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The motivations behind the development
of many neuromorphic processors have
been dominated by either the creation
of better artificial intelligence, or novel
non-von Neumann computing paradigms.
A result of this impetus has been a
number of low-power processors capa-
ble of simulating many different biologi-
cal features of the nervous system. Power
efficiency is crucial for deployed neuro-
morphic systems, but it also opens this
technology up to other energy restricted
applications. In this opinion, we suggest
two such applications pertaining to ther-
apeutic stimulation of the nervous sys-
tem where closing the control loop could
be assisted by advances in neuromorphic
architectures: (1) deep brain stimulation
(DBS) in the treatment of Parkinson’s dis-
ease and (2) epidural spinal cord stimula-
tion (ESS) for restoring voluntary motor
functions. Though there are still questions
that must be addressed before this would
be feasible, but we are suggesting that the
technological barriers—in both the algo-
rithms and hardware—can be overcome
with directed funding and research.

Neuromorphic processor research is
centered around the creation of brain-like
intelligence through power-efficient cir-
cuits that borrow elements directly from
biology (Mead, 1989). The applications
for these projects range from brain-scale
simulations (Gao et al., 2012; Benjamin
et al., 2014) and in silica experimen-
tation (Schemmel et al., 2010; Furber
et al., 2012), to brain-like computing and
learning (Merolla et al., 2011; Srinivasa
and Cruz-Albrecht, 2012; Cruz-Albrecht
et al., 2013; Rahimi Azghadi et al., 2014;

Schmuker et al., 2014). These projects
promise unrivaled access to large-scale
models of the brain as well as insight
into the unique non-von Neumann com-
putation that biological systems appear to
achieve.

Regardless of the motivation, the tangi-
ble result of these efforts has been an accu-
mulation of low-power circuits capable of
emulating various elements of the nervous
system. Although these are essential for
embodying robotic systems and augment-
ing current super-computing paradigms,
they also have the potential to assist in
nervous system stimulation control. This
application is outside the scope of the
currently funded neuromorphic hardware
projects, but with new insights and tech-
nological advances, it is one that will be
particularly beneficial.

1. MODEL BASED CONTROL
In our current capacity to monitor neu-
ral circuits, most system variables are
unobservable. One strategy for estimat-
ing these unknown system variables and
parameters is by employing an Unscented
Kalman Filter (UKF) to combine the
observable and unobservable states. The
UKF employs a set of known dynami-
cal equations and observation functions
with the measurable data to update an
approximation of the state and its uncer-
tainty. At each update, sigma points—
system states that are consistent with
the current state uncertainty—are selected
and used to integrate the system. These
are combined with estimated mean state
values and the approximate uncertainty.
A gain matrix then updates the new most

likely state of the system. The schematic
for this organization is illustrated in
Figure 1A. Applying this kind of feed-
back control to biological systems was ini-
tially demonstrated by Voss et al. (2004)
but has since been demonstrated on a
number of control and estimation prob-
lems (Abarbanel et al., 2008; Li et al.,
2009; Ullah and Schiff, 2009, 2010; Schiff,
2010; ODoherty et al., 2011; Aprasoff and
Donchin, 2012; Schiff, 2012; Liu et al.,
2014).

By using a model of the area under
stimulation, both the activity and state
of that area can be approximated—
something that is not directly measurable.
The model, constructed from the cur-
rent understanding of the anatomy, can
then be used to find an optimal set of
stimulation parameters. In addition, the
model output can be used as the feedback
into a control system that can not only
dynamically tune the stimulation param-
eters but also adapt to the physiological
circuit remodeling—providing the highest
possible therapeutic benefit. Embedding
these models in low-power neuromorphic
hardware would facilitate a transition into
implantable devices.

A discussion of control inherently
implies observability of the system.
However, observability alone is useful
to current nervous system stimulation
strategies. Observing the unknown—or
unreachable—states of the physical sys-
tem, would provide a way to automatically
tune the stimulation parameters—
assisting clinicians in finding the optimal
set points in open-loop control. Finally,
in addition to the UKF there are other
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FIGURE 1 | Example therapeutic applications of model based control.

(A) The system dynamics are described by a model, F , and the observations
are described by a function, A. In most systems those observations are going
to be noisy, so a covariance matrix, R, will account for that. After one step of
F , using the resulting sigma points will provide X̃i = F (Xi ). A new set of
observations can then be found, Ỹi = A(Xi ). The means over these two

matrices are the a priori state and measurement estimates. The a posteriori
state estimate, x̂, is now dependent on the state estimate, x̃, the
measurement estimate, ỹ , the actual measurement, y , and the Kalman gain
matrix, G. (B) Diagram of deep brain stimulation in the treatment of
Parkinson’s disease. Adapted from Thibeault and Srinivasa (2013). (C) Example
epidural spinal cord stimulation for restoring voluntary motor functions.

model-based control schemes that could
be employed here.

2. DEEP BRAIN STIMULATION IN THE
TREATMENT OF PARKINSON’S
DISEASE

The application of DBS to patients with
pharmacoresistant Parkinson’s disease
can be traced back to the early 1980’s
(Montgomery Jr, 2012). In DBS, dual
electrodes are implanted bilaterally into
the nuclei of the basal ganglia (see
Figure 1B)—the current target is the
subthalamic nucleus. Constant electrical
pulses are then injected into the electrodes.
After implantation, clinicians will exper-
iment with frequency, amplitude, and
duration of those electrical pulses to find
a configuration with the highest benefit.
Finding that point however, is an inexact
science and periodic adjustments to com-
pensate for neural plasticity are required.
Although there is a proven clinical benefit
to DBS, there is no clear explanation for
its mechanism of action.

Although the open-loop configuration
of DBS has proven capable, closed-loop
control of DBS has been shown to be a
more effective treatment in both theoret-
ical (Santaniello et al., 2011), and physi-
ological experiments (Rosin et al., 2011).
For example, in Rosin et al. (2011) a simple
feedback loop was created where the acti-
vation of the DBS pulse was triggered by
spiking in a reference structure—either

the internal segment of the globus pal-
lidus or primary motor cortex. The control
paradigm demonstrated a larger reduction
in pallidal oscillations and akinesia com-
pared to open-loop DBS. The resulting
system—although brilliantly designed—
is an incredibly simple solution and one
that exemplifies the therapeutic advances
that can be made with adaptive feedback
control systems.

The class of model-based control of
DBS suggested here has already been
demonstrated in simulation space by
Schiff (2010) using the simple neuron
implementation of Rubin and Terman
(2004). Although the mathematical model
used in that study was computationally
cheaper than the alternative, it is still dif-
ficult to simulate in a low-power micro-
processor. Aspects of the original Rubin
and Terman (2004) results were imple-
mented using a more hardware friendly
model in Thibeault and Srinivasa (2013),
however, the required level of abstrac-
tion in a control paradigm is still unclear.
Despite unanswered questions, these stud-
ies are encouraging and demonstrate the
feasibility of the strategy.

3. EPIDURAL SPINAL CORD
STIMULATION

The recent discoveries in the use of epidu-
ral spinal cord stimulation—diagrammed
in Figure 1C—on patients with motor
complete paraplegia has revealed a

therapeutic pathway toward restoring vol-
untary motor function (Harkema et al.,
2011). However, the mechanisms behind
this benefit as well as the supporting
technology is still immature. The cur-
rent state-of-the-art involves randomly
tuning the stimulation parameters manu-
ally until a physiological improvement is
observed—these parameters include both
the duration and amplitude of the stim-
ulus as well as anode/cathode pairings.
There have been efforts to apply Bayesian
optimization approaches to automating
the parameter search but these did not
directly account for the relevant biological
structures (Desautels, 2014).

Additionally, it has been suggested that
the therapeutic restoration of motor con-
trol is mechanistically dependent on the
remodeling of the remaining spinal cir-
cuits (van den Brand et al., 2012). Having
a control strategy as well as a model that
are adaptive to the plastic changes within
the spinal circuits would require less man-
ual parameter adjustments over the life of
the implant.

As a clinical treatment, ESS is still
underdeveloped. However, it is one that
could benefit from a model-based con-
trol strategy—either as an observer system
for parametric optimization or as a com-
plete closed-loop solution. Although the
fidelity of the spinal cord model and the
source of sensory feedback have not been
fully explored, in many ways this appears
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to be a more tractable problem compared
to DBS—it may also prove to be an ideal
alternative as well (Fuentes et al., 2009).
The accessibility of the spinal cord as well
as the simplicity of the microcircuit may
make closing the loop on ESS more feasi-
ble. However, if more finely tuned control
of the individual muscles is required, the
complexity of the problem could quickly
out pace that of DBS.

4. CONCLUSION
Despite the technological and theoreti-
cal advances outlined here, there are still
obstacles to overcome. Where and what to
measure when closing the loop for both
DBS and ESS is not entirely clear. The
stability of the hardware measuring those
signals is also a concern. Furthermore, as
mentioned above, the appropriate level of
biological fidelity required in the model
has not been fully resolved. The proposed
use of neuromorphic hardware implies
that the model for the control system actu-
ally requires high-fidelity. In DBS treat-
ment of Parkinson’s disease this appears to
be the case. However, for spinal-cord stim-
ulation, it may not be required. Regardless,
closed-loop strategies are clearly more
effective and the theoretical and techno-
logical barriers are low enough that a con-
certed effort should be made to advance
this concept toward clinical treatments.

Finally, model-based control strategies
will not only improve the therapeutic ben-
efit but the power consumption as well.
Rather than blindly applying stimulation,
pulses can be applied only as needed.
Utilizing neuromorphic hardware will add
to that power savings by both reducing
the computational burden and providing
the necessary biological detail for model-
based control.
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