the following groups of results:

1. Statistical or machine-learning-based NLP:

a. Topic modeling with Mallet (500 iterations, 7 topics, top-
ics proportion threshold 0.05, and removed the standard
Mallet stop-words). Each topic is a set of terms used with
high probability by the authors, thus reflecting a specific
thinking pattern involving TMS. Without knowing any-
thing about the meaning of the words in a text, topic
modeling assumes that any piece of text is written by select-
ing words from possible topics. Thus, it becomes possible to
mathematically decompose a text into probable topics from
which the words originated.

Example topics separated in CR/CE related terms (brackets) and
TMS related terms (double brackets):

al. CR-TMS:

— [treatment, depression, clinical, therapy, disorder, major,
antidepressant, electroconvulsive therapy], [transcranial,
magnetic, stimulation, effective];

— [motor, stroke, patients, recovery, function, hemisphere,
affected, rehabilitation, limb], [magnetic, transcranial,
stimulation].

The [CR] kernel of 2 topics includes CE-related terms (e.g.,
[cortex, learn, activity, visual, memory, performance, area]).

a2. CE-TMS:

— [cortex, DLPFC, prefrontal, dorsolateral, memory, pro-
cessing], [stimulation, applied, TMS, effect, frequency],
significant;

— [cognitive, brain, healthy, functions, enhance, neuroen-
hancement, parietal, cognition], [stimulation, magnetic,
TMS], studies.

The [CE] kernel of 3 topics includes CR-related terms (e.g.,
[improvement, depression, treatment, deprivation, sleep, occip-
ital, functional, disease, fluoxetine]).

b. Term-related queries with TMG toolbox. Document retrieval
relies often on matching terms from documents with those
from queries. However, natural languages present some
challenges (e.g., polysemy, synonymy) that render term-
matching inaccurate. TMG is using latent semantic analysis
to overcome these problems (Landauer et al., 1998), based
on the application of singular value decomposition of a
term-by-document matrix (TDM).

We performed the indexing for each corpus creating new TDMs
using “common-words” stop-list, logarithmic local weights,
“GfIdf” global term weighs, normalization of terms, removing of
alpha-numerics and numbers. For dimensionality reduction and
TDM best rank approximation, we selected the dimensionality via
the use of profile likelihood (Zhu and Ghodsi, 2006). Example
results:

bl. For CR-TMS, the TDM included 607 documents, 6387
terms with average 111 indexing terms/document for the
query matrix, and the best rank approximation 360.
Among the best retrieved terms (apparition frequency >
86; range [870, 896] terms), we mention: [stimulation,
rTMS, treatment, TMS, brain, motor, depression, patients,
stroke, cortical, therapy, clinical, effects, disorders, pain,
cortex] in the first 20; [recovery, disorder, schizophre-
nia, tinnitus, excitability, cognitive, plasticity, antidepressant,
rehabilitation, mechanisms, psychiatric, symptoms, apha-
sia, language, noninvasive, sham, EEG, Parkinson, resis-
tant, human, induced, movement, neglect] in the next 80;
[cerebral, epilepsy, deep, migraine, neural, bipolar, visual,
OCD, seizures, acute, neurological, diagnosis, auditory, neu-
roimaging, reorganization, prefrontal, inhibition, improve-
ment, mood, neuropsychiatric, neuromodulation] in the next
50 terms.
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b2. For CE-TMS, the TDM included 174 documents, 3235
terms with average 117 indexing terms/document for the
query matrix, and the best rank approximation 174.
Among the best retrieved terms (apparition frequency >
37; range [776, 1010] terms), we mention: [TMS, rTMS,
motor, cortex, brain, visual, memory, cognitive, performance,
parietal, healthy, patients, learning, improvement, enhance-
ment] in the first 20; [excitability, neural, DLPFC, facil-
itation, plasticity, attention, control, prefrontal, network,
evoked, neuroscience, perception, EEG, mechanisms, mod-
ulation, semantic, training, frontal, FEF, treatment, fluoxe-
tine, neuroenhancement, sleep, emotional, skill, inhibition,
Parkinson] in the next 80; [fMRI, MEP, Wernicke, search, dis-
crimination, pain, cognition, increased, encoding, oscillatory,
language, psychiatric, decrease, experimental, stroke, illness,
major, effective, resistant, improve] in the next 50 terms.

2. Processing performed with KH Coder:

a. Determine the co-occurrence network for CR-TMS and
CE-TMS corpora using 7 sets of coding rules. A coding rule
is a list of terms connected with OR (|), AND (&) or NOT
used to “focus” the TM of the corpora toward specific top-
ics. We used coding rules (marked by brackets) that were
common for CR-TMS and CE-TMS: [TMS] (transcranial
& magnetic & stimulation | rTMS | TBS etc.); [mental dis-
abilities] (depression | stroke | schizophrenia etc.); [brain
functions] (memory | learning | attention etc.); [research
methods] (fMRI | EEG etc.); [verbs-] describing negative

that the terms from the coding rules [TMS], [CR-TMS-
effects], [mental disabilities] and [Verbs+] have the high-
est co-occurrence frequency in the CR-TMS corpus. The
CE-TMS corpus is characterized by high co-occurrence
frequency of the terms from the coding rules [TMS],
[CE-TMS-effects] and [Verbs—+].

b. Determine the keyword-in-context (KWIC) collection for
terms in both CR-TMS (Table 3) and CE-TMS (Table 4).
The KWIC statistic revealed information about both the
relevant terms co-occurring with specific query terms
(e.g., TMS) and statistical regularities (e.g., probable
word positions) about the way the scientists build their
statements.

3. Summary of results obtained with VisualText, ANote2,

BioRAT and our Matlab applications (MAPP). All TM-
tools used similar resources, including: dictionaries (mental
disabilities, brain anatomy, cognitive processes, built using
Neuroscience Information Framework (NIF) resources; CR-
TMS-effects, CE-TMS-effects and TMS, built using our term
statistic, similar with KH Coder coding rules); ontologies
(NIF gross-anatomy and NIF dysfunction; human disease
and neuro-behavior ontology from The Open Biological and
Biomedical Ontologies Foundry); lexical words (Mallet stop-
words; verbs+ and verbs- for CR-TMS and CE-TMS, similar
with KH Coder rules). Each dictionary/ontology could be con-
sidered a class of terms (indicated by brackets; e.g., [mental
disabilities]).

effects of the stimulation (fail | worsen | damage | debilitate  The text processing relied on predefined streams of processing or
| miss etc.). To these we added a set of rules specific to CR-  on existing libraries of examples (e.g., TAIParse general text ana-
TMS/CE-TMS: [verbs+] describing positive effects for CR-  lyzer for VisualText). Our Matlab applications (MAPP) were used
TMS (rehabilitate | treat | recover | restore etc.) or CE-TMS  to handle the results, to perform relation extraction and to extract
(enhance | improve | augment | strengthen etc.); [CR-TMS-  sentences with high probability of occurrence (low perplexity
effects] (rehabilitation | cognitive & rehabilitation | cogni-  coefficients, PP).

tive & therapy | neurorehabilitation etc.); [CE-TMS-effects] We summarized here few results from the following pro-
(performance | enhancement | neuroenhancement | neu- cessing: Evaluate term frequency and co-occurrences and per-
romodulation etc.). The co-occurrence networks revealed form Name Entity Recognition using lexical resources (ANote2,

Table 3 | KWIC examples for CR-TMS.

Word Total LT RT L5 L4 L3 L2 L1 KW R1 R2 R3 R4 R5
Treatment 160 63 97 25 1 il 16 0 T™S 5 17 53 12 10
Depression 113 37 76 8 M 18 0 0 TMS 0 22 13 14 27
Alzheimer 100 55 45 20 13 19 3 0 T™MS 2 12 10 5 16
Therapy 98 58 40 25 4 3 26 0 T™MS 5 3 6 22 4
fMRI 79 57 22 14 6 19 18 0 T™MS 0 3 8 0 1
Stroke 50 35 15 9 5 M 10 0 T™MS 0 4 3 4 4
Disorder 38 27 n 9 3 2 13 0 T™MS 0 0 6 4 1
Recovery 34 28 6 15 6 4 3 0 TMS 0 2 0 0 4
Schizophrenia 15 12 3 5 1 2 4 0 TMS 0 1 0 0 2
Parkinson 14 6 8 2 4 0 0 0 T™MS 0 5 1 1 1
Improvement 13 5 8 3 0 1 1 0 TMS 0 0 2 1 5
Neurorehabilitation 20 14 6 7 0 1 6 0 TMS 0 2 1 1 2

Columns show the number of co-occurrences of the context word (left) at different positions left/right (L5-L1/R1-R5) in the sentence relative to the query keyword
(KW) and their total (LT/RT).
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Table 4 | KWIC examples for CE-TMS.

Word Total LT RT L5 L4 L3 L2 L1 KwW R1 R2 R3 R4 R5
Induce 29 6 23 2 1 3 0 0 T™MS 3 15 1 2 2
Performance 24 12 12 5 4 3 0 0 TMS 0 1 7 2 2
EEG 18 5 13 2 0 1 2 0 TMS 0 1 1 1 0
Paired-pulse 17 16 1 0 1 2 0 13 TMS 0 0 0 0 1
Cognitive 16 4 12 2 0 2 0 0 T™MS 1 2 6 2 1
Memory 13 9 4 2 3 3 1 0 T™MS 0 1 1 2 0
Stimulation 13 5 8 1 2 0 2 0 T™MS 2 0 3 2 1
fMRI 9 7 2 1 1 3 2 0 T™MS 0 2 0 0 0
Enhance 8 3 5 1 1 1 0 0 TMS 1 2 0 2 0
Facilitate 7 1 6 1 0 0 0 0 T™MS 1 1 0 3 1
Improve 6 1 5 0 0 1 0 0 T™MS 1 3 0 0 1
Perception 5 3 2 0 2 1 0 0 TMS 0 0 0 0 2

MAPP); Relations Extraction (ANote2, MAPP); Extract relevant
sentences (VisualText, BioRAT, MAPP). The selected results are:

a. Terms statistic from Name Entity Recognition applied to
CR-TMS (ANote2; 27506 annotations):

— Top terms (number of occurrences): treatment (1177),
rTMS (1000), brain (982), TMS (1410), therapy (503),
depression (456), stroke (420);

— Classes of terms (class per document, number of occur-
rences for all terms of the class): [neuro-behavior ontol-
ogy] (22.8, 14903), [CR-TMS-effects] (4.8, 3163), [TMS]
(4.3, 2811), [mental disabilities] (3.2, 2073), [cognitive
processes] (1.6, 1028), [CE-TMS-effects] (0.2, 137);

— Examples from the detailed class statistic (ANote2, MAPP;
parentheses indicate number of occurrences):

o [TMS]: rTMS (1301), TMS (1466), TBS (32);

o [CR-TMS-effects]: treatment (1177), decrease (27), inhi-
bition (96), antidepressant (175), antipsychotic (23),
neurorehabilitation (45), recovery (286), rehabilitation
(171), therapy (503);

o [mental disabilities]: ADHD (25), Alzheimer’s (14), OCD
(92), Parkinson (104), Tourette (9), anxiety (49), audi-
tory hallucinations (24), bipolar depression (27), bipo-
lar disorder (25), depression (462), epilepsy (77), major
depressive disorder (111), neglect (68), psychiatric disor-
ders (80), schizophrenia (158), seizures (69), stress (25),
stroke (422), tinnitus (153);

b. Terms statistic from Name Entity Recognition applied to
CE-TMS (ANote2; 7404 annotations):

— Top terms (number of occurrences): TMS (727), rTMS
(360), brain (207), cognitive (131), performance (130),
facilitation (67);

— Classes of terms (class per document, number of occur-
rences for all terms of the class): [neuro-behavior ontology]
(22.97, 4111), [TMS] (6.23, 1116), [CE-TMS-effects] (3.70,
663), [cognitive processes] (3.49, 624), [mental disabilities]
(0.35, 63), [ CR-TMS-effects] (0.32, 57);

— Examples from the detailed class statistic (ANote2, MAPP):

C.

e.

o [TMS]: TMS (739), rTMS (365);

o [CE-TMS-effects]: activation (28), cognitive (131), cog-
nitive enhancement (19), enhancement (34), facilitation
(67), improvement (29), neuroenhancement (27), per-
formance (130), performance enhancement (8), rehabili-
tation (27), therapy (37);

o [cognitive processes]: attention (53), cognition (25),
learning (70), memory (85), working memory (46), per-
ception (37), visual search (19), skill acquisition (12),
consolidation (9), decision (14), emotion (8), encoding
(23), language (21), movement (17), recognition (13),
semantic processing (2), speech (7);

Relationship Extraction for CR-TMS (ANote2; 27506 annota-
tions). From 6754 relations, 2163 were verb associated rela-
tions, and we found among the top 30 the following verbs:
induced, related, controlled, based, treating, underlying, com-
pared, modulate, affected, applied, provide, discuss, to study,
has been used, combined, to treat, improving. The statistics
showed positive (89.1%), negative (1.7%), conditional (9.2%)
for the polarity of the relations, and one-one (11.8%), one-
many (16.7%), many-one (13.4%), many-many (12.1%) for
their cardinality.

Examples of terms from classes [TMS] (omitted, next) & [CR-
TMS-effects] & [mental disabilities] co-occurring in the same
sentence (MAPP; 1290 sentences; | = OR):

— [treat] & [depression (24%)| disorder (12%)| tinnitus

(4.3%)| schizophrenia (3%)| stress (1%)| pain (1%)]| stroke

(1%)| epilepsy (1%)| anxiety (1%)| seizures (0.2%)| neglect

(0.1%)];

— [therapy] & [depression (5%)| stroke (3%)| pain (1%)|
epilepsy (0.4%)| seizures (0.5%)| schizophrenia (0.2%)|
mood (0.2%)];

— [improve] & [stroke (3%)| depression (0.6%)| tinnitus
(0.3%)| reading (0.1%)| attention (0.1%)| schizophrenia
(0.1%)1;

Relationship Extraction for CE-TMS (ANote2; 7404 annota-
tions). From 2025 relations, 903 were verbs associated rela-
tions, and we found among the top 30 the following verbs:
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is, induced, applied, guided, learning, improved, increasing,
enhancing, was applied, paired, stimulated, delivered, reduced,
impaired, performed, encoding. The statistics showed positive
(92.0%), negative (1.2%), conditional (6.8%) for the polar-
ity of the relations, and one-one (14.0%), one-many (17.6%),
many-one (14.5%), many-many (12.4%) for their cardinality.

f. Example of terms from classes [TMS] (omitted, next) & [CE-
TMS-effects] & [cognitive processes] occurring in the same
sentence (MAPP; 1591 sentences):

— [performance] & [memory (3.7%)| attention (1%)| lan-
guage (1%)| motor (1%)]| visual (1%)];

— [facilitation] & [motor (6%)| memory (2%)| linguistic
(2%)| concept (1%)| control (1%)| knowledge (1%)] logical
(1%)| awareness (1%)| visual (1%)];

— [improve] & [memory (1%)| visual (1%)| language (1%)];

g. Example of high probability sentences (PP, range [4, 99]) from
the CR-TMS corpus including terms from classes [TMS] &
[CR-TMS-effects] & [mental disabilities] (see d):

— “Daily rTMS mood
13.0).

— “Excitatory rTMS induces improvements in chronic
post-stroke aphasia” (PP 13.5).

— “Slow TMS «can rapidly reduce resistant

hallucinations in schizophrenia” (PP 16.8).

improves in depression” (PP

auditory

Using VisualText we showed also that from 4085 sentences, 1417
include terms from [TMS] hierarchy, and 847 include terms from
[TMS] & [CR-TMS-effects OR mental disabilities]. Examples
from the last group:

“TMS has been shown to be an effective treatment for mental
illnesses including major depressive disorder.”

“...rTMS has been developed for the treatment of major
depression and schizophrenia.”

Example of high probability sentences (PP; range [3,
50]) from the CE-TMS corpus including terms from
classes [TMS] & [CE-TMS-effects] & [cognitive processes]
(see f):

“...r'TMS to left dorsal premotor cortex enhances motor
consolidation of new skills” (PP 9).

“r'TMS over Wernicke’s area leads to a brief facilitation of
picture naming by shortening linguistic processing time”
(PP 11).

“...r'TMS at alpha frequency can modulate short-term
memory capacity by influencing the ability to suppress
distracting information” (PP 15).

Using VisualText we showed that from 1008 sentences, 445
included terms from [TMS], and 238 include terms from [TMS]
& [CE-TMS-effects OR cognitive processes]. Examples from the
last group:

— “...r'TMS of the DLPFC can affect the performance in an
affective go-no-go task.”

— “...here we report the ipsilateral enhancement of visual atten-
tion after rTMS of parietal cortex at parameters known to
reduce cortical excitability.”

k. Example of sentences extracted with BioRAT from the CR-
TMS corpus using a specific rule, which indicate classes of
terms that have to be found at specific locations (block) in the

sentence (Table 5).

DISCUSSIONS AND CONCLUSIONS

We here used a set of selected TM-tools to obtain basic insights
into the relevant literature on the CR- and CE-TMS. For obvi-
ous reasons, we limited this application to few simple aspects.
First, we showed that TM could retrieve from vast corpora of
publications the diversity of TMS applications in CR and CE,
automatically extracting trends already described in published
reviews. Second, we searched for trends noticeable only in big
corpora of publications.

Along this exercise, we attempted to validate our results in dif-
ferent ways. For example, we compared similar results obtained
using different TM-tools applied to different corpora (TIAB-
corpora or TIABREV-corpora). Relevant and common aspects,
synthesized in unique results per type of analysis and topics
were shown in the paper. Finally, we compared TM to human
curation efforts. Accordingly, we selected for human curation
30 of the top ranked (with Medline Ranker) publications from

Table 5 | Example sentences retrieved with BioRAT using a specific rule.

Blocks of the rule Context
<LOOKUP: <MACRO: <MACRO: <LOOKUP: <MACRO: <LOOKUP:
TMS> WORD> WORD?> CR-TMS- WORD> mental
effects> disabilities>
rTMS for - treatment of depression .. .the first cases report of using rTMS for
the treatment of depression ... "
TMS for - treatment of obsessive ... TMS for the treatment of obsessive
compulsive compulsive disorder ... "
disorder

“< > " delimitate a block of the rule; LOOKUR looking for a term included in a class ([TMS], [CR-TMS-effects] or [mental disabilities]); MACRO WORD, any word;

“?/ the block is optional.
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the TIABREV-corpora, separately for CR-TMS and CR-TMS.
We performed a selective manual curation aimed to retrieve
relevant terms co-occurring with TMS (all types of protocol)
in the abstracts, which belong to the following classes: mental
functions, healthy or impaired, modulated by TMS; mental dis-
abilities treated with TMS; rehabilitation or enhancement effects
of TMS. We also searched for relationships between classes of
relevant terms and conclusive sentences summarizing research
results.

Very briefly, the manual curation gave the following
perspective over the main topics:

a. CR-TMS. TMS is continuously establishing itself as one of
the “tools of the trade” in psychiatric therapeutic practice
(Kammer and Spitzer, 2012) improving mental functions
in: Parkinson’s disease (Pascual-Leone et al., 1994), aphasia
(Medina et al., 2012), motor control after stroke (Takeuchi
et al., 2005), epilepsy (Nitsche and Paulus, 2009), depres-
sion (Lisanby et al., 2009; Conforto et al., 2014), schizophre-
nia (Levkovitz et al., 2011; Kammer and Spitzer, 2012),
autism (Krause et al., 2012), chronic migraine (Conforto
et al., 2014), dyslexia (Costanzo et al., 2013), neglect (Fasotti
and Van Kessel, 2013), obsessive-compulsive disorder (OCD)
(Mantovani et al., 2013), chronic pain (Moreno-Duarte et al.,
2014), and social anxiety disorder (Paes et al.,, 2013). The
TMS therapy applied to younger patients (children and ado-
lescents) improves cognitive functions (Vicario and Nitsche,
2013) in: stroke affecting the motor cortex (Kirton et al., 2008),
epilepsy (Fregni et al., 2005), ADHD (Weaver et al., 2012),
Tourette syndrome (Le et al., 2013), autism (Baruth et al,
2010), treatment-resistant depression (Bloch et al., 2008), and
medication-resistant schizophrenia (Jardri et al., 2012).

b. CE-TMS. CE is defined as any augmentation of core infor-
mation processing systems in the brain underlying percep-
tion, attention, conceptualization, memory, reasoning and
motor performance (Sandberg and Bostrom, 2006; Luber and
Lisanby, 2014). Studies reported TMS-induced modulations
and enhancements of brain functioning and neural process-
ing involved in: language comprehension (Floel et al., 2008),
learning and memory (Vicario et al., 2013), cortical plastic-
ity improving learning (Vallence and Ridding, 2014), motor
memory (Butefisch et al., 2004), working memory (Gaudeau-
Bosma et al., 2013), memory (Gagnon et al., 2011; Blumenfeld
et al., 2014), phonological memory (Kirschen et al., 2006),
perception (Hamilton et al., 2013), perceptual discrimina-
tion (Luber and Lisanby, 2014), eye movements and visual
search, (Gerits et al., 2011; Luber and Lisanby, 2014), atten-
tion (Cooper et al., 2004; Lee et al., 2013), reward behavior
(Stanford et al., 2013), analogic reasoning (Boroojerdi et al.,
2001), motor learning (Luber and Lisanby, 2014), consolida-
tion of new skills (Boyd and Linsdell, 2009), visual awareness
(Grosbras and Paus, 2003), activity of specific frequencies sup-
porting functions of the brain (Rahnev, 2013), and Pavlovian
conditioning (Luber et al., 2007).

CR-TMS and CE-TMS used various TMS paradigms, includ-
ing single-pulse, theta-burst, paired-pulse, and trains of rTMS

at both low and high frequencies (Luber and Lisanby,
2014).

Comparisons with the manual curation showed that the
TM-tools were also able to extract:

— All the relevant terms for CR-TMS and CE-TMS in the form of:
lists; topics; classes of terms associated with specific subtopics
(e.g., mental disabilities, cognitive processes).

— Relations between relevant terms in the form of: co-
occurrences maps (Figure 3); groups of relevant terms with
high probabilities co-occurrences; KWIC (Tables 3, 4); lists of
relevant relational verbs.

— High probability and relevance conclusive sentences (see exam-
ples and Table 5). We studied also structural statistical regular-
ities in both conclusive sentences and abstracts shown by: the
relative position in the sentence for groups of relevant terms
(Tables 3—5); combinations of relevant terms with high prob-
ability occurrence; the occurrence frequency for conclusive
sentences.

In addition, the TM approach has clear advantages emerging
from the statistical properties of big corpora. Accordingly, the
tirade (terms, terms-relationships, sentences) gained statistical
strength, enabling us to quantify the frequency of a term or occur-
rence probabilities for specific relationships between terms or
for conclusive sentences. For example, the hierarchy of the top
terms for the CR-TMS-corpus includes TMS, treatment, rTMS,
brain, therapy, depression, and stroke. We also found hierarchies
for classes of terms like [CR-TMS-effects] (e.g., treatment, ther-
apy, recovery, antidepressant, rehabilitation, neurorehabilitation)
and [mental disabilities] (e.g., depression, stroke, schizophrenia,
tinnitus, major depressive disorder, Parkinson, OCD, epilepsy,
seizures, neglect, anxiety, ADHD, stress, Alzheimer’s). For the CE-
TMS-corpus the top terms are TMS, rTMS, brain, cognitive, per-
formance, and facilitation. We also added hierarchies for classes
of terms like [CE-TMS-effects] (e.g., performance enhancement,
improvement, facilitation, neuromodulation, neurostimulation,
therapy, neuroenhancement, rehabilitation, CE) and [cognitive
processes] (e.g., memory, learning, attention, working memory,
perception, language skill acquisition, decision, emotion, speech,
semantic processing).

The relevance of all the retrieved terms and of their relation-
ships is based on the idea that words co-occurring frequently in
the abstracts are related in specific ways intrinsically constrained
by the (TMS-related) topic of the abstracts. Thus, TMS is strongly
related with all frequent terms retrieved with different TM-tools.
Although in a relatively crude form, determined by our inten-
tion to show “raw” TM results, our study is showing that TMS
emerged as one of the important non-invasive tools that can both
improve cognitive and motor functions in numerous neurologi-
cal diseases and induce enhancements of many fundamental brain
functions.

We were able to characterize topics considering their dynamic
relationships, trends in research and the interest shown by
the scientific community. For example, CR-TMS and CE-TMS
share studies (Figure4), being an argument for their simi-
larity. The reviewed topics share also publications with other
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fields suggesting their appurtenance to a larger context, which
integrates diagnostic, fundamental research and fMRI studies.
TMS can be used both to investigate and to modify brain phys-
iology and performance in healthy and diseased subjects (Vicario
and Nitsche, 2013).

Methodologically speaking, we conclude that TM was helpful
in getting an overall perspective on a huge corpus of literature
with some level of detail, intentionally limited to handle complex-
ity. Richer information can be extracted using more complex TM
methods focused on narrower topics, but this requires extensive
training and knowledge.

A decision factor to use TM relates to how profitable and how
difficult the tools may be. The study aimed to address these sim-
ple issues in a pragmatic way. First and foremost, we argue that
TM-tools may become a basic component in the methodologi-
cal library. Unfortunately, it is equally clear that TM is a difficult
task. With this in mind, we aimed to evaluate relatively immediate
advantages of a user-friendly TM approach, based on easy-to-
use TM-tools applied to CR- and CE-TMS corpora of abstracts.
The hierarchical structure of our example set of TM-tools could
serve as a guide for researchers aiming to use TM. Accordingly,
for a rapid enrichment of the PubMed search, TM-tools II could
be used, with special considerations for Carrot2, PubReMiner,
Quertle, Medline Ranker, and Textpresso for Neuroscience. All
TM-tools III could help a more elaborate TM without a con-
siderable increase in demands to the user. For complex studies
combining multiple aspects of the “mining,” we recommend
systems like Knime, RapidMiner, and Taverna.
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