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Patterns of resting state connectivity change dynamically and may represent modes
of cognitive information processing. The diversity of connectivity patterns (global brain
states) reflects the information capacity of the brain and determines the state of
consciousness. In this work, computer simulation was used to explore the repertoire of
global brain states as a function of cortical activation level. We implemented a modified
spin glass model to describe UP/DOWN state transitions of neuronal populations at a
mesoscopic scale based on resting state BOLD fMRI data. Resting state fMRI was
recorded in 20 participants and mapped to 10,000 cortical regions (sites) defined on
a group-aligned cortical surface map. Each site represented the population activity of
a ∼20 mm2 area of the cortex. Cross-correlation matrices of the mapped BOLD time
courses of the set of sites were calculated and averaged across subjects. In the model,
each cortical site was allowed to interact with the 16 other sites that had the highest
pair-wise correlation values. All sites stochastically transitioned between UP and DOWN
states under the net influence of their 16 pairs. The probability of local state transitions was
controlled by a single parameter T corresponding to the level of global cortical activation.
To estimate the number of distinct global states, first we ran 10,000 simulations at T
= 0. Simulations were started from random configurations that converged to one of
several distinct patterns. Using hierarchical clustering, at 99% similarity, close to 300
distinct states were found. At intermediate T, metastable state configurations were
formed suggesting critical behavior with a sharp increase in the number of metastable
states at an optimal T. Both reduced activation (anesthesia, sleep) and increased activation
(hyper-activation) moved the system away from equilibrium, presumably incompatible
with conscious mentation. During equilibrium, the diversity of large-scale brain states
was maximum, compatible with maximum information capacity—a presumed condition
of consciousness.
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INTRODUCTION
Cognitive functioning of the conscious human brain is thought
to depend on the formation of dynamic patterns of neuronal
coalitions and large-scale connectivity (Werner, 2009; Bressler
and Menon, 2010). Moreover, the diversity or repertoire of dis-
tinct functional patterns reflects the information capacity of the
brain that is thought to be central to consciousness (Tononi, 2008;
Deco et al., 2014). The repertoire of brain states over time can
be large if there is sufficient flexibility in the system to rapidly
switch to new configurations and maintain these configurations
for a finite amount of time. The time necessary for maintaining a
configuration should roughly coincide with the duration of a con-
scious perceptual frame (Bachmann, 2013). The dynamic nature
of the ongoing stream of consciousness may reflect this rapid
sequence of state configurations (Werner, 2007). Moreover, the
disruption of the sequence of states may account for the anesthetic
suppression of consciousness (Hudetz et al., 2014).

Various physical, chemical, and biological systems are able to
produce metastable states that satisfy the requirement for a large
repertoire. Metastable states typically arise in critical systems that
operate at the border of order and disorder and are characterized
by complex patterns of fluctuations (Werner, 2007; Beggs, 2008;
Kitzbichler et al., 2009; Deco and Jirsa, 2012; Tagliazucchi et al.,
2012). Self-organization is often the underlying mechanism of
criticality. Recent computational and empirical studies based on
electrophysiology, fMRI, and EEG lend support to the existence
of this behavior in the brain (Friston, 1997; Freeman and Holmes,
2005; Werner, 2007; Kitzbichler et al., 2009; Kelso, 2012; Bhowmik
and Shanahan, 2013; Tognoli and Kelso, 2014). This metastability
is considered essential to the subjective mental state and con-
sciousness (Kitzbichler et al., 2009). Its restoration may be the
hallmark of recovery from unconsciousness (Hudson et al., 2014).

Self-organization can also lead to scale-free behavior, in which
similar interactions are present at different temporal or spatial
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scales (Tognoli and Kelso, 2014). The scaling of the magnitude
of interactions is typically 1/f, where f is the frequency (Kello
et al., 2008). Interestingly, the scale-free property of EEG or fMRI
BOLD signals is preserved under anesthesia (Lee et al., 2010; Liu
et al., 2014) but not in disorders of consciousness associated with
diffuse brain damage (Liu et al., 2014). In light of this dissocia-
tion, conscious information processing may depend more closely
on the dynamic repertoire and metastability of brain states than
their spatio-temporal scaling laws.

Recent fMRI investigations have convincingly demonstrated
that brain networks undergo dynamic reconfigurations even in
the absence of novel stimuli or cognitive tasks (Britz et al., 2010;
Chang and Glover, 2010; Sakoglu et al., 2010; Kang et al., 2011;
Allen et al., 2012; Glerean et al., 2012; Handwerker et al., 2012;
Jones et al., 2012; Cribben et al., 2013; Di and Biswal, 2013;
Hutchison et al., 2013b; Keilholz et al., 2013; Liu and Duyn,
2013). Such resting state network dynamics have been ascribed
to the general phenomena of spontaneous mentation, imagery,
task-independent thoughts or daydreaming (Mckiernan et al.,
2006).

The standard method for characterizing dynamic networks of
the brain has been the sliding window analysis of functional con-
nectivity (Hutchison et al., 2013a), sometimes combined with
independent component analysis (ICA) (Kiviniemi et al., 2011),
temporal ICA (Smith et al., 2012), and other source separation
methods (Cribben et al., 2013). Connectivity analysis at higher
temporal resolution has also been attempted with various point-
process methods (Tagliazucchi et al., 2011), revealing so-called
spontaneous co-activation patterns (Liu and Duyn, 2013; Liu
et al., 2013). In all cases, a main limiting factor is the duration
of the fMRI scan, which limits the number of connectivity pat-
terns that can be extracted from a finite sample. On the other
hand, the limited spatial resolution of EEG does not allow the
imaging of spatially complex patterns. Moreover, collecting a suf-
ficient amount of experimental data across the full range of brain
states in the same subject, including multiple states of sleep,
wakefulness, anesthesia, etc., is difficult.

As an alternative approach to explore the probability space
of correlated brain states, we used a combination of empirical
connectivity data and computer simulation. In the simulation,
functional connectivity patterns were evolved by simulating the
dynamic interaction of mesoscopic brain regions using a modi-
fied spin-glass model. This model is well-suited to describe the
large-scale, globally distributed effect of the dynamic interaction
of functionally connected brain regions. The model is relatively
simple, as it does not include cell-specific or synaptic connections
but it is minimally sufficient to account for an arbitrary pat-
tern of neuronal interactions of distant, mesoscopic brain regions.
Moreover, the model includes a single parameter to control the
general cortical arousal level analogous in physical systems to the
absolute temperature that determines the probability of spin fluc-
tuations. The biological equivalent of spins in our model is the
UP and DOWN states of neuronal activity.

As a novel feature, our model was constrained by using empir-
ically derived resting state connectivity to set the spatial pattern
of long-range interactions. The present approach is similar to
the previously described Ising model (Fraiman et al., 2009; Das

et al., 2014; Marinazzo et al., 2014), with the exception that our
model is based on empirically derived long-range interactions.
We show that with the chosen constraints set by the connectivity
matrix, the model predicts critical behavior at the optimal activa-
tion level at which metastable states occur. Both reduced activa-
tion (anesthesia, sleep) and increased activation (epilepsy) moves
the system away from equilibrium, presumably incompatible
with conscious mentation. In equilibrium, the diversity of large-
scale brain states is maximum, implying maximum information
capacity—a previously postulated prerequisite of consciousness
according to the Information Integration Theory (Tononi, 2008).

MATERIALS AND METHODS
fMRI EXPERIMENTS AND DATA ANALYSIS
Resting-state BOLD fMRI data were collected from 20 subjects.
Subjects were instructed to lie still with eyes open and avoid
falling asleep. After each run, they were requested to rate their
alertness level during the previous run. All imaging procedures
were conducted on a 3.0 Tesla GE Excite scanner. For each subject,
an anatomical scan was acquired using an SPGR pulse sequence
(130 axial slices, slice thickness = 1.0 mm, TE = 3.2 ms, TR =
8.2 s, flip angle = 12 degrees, FOV = 240 × 180 mm, matrix
size = 256 × 224). Resting state functional images were obtained
using gradient-EPI (41 axial slices, slice thickness = 2.5 mm, TE =
25 ms, TR = 3 s, flip angle = 84◦, FOV = 240 mm, matrix size =
96 × 96). In each subject, we obtained 6 runs of 7 min each (140
time points per run) for a total of 42 min of resting data.

Preprocessing of functional images included slice-timing cor-
rection, motion correction, and co-registration with the anatomi-
cal scan. To remove the effects of signal drift and possible artifacts
due to motion, a regression analysis was conducted with third-
order polynomial, the parameters from the motion correction
algorithm, and a global signal regressor. These steps were per-
formed using the software Analysis of Functional Neuroimages
(AFNI, NIH). Cortical surface models were created from the
anatomical scan of each subject using Freesurfer software. The
subjects’ surface model was aligned to an average surface atlas (FS
Average brain in Freesurfer) using spherical surface-based align-
ment (Fischl et al., 1999). The triangular mesh of the FS Average
brain was subsampled to 10,000 vertices across both hemispheres
(Matlab reducepatch). The BOLD time courses were mapped to
the 10,000 points by averaging all voxels overlapping with the
cortical surface nearest to each of the 10,000 points. Each of the
10,000 points represents the average activity within a ∼20 mm2

diameter patch of cortex. For spatial smoothing, an estimate
of the distance between each of the points along the cortical
surface was calculated by the fast marching algorithm (Sethian,
1996). Finally, correlation values were calculated between all pair-
wise combinations of the 10,000 points. The resulting correlation
matrices were averaged across subjects to create a single group
connectivity matrix used for the simulation.

SPIN-GLASS MODEL
The model was based on the standard assumption that global
brain states evolve due to the ongoing interaction of mesoscopic
brain regions, from here on called sites. The size of these sites
was taken as that of the cortical surface patches of 20 mm2 from
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the fMRI data, each representing a vertical slab or macro-column
of cortex. According to the standard Ising or spin-glass models,
at any given time, each of the sites was assumed to be in one
of two local states: UP (active) or DOWN (inactive). Further
detailed description of the Ising model is available in previous
publications (Fraiman et al., 2009; Kitzbichler et al., 2009; Das
et al., 2014; Marinazzo et al., 2014). The essential difference
between the Ising and spin-glass models is that the latter includes
long-range interactions and variable interaction probabilities.
Following the Monte-Carlo implementation of the Metropolis
algorithm (Metropolis et al., 1953; Fricke, 2006), local states were
allowed to flip with probability pi as

pi ∼ exp (−�Ei/T)

�Ei = 1

2
Si

n∑

k = 1

AikSk

Si = [+1, −1] , i = 1, .., n, k �= i

In these equations, i and k index the cortical sites such that k
is the index of sites interacting with site i, n is the total num-
ber of sites in the model, and Aik is the connection matrix that
defines the interacting sites. For each site i, Si is the state vari-
able (UP or DOWN), �Ei is the activation energy, and T is the
global activation level—analogous to temperature in the physical
literature.

To define the interacting sites, we used the fMRI functional
connectivity data. For each site as a reference, the 16 other sites
with the strongest correlation with the reference site were identi-
fied from the all pair-wise BOLD signal correlation matrix. Each
site was then allowed to interact with their 16 pairs at a proba-
bility determined by the site’s activation energy and the overall
activation level.

In various runs, the activation level T was varied from zero
to 4.0. Low values of T were taken as corresponding to reduced

activation, such as in sleep, anesthesia or coma, and high val-
ues of T were taken as corresponding to hyper-activation, as in
seizure. Each simulation started with a random distribution of
UP/DOWN states as an initial condition. The system was then
allowed to evolve for 10,000 time steps. Depending on the chosen
value of T, the states converged or continued to change until the
simulation was terminated.

RESULTS
BOLD FUNCTIONAL CONNECTIVITY
For a compact illustration of BOLD functional connectivity, the
pair-wise correlation values between each site and the rest of the
brain were averaged yielding a spatial map of global correlation
strength. Figure 1 shows the results for 20 subjects. There is a
noticeable variation of connectivity patterns however, the con-
nectivity of a few structures appears to be conserved in most
subjects. The global connectivity pattern averaged across all sub-
jects is illustrated in Figure 2. This map emphasizes regions that
were most strongly connected with the rest of the brain in all
subjects. The average connectivity matrix that gave rise to this fig-
ure was used as input data for the simulation. Figure 3 shows an
example of the spatial distribution of several sets of 16 interacting
sites, i.e., those with the highest correlation with each refer-
ence site. Clearly, these interactions reach over large regions of
the brain.

SPIN-GLASS SIMULATION
First we examined the types of global state patterns that emerged
at low activation level T. As anticipated, various metastable state
configurations were formed at intermediate T, and they were
frozen at low T (Supplementary electronic material). Specifically,
at T ≤ 2, the patterns converged, although this sometimes took
a long time. To reduce the simulation time to convergence, we
performed 10,000 runs at T = 0. This rapidly drove the system
to one of many final configurations. We then sought to estimate
the diversity of distinct global states. To suppress the effect of

FIGURE 1 | Global resting-state cortical correlation maps in 20 subjects. Pseudo-color indicates the average cross-correlation of each voxel with the rest of
the brain.
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FIGURE 2 | Average global resting-state cortical correlation map from

20 subjects. Pseudo-color indicates the average cross-correlation of each
voxel with the rest of the brain.

FIGURE 3 | An example of interacting cortical sites for 10 randomly

selected seeds in the model. Each color indicates a set of 16 sites that
interact with the same seed. Interacting sites are chosen based on the 16
highest correlation coefficients of each seed in the all pair-wise correlation
matrix.

local variations, we first performed spatial averaging of each pat-
tern within 5 or 15 mm. The averaging facilitated the comparison
of global similarity without local noise. We then used hierarchi-
cal clustering of the 10,000 patterns and estimated the relative
frequency of patterns. Figure 4 shows the 40 most frequent pat-
terns. All patterns are distinct and they generally reflect known
functional regions of the brain (prefrontal, temporal, parietal,
occipital, pre- and post-central, etc.).

Next, we compared the dynamics of global state patterns
at intermediate activation levels. A convenient measure of the
dynamics is the temporal correlation of patterns at successive time
points (Figure 5). The correlation matrix at activation level T =
2.7 suggests patterns that are typical of systems with metastable
states. At high T, the patterns become random; whereas at low
T, the patterns become stereotypic, showing temporal hypersyn-
chrony. Increasing the time lag (embedding delay) from one time
step to 2, 4, 8, 16, and 32, reduced the mean and augmented the
fluctuation in the correlation of states (Figure 6). This effect was
further quantified by the homogeneity index H, defined as the
reciprocal of the coefficient of variation:

H =< cc > /SD(cc),

where SD is the standard deviation and brackets <..> indicate
averaging. Figure 7A illustrates the results for three levels of acti-
vation, T. The H-T relationship followed power law up to a lag
of approximately 20 time steps. The power law was preserved at

reduced T, although its exponent (the slope of linear regression
slope in a log-log plot) was reduced.

To measure the temporal diversity of metastable states, we
introduced the dispersion index D defined as:

D = K < (1 − cc) > /var (cc)

where cc stands for the elements of the all pair-wise correlation
matrix of the simulated states, var stands for variance, and K is a
normalization constant equal to the variance of the uniform ran-
dom distribution of the same size as the cc matrix. As defined, D
measures the temporal diversity or repertoire of global states over
time at all time lags. It can be easily seen that the value of D is low
for both random and regular systems. Figure 7B shows calculated
values of D as a function of activation level T. The plot suggests
the presence of typical second-order phase transition. D reaches
maximum at T = 2.7; its value drops sharply at both smaller and
larger T. Low values of T are thought to characterize suppressed
states such as anesthesia or deep sleep, and high values of T are
thought to correspond to hyper-activated states, e.g., seizure. At
the critical T, metastable states dominate and the diversity of brain
states as measured by D is maximum. The high repertoire of states
at critical T is consistent with the formerly postulated condition
to support conscious cognition.

DISCUSSION
The goal of this investigation was to demonstrate that long-range
neuronal interactions based on empirical measurements in the
human brain produce large-scale dynamic patterns of activity.
To this end, we applied computer simulation with a modified
spin-glass model of site interactions that were constrained by
BOLD fMRI functional connectivity. As anticipated, our results
predicted large-scale metastable brain states that occurred at an
optimal activation level. Simultaneously, at the optimal level of
activation, the diversity of state configurations was maximized—
consistent with its postulated role in brain functioning in the
conscious state. Moreover, the diversity of states was reduced
when moving away from criticality—presumably corresponding
to states of diminished consciousness.

While a few similar computational studies have been con-
ducted in the past, the present work is novel in several ways.
First, the simulation was based specifically on long-range inter-
actions that spanned distances among remote cortical regions.
This is the defining difference between the spin-glass model and
the Ising model, which considers only nearest neighbor interac-
tions. Second, we used BOLD functional connectivity to select
the interacting sites. These empirically-determined connectivity
constraints ensure that the model contains connectivity struc-
ture similar to that of the actual human brain. Third, we used
a novel measure of dispersion to estimate the diversity of global
brain states and their dependence on activation level. Therefore,
it is of substantial interest that the long-range interacting system,
as constrained by real probabilistic data from the brain, readily
produced metastable states.

Kitzbichler et al. (2009) demonstrated power law scaling of the
synchrony in resting-state fMRI and MEG data, suggesting that
the presence of self-organized criticality in the brain is analogous
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FIGURE 4 | The 40 most frequent equilibrium patterns at T = 0 activation level from the spin-glass model. Pseudo-color indicates the probability of UP (red)
and DOWN (blue) states of each site (scale is arbitrary). Patterns were classified using hierarchical clustering at 99% similarity after 15 mm spatial smoothing.

FIGURE 5 | Temporal correlation of global state patterns at successive

time points and different activation levels, T. Simulation consisted of
10,000 time steps. Pseudo-color indicates the correlation coefficient, cc, of

consecutive patterns. Metastable states are formed at T = 2.7 suggesting
critical, “edge-of-chaos” behavior. Higher T leads to more random patterns,
whereas lower T yields hyper-synchronous, stereotypic patterns.

to that obtained from computer simulations on an Ising system.
Their simulation was not constrained by actual empirical data.
Das et al. (2014) also used the two-dimensional Ising model to
illustrate the similarity of measured and simulated fMRI BOLD
signals in human subjects. Different from our study, they ana-
lyzed BOLD signal distributions above and below threshold to
show that the Ising model can predict activity patterns similar to
that of BOLD.

Our simulation was different from both of these studies in
that ours was based on long-range interactions derived from
empirical BOLD functional connectivity. The spatial distribu-
tion of interacting sites was determined by the strength of

long-range correlations. As a result, the predicted global states
resembled large-scale functional patterns of the human brain.
Finally, we simulated global brain states at different activation
levels.

Another recent simulation study applied the Ising model
to fiber-tract data obtained with diffusion tensor imaging
(Marinazzo et al., 2014). The outgoing and the incoming infor-
mation at each network node was quantified as related to the
summated input weights and to the time elapsed between con-
secutive flips of Ising spins. The simulation predicted critical
behavior although the profile of state transition was not as rapid
as in our simulation.
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FIGURE 6 | Global state correlation as a function of time at various time lags (shown on top of each panel). Global state patterns become decorrelated
at increasing time delays.

FIGURE 7 | Dependence of the state repertoire on cortical activation

level and embedding time lag. (A) Homogeneity index, H decreases
as a function of the time lag of according to power law up to a lag of
20. Decreasing the activation level T (anesthesia) decreases the

regression slope. (B) Dispersion index, D shows critical behavior as a
function of activation level, T. Maximum of D is thought to correspond
to the conscious state. D drops at low T (anesthesia) and at high T
(seizure).

It could be argued that fiber tract distribution is a more
appropriate constraint for the model than functional connectiv-
ity. Functional connectivity may not always correspond to direct
anatomical connection due to common input or third party inter-
actions. However, a counter argument is that only a fraction of
fiber tracts may be used for neuronal communication at any
one time, and, therefore, functional connectivity provides a bet-
ter approximation of the probability of functional interactions
regardless of the exact underlying mechanism. Conceivably, real-
time measurement of neuronal communication across the whole
brain will be the ideal data used as an input to the model when
such technology becomes available in the future.

The neurophysiological relevance of the spin-glass model
depends on the temporal and spatial scales that it represents.
Although the temporal scale of the simulation is arbitrary, it can
be grounded in real neuronal events based on empirical data.

Spontaneous activity of neuronal populations forms transient
spatiotemporal clusters often described as neuronal avalanches
(Beggs and Plenz, 2003). The time scale of these events is on
the order of 10 ms. Such an alternation between activity and
silence of neuronal populations is consistent with the representa-
tion of UP and DOWN states of mesoscopic sites in the spin-glass
model. On a global spatial scale, EEG topographic maps alter-
nate among microstates at a time scale of approximately 100 ms
(Koenig et al., 2002). These states have been linked to fMRI signals
(Lehmann, 2010; Musso et al., 2010). The temporal resolution of
elementary conscious sensory perception also falls in this order
(Bachmann, 2013). The lifetime of the simulated metastable states
depends on the chosen level of similarity of the states, i.e., the
minimum cross-correlation coefficient at which they are consid-
ered equivalent. Accepting a cross-correlation threshold of 0.95,
the median lifetime of metastable states at the critical activation
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level is around 440 ms that is in the timeframe of cognitive
phenomena.

We found that the homogeneity index H depended on the
embedding time lag according to power law, suggesting scale-free
behavior up to a lag of approximately 20 time steps. Based on
the preceding considerations, 20 time steps would correspond to
approximately 200 ms duration, which agrees with the presumed
unit of processing time for conscious computations. Nevertheless,
the power law of H does not imply criticality because the power
law exponent was close to −1.0 (at T = 3) or less, not −1.5 as pre-
viously proposed for critical processes (Beggs and Plenz, 2003).
On the other hand, the dispersion index D suggests critical behav-
ior at the phase transition at T = 2.7. D measures the overall
diversity of global state configurations across all time points, not
only the states’ consecutive (or delayed) similarity as H does. At
low T, D is small because global brain states are highly correlated
and thus (1−cc) is low. Because the sites stochastically fluctuate
between UP and DOWN states, the variance of cc does not go to
zero and D does not diverge. At high T, D is small again because
the variance is large due to the intense random fluctuations. Thus
D is high only at intermediate T. The repertoire of global states
accessed by the brain over time reaches maximum at a critical
point.

During the course of clustering global brain states, a challenge
was to define their similarity at a mesoscopic scale with 5000
sites per hemisphere. On one hand, cluster membership had to
be defined at a chosen degree of similarity; the number of distinct
brain states depended on this choice. We carried out clustering
at 99.0 and 99.9% similarity; yielding a higher number of distinct
states when the similarity requirement was stricter. Another factor
that influenced the clustering was the degree of spatial averaging,
for which we used either a 5 or 15 mm radius. This choice made
a significant difference at 99.9% similarity but it made very little
difference at 99.0% similarity. Guided by these preliminary assess-
ments, we chose 15 mm spatial averaging and 99.0% similarity
level for the final simulations.

In this work we sought to gain insight into the possible diver-
sity and dynamics of UP/DOWN state patterns as a measure of
complex brain states. It has been hypothesized that dynamic states
of connectivity represent modes of cognitive information pro-
cessing in the brain (Bressler and Menon, 2010). Moreover, the
diversity or repertoire of brain sates has been postulated as one
of the fundamental conditions for information integration in the
conscious state or more specifically consciousness itself (Tononi,
2008).

In the spin-glass model, the overall probability of UP/DOWN
transitions of mesoscopic sites was controlled by the global acti-
vation level T. We saw that at a critical activation level, large-scale
metastable states were frequent, and the diversity of global brain
states was enhanced. Although this may not be a stable state
in vivo, approaching criticality may be facilitated by the phasic
increases in ascending arousal (Buzsaki et al., 1988), which would
repeatedly randomize the system (at high T), and then allow it to
sink into new configurations. The latter may have an additional
effect on augmenting the repertoire of brain states over time.

If information processing indeed depends on the repertoire of
brain states, the question one may ask is how many distinct brain

states exist. The answer to this question obviously depends on
what we consider the smallest units of the system. The organi-
zational complexity and the number of distinct functional states
of the brain would plausibly increase at finer spatial and tem-
poral scales, spanning several hierarchical levels from synapses,
neurons, local circuits, to regions and networks. Although the
spatiotemporal resolution of fMRI is relatively coarse, the num-
ber of combinatorially possible network patterns defined at near
voxel level is enormous, and properly sampling these patterns
using fMRI is limited. Computer simulation helps extend our
ability to estimate the brains state repertoire within empirically
set constraints.

An application of interest of the model is examining the effects
of general anesthesia, which is characterized by reduced global
activation due to a suppression of the ascending arousal system
(Nelson et al., 2002; Alkire et al., 2007). As we saw, decreasing
the activation level T retards the dynamic transition of global
metastable states by reducing the probability of UP/DOWN tran-
sitions. As a result, fewer distinct brain states occur over time,
which predicts reduced information capacity. As we formerly
argued, a reduction in the repertoire of global brain states may
underlie anesthetic loss of consciousness (Alkire et al., 2008). An
alternative mechanism that may diminish information integra-
tion during anesthesia is the weakening of site interactions. This
may lead to breakdown of meaningful communication within the
brain’s critically important functional networks. Although this
has not been tested here, the overall effect of reduced connec-
tivity on the global dynamics is expected to be similar to that of
reduced cortical arousal. Both mechanisms are likely at work in
the mediation of the anesthetic effect.

Although we have emphasized the application to anesthesia,
the simulation results equally apply to altered states of conscious-
ness such as deep sleep, vegetative state, coma, or, at the other end
of the spectrum, seizure. We saw that both low and high activa-
tion levels reduced the diversity of global brain states, presumably
pushing the brain away from optimal information processing and
integration.

Current views differ on whether critical behavior in the cor-
tex is associated with normal conscious behavior or a transition
to altered states of consciousness. Previously, Steyn-Ross et al.
(1999) examined first-order phase transitions using a mean-field
model of excitatory and inhibitory neuronal groups with rele-
vance to the anesthetic modulation of the state of consciousness.
They hypothesized that the anesthetic acted as a randomiz-
ing agent to break down the connections between interacting
neuronal populations and that this loss of neuronal coopera-
tivity accounted for the loss of consciousness under anesthesia.
Alternatively, spontaneous ongoing activity may play a role in
inducing state transitions that may be important for maintain-
ing conscious awareness. Recently, Steyn-Ross et al. (2009) sug-
gested that patterns of cortical activation arise from spontaneous
self-organization of interacting neuronal populations at a meso-
scopic scale. They simulated metastable activation patterns that
were altered when the somato-dendritic feedback of neurons was
reduced; reflecting a decrease in excitatory neuro-modulation as
seen during sleep or anesthesia. We interpret our simulations to
be consistent with the ongoing formation of a large diversity of
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metastable states that are essential for the stream of conscious
thought (Werner, 2009). Although the patterns also change spon-
taneously, fluctuations in the level of cortical activation (cortical
arousal) via its randomizing effect may facilitate the rapid for-
mation and transition of consecutive activity patterns, thereby
further augmenting the repertoire states accessed by the brain
over time.
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