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Approach and avoidance behaviors—the primary responses to the environmental stimuli
of danger, novelty and reward—are associated with the brain structures that mediate
cognitive functionality, reward sensitivity and emotional expression. Individual differences
in approach and avoidance behaviors are modulated by the functioning of amygdaloid-
hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction
to salient stimuli. The nodes of these networks are strongly interconnected and by
acting on them the endocannabinoid and dopaminergic systems increase the intensity
of appetitive or defensive motivation. This review analyzes the approach and avoidance
behaviors in humans and rodents, addresses neurobiological and neurochemical aspects
of these behaviors, and proposes a possible synaptic plasticity mechanism, related
to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows
responding to salient positive and negative stimuli.
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INTRODUCTION
Many different labels have been proposed over the years to
cover the definition of approach and avoidance. An Approach-
Withdrawal distinction was introduced by Schneirla (1965) that
argued that in all organisms the motivation is grounded in overt
behavioral actions toward or away from stimuli. Subsequently,
Davidson (1992) re-utilizing such a distinction presumed that
action tendencies are grounded in differently lateralized cortical
activation. In their analysis of emotion, Lang et al. (1997) used an
Appetite-Aversion distinction to characterize two brain systems
that underlie emotions: Appetite connotes consummatory
and approach-oriented tendency, whereas Aversion connotes
defensive and avoidance-oriented tendency. On the other hand,
Lewin (1935), Miller (1944), and McClelland et al. (1953)
conceptualized an Approach-Avoidance distinction in terms
of valence-based processes, rather than over behavior. More
recently, Elliot and Church (1997), Elliot and Thrash (2002),
Elliot (2006), and Elliot (2008) addressed the issue, proffering
the Approach-Avoidance distinction that expands the previous
Approach-Withdrawal distinction in terms of energization of
the behavior by (motivation), or direction of the action toward
(behavior), positive stimuli in the case of the approach, and in
parallel, energization of the behavior by, or direction of the action
away from, negative stimuli in the case of the avoidance. Thus,
positive or negative valence of the stimulus is considered the core
of Approach-Avoidance distinction. The approach and avoidance

behaviors appear to be the primary reactions to novel, rewarding,
and dangerous stimuli on which all successive responses are
based in order to gain successful adaptation. The approach
system is considered a motivational system that activates
reward-seeking behavior associated with impulsivity/exploration,
whereas the avoidance system is considered an attentional system
that promotes appetitive response inhibition or active overt
withdrawal (McNaughton and Gray, 2000; Pickering and Gray,
2001; Carver and Miller, 2006).

The approach and avoidance behaviors are biologically based
and constitutionally ingrained, since all organisms, following
a phylogenetic gradient, are “preprogrammed” to approach or
avoid particular classes of stimuli (Elliot, 1999, 2005, 2008; Elliot
et al., 2006). The phylogenetically early mechanisms engender
low-level responses to concrete stimuli, and complex mechanisms
mediate sophisticated responses to a broader range of stimuli
(Elliot et al., 2006). Approach and avoidance behaviors have
been described not only across but also within phyla. Within
the same species, some individuals have a greater tendency to
approach or avoid a stimulus, also in relation to the age and
context. For example, both in humans and animals, very young
individuals are more sensitive than adults to the experiences
linked to approach and avoidance, as early socialization or
desensitization (Rothbart and Bates, 1998; Jones and Gosling,
2008; Sullivan et al., 2008). The adolescents exhibit emotional
lability, impulsivity and proclivity to seek rewards and novel
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sensations (Fairbanks, 2001; Spear, 2002; Adriani and Laviola,
2004; Hefner and Holmes, 2007; Good and Radcliffe, 2011),
even if sometimes these tendencies are maintained in adulthood
(Roberts et al., 2001; Henderson and Wachs, 2007; Krishnan
et al., 2007). However, increased sensitivity to reward is reversed
in adolescents who are characterized in early childhood as hav-
ing a behaviorally inhibited temperament (Helfinstein et al.,
2011).

Excessive approach or avoidance behavior can lead to psy-
chopathological disorders, as attention-deficit/hyperactivity dis-
orders, depression and substance abuse on one hand, or anxiety
and post-traumatic stress disorders on the other hand (Meyer
et al., 1999; Muris et al., 2001; Kasch et al., 2002; Mitchell and
Nelson-Gray, 2006). Thus, individual differences in approach and
avoidance may represent predictors of vulnerability (or resilience)
to neuropsychiatric diseases. Many of these conditions show sex
differences in age of onset, risk, prevalence and symptomatology
(Lynch et al., 2002; Costello et al., 2003; Rutter et al., 2003; Zahn-
Waxler et al., 2008). In adolescence and adulthood, testosterone
might increase susceptibility for some neuropsychiatric condi-
tions by tipping the balance between approach and avoidance. For
example, testosterone decreases avoidance by attenuating uncon-
scious fear-responses (Hermans et al., 2006, 2007) and reducing
sensitivity to punishment (van Honk et al., 2004), as well as it
increases approach by enhancing sensation- and reward-seeking
behaviors (van Honk et al., 2004; Coates and Herbert, 2008) and
motivation to act (Campbell et al., 2010; Bos et al., 2012). The
females exhibit a prolonged avoidance duration in a computer-
based approach-avoidance task (Sheynin et al., 2014a,b). How-
ever, females may have a higher propensity for cocaine-induced
approach-avoidance conflict (Back et al., 2005; Zakharova et al.,
2009). In particular, the behavioral effects of drug rewarding
stimuli vary across the reproductive cycle with specific “at risk”
phases in respect to reward seeking. For example, women report
higher drug-induced pleasure during the follicular phase than
during the luteal phase (Evans et al., 2002), and female rats display
greater reward-seeking behavior during estrus compared to other
cycle phases (Feltenstein and See, 2007; Kerstetter et al., 2008,
2013).

CONCEPTUAL SPACE OF APPROACH AND AVOIDANCE
BEHAVIORS
Motivation is based on an intricate array of active approach and
avoidance mechanisms. Functionally, approach and avoidance
motivation are viewed as instigators of valenced propensi-
ties. They influence immediate affective, cognitive, and behav-
ioral inclinations in response to real or imagined stimuli and
orient individuals consistently across domains and situations.
In humans, although some actions may derive directly and
invariably from these proclivities, the ultimate behavior may
be self-regulated and subjected to strategic planning, so that
individuals can override their initial inclinations and redirect
behavior (e.g., putting an approach behavior into action to
override a basic avoidance tendency). The separate systems for
approaching incentives and avoiding threats show individual
differences and are sustained by disparities in brain structure
and function. Personality traits are linked to neurobiological

measures, such as neurotransmitter metabolites (Cloninger, 1986,
1987; Limson et al., 1991; Cloninger et al., 1993; Kim et al.,
2002), markers that are associated with in vivo neuroimaging
(Sugiura et al., 2000; Canli et al., 2001; Youn et al., 2002;
Kumari et al., 2004), and morphometry (cortical thickness and
volumes) in specific brain regions (Yamasue et al., 2008; Gar-
dini et al., 2009; DeYoung et al., 2010; Picerni et al., 2013;
Laricchiuta et al., 2014b,c,d). Approach and avoidance are related
to and distinct from the central constructs of personality related
in turn to the trait adjective, affective disposition, and motiva-
tional system constructs (Gable et al., 2003; Quilty and Oakman,
2004).

Trait adjective includes extraversion and neuroticism.
Extraversion is the tendency to be sociable, active, optimistic,
and to have high sensitivity to positive stimuli. Conversely,
neuroticism is the tendency to be worrisome, prone, emotionally
unstable, insecure, and to have high sensitivity to negative
stimuli (Eysenck, 1981; Costa and McCrae, 1992). The specific
sensitivity to positive or negative stimuli affects perceiving,
attending, thinking, encoding, and recalling such stimuli.
Eysenck (1981) proposed that extraversion is linked to a general
cortical “arousability” and that neuroticism correlates with a
low threshold for activation in the limbic system. In accordance,
Eisenberger et al. (2005) suggested that neuroticism is the
result of a neural system that detects a mismatch between
actual and expected situations—a function that is carried out
by the dorsal anterior cingulate cortex. DeYoung et al. (2010)
reported that neuroticism covaries positively with the volume
of the cingulate gyrus and negatively with the volume of the
dorsomedial prefrontal cortex and posterior hippocampus—
regions that are associated with threat, punishment, and negative
affect. Recent results have shown that cerebellar white matter
(WM) and gray matter (GM) volumes negatively covary with
neurotic personality traits (Schutter et al., 2012). In parallel,
extraversion covaries positively with the volume of the medial
orbitofrontal cortex, which mediates the processing of reward-
related information (DeYoung et al., 2010). Further, a positive
association between patterns of synchronous neuronal activity
and extraversion has been described in the cerebellum (Wei et al.,
2011).

Affective disposition includes positive and negative
emotionality, i.e., the tendency to experience positive or
negative emotion and engage life in a positive or negative
manner, respectively (Tellegen, 1985; Digman, 1990). Whereas
positive emotionality is related to approach motivation and
is elicited by appetitive stimuli (hedonic stimuli, reward cues,
safety signals), negative emotionality is associated with avoidance
motivation and is elicited by aversive stimuli (negative stimuli,
threat cues, punishment signals). Individuals with high positive
emotionality exhibit high energy, optimism, and openness
toward others and the future. They tend to focus on the pleasant
characteristics of themselves and others. Individuals with high
negative emotionality exhibit high levels of distress, anxiety,
irritability, fear, pessimism about the future, and dissatisfaction.
They call attention to their own unpleasant characteristics and
those of others. Electroencephalographic recordings revealed
that positive and negative emotionality is associated with left
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and right prefrontal cortex activation, respectively (Wheeler
et al., 1993). The link between the extraversion/neuroticism
and the positive/negative emotionality is often discussed with
regard to emotional reactivity. Extraverts and neurotics respond
to stimuli with more intense emotions than introverts and
non-neurotics. High levels of approach behavior in extraverts
often lead to affective benefits. Unlike negative emotionality,
which promotes withdrawal behavior, positive emotionality
spurs exploratory behavior. The broaden-and-build theory of
positive affect by Fredrickson (2001, 2004) suggests that once
a positive emotionality is experienced, one seeks to expand
and continue the experience that encourages the subject to
approach novel situations, ideas, and individuals that are
related to the object of interest. The author hypothesizes the
development of an upward spiral in which positive emotions and
the broadened thinking they engender influence one another
reciprocally, leading to appreciable increases in emotional
well-being over time. Positive emotions may trigger these
upward spirals by building resilience and influencing the ways
that people cope with adversity. Complementarily, the author
hypothesizes a downward spiral in which negative emotionality
and the narrowed pessimistic thinking it engenders influence
one another reciprocally, leading to ever-worsening mood, till
depression.

Motivational system includes behavioral activation system
(BAS) and behavioral inhibition system (BIS). The reinforcement
sensitivity theory proposes that the BAS produces positive affect
and facilitates approach behaviors in response to conditioned
appetitive stimuli, whereas the BIS generates negative affect and
facilitates avoidance behaviors in response to conditioned aver-
sive stimuli, especially in novel situations (Gray, 1987; Gray
and McNaughton, 2000; McNaughton and Corr, 2004, 2014).
Recently, Simon et al. (2010) examined the relation between
individual differences in reward sensitivity and neural processing
during expectation and reception of a reward, by using functional
magnetic resonance imaging (MRI) during a monetary incentive
delay task. Subjects with a high BAS exhibited greater activa-
tion of the ventral striatum during receipt of the reward, and
greater activation of the medial orbitofrontal cortex during receipt
and omission of the reward, demonstrating that approaching or
avoiding reward-related situations have a distinct relationship
with neural processing of the reward. Further, even amygdala
responses appear to be positively associated with BAS (Beaver
et al., 2008). Resting-state functional MRI demonstrated that BIS
correlates negatively with the cerebellum and positively with the
frontal gyrus (Kunisato et al., 2011). Increased fetal testosterone
(FT) predicted increased BAS by biasing caudate, putamen, and
nucleus accumbens to be more responsive to positively compared
with negatively valenced information (Lombardo et al., 2012). In
contrast, FT was not predictive of BIS, suggesting that testosterone
in humans may act as a fetal programing mechanism on the
reward system and influence behavioral approach tendencies later
in life.

Interestingly, human approach-avoidance behavior has been
assessed mainly by self-report questionnaires (e.g., Eysenck, 1981;
Costa and McCrae, 1992; Cloninger et al., 1993; Taylor and
Sullman, 2009), which query the respondent about the type

and frequency of behaviors, and assign a score on each answer.
Recently, in a human study on approach and avoidance tendencies
the individual differences have been assessed on the Sensitivity
to Punishment and Sensitivity to Rewards Questionnaire split
into four subscales: Punishment that measures avoidance tenden-
cies related to BIS; Impulsivity/Fun-Seeking, Drive, and Reward
Responsivity that measure approach tendencies related in turn
to BAS (Lombardo et al., 2012). Furthermore, to more directly
evaluate avoidance behaviors, in humans several studies have used
mild electric shocks (Lovibond et al., 2008, 2013; Delgado et al.,
2009), or aversive visual or auditory stimuli (Dymond et al.,
2011) as the aversive events that could be avoided. To evaluate
approach behaviors, most human studies have employed mone-
tary incentive tasks allowing the analysis of responses occurring
during both expectation and receipt of reward or during the
omission of reward (Schlund and Cataldo, 2010; Simon et al.,
2010). A number of other studies have used the presentation of
primary reinforcers, as somatosensory, olfactory or more often
pleasant taste stimuli (O’Doherty et al., 2000, 2002). Another line
of human studies has considered computer-based tasks (Molet
et al., 2006; Schlund et al., 2010; Sheynin et al., 2014a,b), some of
which take the form of a videogame, in the idea that even though
no negative (e.g., electric shock) or positive (e.g., pleasant taste
or money incentive) stimulus is delivered, people are nonetheless
motivated to avoid aversive events and to approach rewarding
events within the game. In the same vein, recently in a human
study on approach-avoidance conflict a computer game was used
in which the collection of monetary tokens provided the approach
motivation, while the possibility that a virtual predator might
wake up and remove all tokens provided a potential threat, and
thus the avoidance motivation (Bach et al., 2014).

APPROACH- AND AVOIDANCE-RELATED PERSONALITY
TRAITS AND BRAIN STRUCTURAL VARIATIONS
Within theories of personality, another model directly related
to approach and avoidance is that related to the primary
basic personality temperament and character traits by Cloninger
(Cloninger, 1987; Cloninger et al., 1993). In his temperament
and character inventory (TCI), he described four tempera-
mental traits: Novelty Seeking (NS), Harm Avoidance (HA),
Reward Dependence (RD), and Persistence (P). Novelty seeking
is an approach-related personality trait and refers to the ten-
dency to act. High NS scores reflect a greater tendency toward
exploratory activity in response to novelty, impulsive decision-
making, extravagant approaches to reward cues, and rapid loss
of temper. The advantages of high NS are excitability, curiosity,
enthusiasm, and quick engagement with anything that is new
and unfamiliar. Conversely, its disadvantages are indifference, lack
of reflection and intolerance to monotony, anger, inconsistency
in relationships, and quick disengagement whenever a wish is
frustrated. Harm avoidance is an avoidance-related personality
trait and is the tendency to inhibit behaviors, acting with caution
and apprehension. High HA scores indicate proclivity to respond
intensively to aversive stimuli or signals of punishment or non-
rewards, and they lead to pessimistic worry in anticipation of
problems, fear of uncertainty, shyness with strangers, and rapid
fatigability. The adaptive advantages of high HA are cautiousness
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and careful planning when a hazard is likely. Its disadvantages
arise when a hazard is unlikely but still anticipated which leads
to maladaptive inhibition and anxiety. Reward dependence is
the inclination to maintain ongoing behaviors that have been
associated with reinforcement and to express persistence, social
attachment, and dependance on approval by others. High RD
scores reflect to be tenderhearted, sensitive, dedicated, dependent,
and sociable. The adaptive advantage of high RD is sensitivity to
social cues, which facilitates affectionate social relations and gen-
uine care for others. Its disadvantages are related to suggestibility
and loss of objectivity, which are frequently encountered with
people who are excessively socially dependent. Persistence refers
to the ability to maintain arousal and motivation internally in the
absence of an immediate external reward. High P scores indicate
hard-working, perseverance, ambitiousness, and perception of
frustration as a personal challenge. The adaptive advantage of a
high P is the use of behavioral strategies when a reward is inter-
mittent but the contingencies remain stable. Its disadvantages are
related to perfectionist perseverance when contingencies change
rapidly.

Within the factors that contribute to individual differences,
gender influences HA (females have higher HA scores than
males), and age influences NS (young subjects have higher NS
scores than elders) (Cloninger et al., 1993; Fresán et al., 2011;
Westlye et al., 2011). Although individuals with depression (Ono
et al., 2002), bipolar mania (Loftus et al., 2008), schizophrenia
(Fresán et al., 2007), substance use disorders (Conway et al.,
2003), pathological gambling (Martinotti et al., 2006), and anx-
iety disorders (Kashdan and Hofmann, 2008) have NS or HA
scores higher than healthy subjects, NS and HA are clearly non-
dysfunctional behaviors and contribute to adaptive functioning.
Further, NS and HA provide mechanisms to expand the range
of stimuli and possibilities, protect one from potentially aversive
contexts, supply the appropriate feedback for sculpting the brain
and develop interest in specific domains. Structural neuroimaging
studies on the regional specificity of brain-temperament rela-
tionships have demonstrated that the strength of fiber tracts
from the hippocampus and amygdala to the striatum predicts
the individual differences in NS (Cohen et al., 2009). Further,
NS correlates positively with the volume of the frontal and
posterior cingulate cortex; HA is negatively associated with the
volume of the orbitofrontal, occipital, and parietal areas; RD
correlates negatively with the volume of the caudate nucleus and
frontal gyrus; P has a positive association with the volume of
the precuneus, paracentral lobule, and parahippocampal gyrus
(Gardini et al., 2009). Negative relationships between HA and
anxiety-related traits and volumes of the entire brain (Knutson
et al., 2001) and orbitofrontal (DeYoung et al., 2010) and left
anterior prefrontal (Yamasue et al., 2008) cortices have been
also reported. In parallel, increased HA is linked to decreased
micro-structural integrity in widely distributed fiber tracts that
include the corticolimbic pathways (Westlye et al., 2011). Fur-
thermore, subjects with low NS and high HA scores have a rel-
atively low striatal dopaminergic receptor density (Montag et al.,
2010).

Assuming that the variability in an approach-related person-
ality trait, such as NS, and an avoidance-related personality trait,

such as HA, is normally distributed, in a large cohort of healthy
subjects of both sexes and a wide age range (18–67 years), we
tested the hypothesis that macro- and micro-structural variations
in specific brain areas correlated with scores on the TCI temper-
amental scales (Picerni et al., 2013; Laricchiuta et al., 2014c,d).
Region of interest (ROI)-based and voxel-based morphometry
(VBM) analyses were used to assess macro-structural organiza-
tion, and diffusion tensor imaging (DTI) scan protocol was used
to evaluate micro-structural organization (Picerni et al., 2013;
Laricchiuta et al., 2014b,c,d). Diffusion tensor imaging measures
the diffusion of water molecules through tissues, detects micro-
structural variations in the brain, and provides physiological
information that is not available using conventional MRI (Le
Bihan, 2007; Basser and Pierpaoli, 2011). The DTI indices that
we used were Mean Diffusivity (MD) for GM and Fractional
Anisotropy (FA) for WM, which reflect with great accuracy in
space and time the subtle changes in cell structure which accom-
pany various physiological and pathological states. In particular,
low values in MD or high values in FA indicate high integrity and
efficiency, and advanced organization of brain micro-structure.
Variations in water diffusion parameters are linked to variations
in cognitive functions (Piras et al., 2010, 2011) and personal-
ity dimensions (Westlye et al., 2011; Bjørnebekk et al., 2012,
2013).

We found that increased volumes of the bilateral caudate and
pallidum were associated with higher NS scores (Figure 1A),
and increased MD measures in the bilateral putamen corre-
lated with higher HA scores (Laricchiuta et al., 2014c). Further,
greater cerebellar volumes were linked to higher NS scores, and
reduced cerebellar volumes were associated with higher HA scores
(Laricchiuta et al., 2014d; Figure 1B). These associations were
observed in the cerebellar WM and cortex of both hemispheres.
A greater-than-average volume might reflect greater-than-average
power to perform specific functions. Human and animal evi-
dence favors the larger-is-more-powerful position: training on
particular tasks or experiencing complex environment increases
the volume of functionally related brain structures (Boyke et al.,
2008; Pangelinan et al., 2011; Di Paola et al., 2013). Thus, it is
reasonable to assume that volume tends to covary positively with
function. We also noted positive associations between the volumes
of vermian lobules VIIb, VIII, and Crus 2 and NS scores (Figure 2;
Picerni et al., 2013). The relationship between NS scores and
cerebellar structures was also observed at the micro-structural
level, as evidenced by the DTI data. The triad including increased
volume, decreased MD, increased FA indicates that the macro-
and micro-structural features of the posterior vermis support
approach behaviors.

These novel data that implicate a cerebellar substrate for
approach- and avoidance-related personality traits extend the
relationship between brain areas and personality to a structure
that, until now, was believed to be involved primarily in motor
and cognitive functions (Oliveri et al., 2007; Torriero et al., 2007;
De Bartolo et al., 2009; Foti et al., 2010; Cutuli et al., 2011; Hampe
et al., 2013), much less in emotional processes (Schmahmann
and Sherman, 1998; Schmahmann et al., 2007; Timmann and
Daum, 2007) and even less in personality individual differences
(O’Gorman et al., 2006). Anatomo-clinical analyses indicate that
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FIGURE 1 | Relationship between basal ganglia and cerebellar volumes
and TCI scores. (A) The volumes of the bilateral caudate and pallidum were
positively associated with Novelty Seeking (NS) scores. (B) The volumes of

the cerebellar cortex were positively associated with NS scores and
negatively with Harm Avoidance (HA) scores. Scatterplots are separated for
left and right volumes. Linear fits (solid black lines) are reported.

FIGURE 2 | Positive association between cerebellar gray matter
volumes and NS scores. Coordinates are in Montreal Neurological
Institute (MNI) space. In figure left is left.

the cerebellum is a critical neuromodulator of intellect and mood
and that the posterior vermis, the so-called limbic cerebellum,
chiefly regulates emotion and affect (Schmahmann, 2004; Stood-
ley and Schmahmann, 2010; Stoodley et al., 2012). Impaired
executive and spatial functions, language deficits, and person-
ality changes have been described in subjects with lesions of
the posterior lobe and vermis (cerebellar cognitive-affective syn-
drome) (Schmahmann and Sherman, 1998). MRI studies have
shown structural and functional abnormalities in the cerebellum
in patients with personality, anxiety, or depression disorders
(Pillay et al., 1997; De Bellis and Kuchibhatla, 2006; Fitzgerald
et al., 2008; Baldaçara et al., 2011a,b). This evidence implicates
the cerebellum in affective processing which affects personal-
ity characteristics. Moreover, the psychopathological profiles of
patients who are affected by cerebellar diseases describe them

as impulsive, obsessive, hyperactive, disinhibited, and developing
ruminative and stereotypical behaviors—features that affect their
personality style (Schmahmann et al., 2007). Even data in healthy
subjects indicate limited capacity for emotional regulation after
repetitive inhibitory transcranial magnetic stimulation over the
cerebellum (Schutter and van Honk, 2009). The direct reciprocal
connections between the cerebellum and basal ganglia (Figure 3,
dashed black line) (Hoshi et al., 2005; Bostan and Strick, 2010;
Bostan et al., 2010) constitute the neuroanatomical basis for the
cerebellar influence on reward-related behaviors and motivation-
related information processing—functions that, until now, have
been attributed only to the basal ganglia (Wise, 2004; Delgado,
2007; Palmiter, 2008). It is likely that the cerebellum accelerates
the “force” with which the reward is experienced (Schmahmann
et al., 2007). Cerebellar activity signals when the sensory input
differs from memory-driven expectations, provides a sensory
prediction error, guides exploratory drive in novel environments,
allows a flexible switching among multiple tasks or alternatives,
and renders functions faster and more adaptive (Restuccia et al.,
2007). The cerebellum performs these functions by refining the
rate, rhythm, and force of the behavior and adjusting it for given
situations. Essentially, the cerebellum receives information from
the cortex and basal ganglia and sends a “corrected” signal back.
In particular, based on cerebellar detection of error/novelty, Ito
(2008) proposed that in the motor and cognitive domains the
cerebellum develops both forward and inverse models. In the
forward model, the cerebellum is informed by the cortex and basal
ganglia with regard to information load, plans, and intentions
about the upcoming behavior and on the characteristics of the
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FIGURE 3 | Brain circuitries that mediate approach and avoidance
behaviors. Salient stimuli information from the sensory systems reaches the
thalamus that in turn projects to neocortex and amygdala, first to its lateral (L)
and then to central (C) and basal (B) nuclei (solid black line). The amygdala in
turn projects to the hypothalamus, and directly or indirectly (via orbitofrontal
cortex) to the dorsal striatum. These connections are involved in avoidance
responses (solid red line). The outputs from the amygdala also reach the
ventral striatum and the orbitofrontal cortex, and these connections are
involved in approach responses (solid green line). The dorsal striatum receives

also glutamatergic inputs (solid blue line) from neocortical and thalamic areas
and dopaminergic inputs (solid yellow line) from the substantia nigra. These
inputs establish synapses with striatal GABAergic cells, distinct in “direct”
(dashed green line) and “indirect” (dashed red line) pathway projection
neurons. Direct pathway projects to the internal globus pallidus and
substantia nigra, whereas indirect pathway projects to the substantia nigra by
way of the external globus pallidus and subthalamic nucleus. Also the
bidirectional striatal-cerebellar network (dashed black line) is involved in the
emotional and motivational processes linked to approach and avoidance.

environment in which the behavior is manifested. Thus, the
cerebellum develops a progressive, short-cut, anticipatory model
(Wymbs and Grafton, 2009; Seidler, 2010; van Schouwenburg
et al., 2010). As the behavior and cognition are repeated and
the anticipatory predicted feedback is received, the cerebellum
becomes increasingly accurate in its predictive capacities and
allows behavior to become faster, more precise, and indepen-
dent of cortical control. With successful repetitions, behavior
that is governed consciously by the cerebellar forward model
becomes increasingly automated and the cerebellar “inverse”
model is developed. This permits rapid and skilled behavior
to occur at an unconscious level. The cerebellum is constantly
constructing multipairs of models that constitute a complex
modular architecture for adaptively regulating motor, cognitive,
and emotional material. In triggering the new mental activ-
ity, the cerebellum could warn the prefrontal cortex about the
absence of internal models that match the novel information,
maintain the newly generated internal models, and incorporate
them into routine schemes of thought. To successfully manage
novelty, the cerebellum and neocortical/subcortical areas must

be co-activated. Timing, prediction, and learning properties of
the cerebellum, once integrated in the circuits that are formed
with the neocortex, basal ganglia, and limbic system (Figure 3),
could affect the control of complex novelty-related functions
(D’Angelo and Casali, 2013). Thus, this widespread two-way
communication sustains basal ganglia and cerebellar involvement
in motor functions and cognitive and behavioral processing.
Cortico-basal-cerebellar communication may influence and sus-
tain even processes that are linked to individual differences in
approach and avoidance behaviors (Figure 3, dashed black line).
The basal ganglia and cerebellum have complementary roles
in facilitating motivation that sustains and reinforces personal-
ity features. The positive correlation between basal ganglia and
cerebellar volumes and NS scores and the negative association
between basal ganglia and cerebellar volumes and HA scores are
consistent with the varying levels of engagement that subjects
with various personality traits require to their subcortical cir-
cuitries. In fact, subjects who search for unfamiliar situations,
make the unknown known, explore new environments, display
increased tendency toward risk-taking, sensation-seeking, and
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immediate reward-seeking, lack inhibition, as novelty seekers do,
need very rapid detection of unfamiliar events, flexible switching
among tasks, alternatives, and contexts, and fast adaptation to
change. All these functions heavily engage basal ganglia and
cerebellum.

APPROACH AND AVOIDANCE BEHAVIORS IN ANIMALS
It is still very difficult to study the brain mechanisms of human
subjective experience like emotion or motivation. Although the
neuroimaging techniques are rapidly advancing, they reveal little
about the precise working of neurons and trafficking of molecules
in the brain activity related to approach and avoidance. Further,
neuroimaging studies are correlative and cannot deliver answers
about the nature and cause of the associations between structure
and function. The techniques required to detail the mechanisms
of brain functions usually cannot be used with humans for ethical
and practical reasons, but animal research allows for use of these
techniques, much as invasive they can be. In the following sections
we address the experimental research on approach and avoidance
behaviors, facing neurobiological, neurochemical and synaptic
aspects.

TOOLS FOR STUDYING APPROACH AND AVOIDANCE BEHAVIORS
In a wide range of animal species individual differences in
approach and avoidance behaviors have been observed, based on
direction of the action toward positive (e.g., rewarding) stimuli
or away from negative (e.g., dangerous) stimuli, on neophilic or
neophobic responses, or on exploratory or withdrawal behaviors
(Greenberg, 2003). In an attempt to model in rodents the human
individual differences in approach and avoidance behaviors, many
behavioral testing paradigms have been employed because almost
all behavioral tests encompass approach or avoidance facets. In
fact, although most tests are devoted to test spatial, discriminative,
mnesic, attentive functions as well as emotional components, in
many behavioral tests it is possible to emphasize the component of
approach and avoidance. Overall, the tests integrate the approach-
avoidance conflict designed to promote or inhibit an ongoing
behavior characteristic for the animal, such as forcing or vise
versa contrasting the tendency of mice to engage in exploratory
activity, reward- or novelty-seeking behaviors, and social interac-
tion. Notably, the explorative drive represents the prerequisite to
recognize and seek for rewarding or novel stimuli and includes
many components, such as suppression of the discomfort caused
by unfamiliar spaces, exit from known starting areas, acquisition
or use of efficient foraging strategies, and snapshots of the target
view and representation-forming procedures.

Among the various tests, the mostly used are the Light-Dark
Exploration Test, Social Interaction Test, Novelty-Induced
hypophagia test, Approach-Avoidance conflict paradigm,
Approach/Avoidance (A/A) Y-maze, and Open Field (OF) test
(Bailey and Crawley, 2009).

As for the Light-Dark Exploration Test, the chamber is formed
by a cage divided into two unequal compartments by a dark
partition with a small aperture located in the bottom center. The
smaller compartment is painted black and covered by a hinged
lid. The larger compartment is uncovered with transparent sides
and is brightly lit by fluorescent room lighting. Thus, the animal

is exposed to environment with protected (dark compartment)
and unprotected (light compartment) areas. The inherent con-
flict between exploratory drive and risk avoidance is thought
to inhibit exploration. Most mice naturally demonstrate a pref-
erence for the dark protected compartment. The key measure
for assessing approach-avoidance behavior is a willingness to
explore the lighted unprotected area. Such proclivity is reflected
in the number of transitions between compartments, and in the
time spent in each compartment. An increase in exploratory
activity is interpreted as a release of exploratory inhibition and
novelty-seeking behavior. In fact, mice exhibiting higher lev-
els of anxiogenic/avoiding-like behavior will make fewer transi-
tions between the brightly illuminated, open area and the dark,
enclosed compartment. Further, the time spent in risk assessment
is another measure of anxiety/avoidance-related behavior. Risk
assessment includes a stretch-attend posture in which the head
and forepaws extend into the lighted area but the remainder of
the body stays in the dark compartment (Bailey and Crawley,
2009).

As for the Social Interaction Test, unfamiliar animals are
allowed to directly or indirectly interact in an arena. Time spent
in interacting is recorded. Anxiolytic/approaching-like behavior
is inferred if social interaction time increases and general motor
activity remains unaffected. Conversely, decreased time spent
in engaging social behavior indicates anxiogenic/avoiding-like
behavior. The times engaged in aggressive (attack, aggressive
unrest), avoiding (vigilant posture, escape and defense activity),
approaching (following, social sniffing, over-under climbing)
behaviors as well as in motor activities (rearing, walking) are
scored (File and Seth, 2003).

Novelty-Induced hypophagia test is based on the typical behav-
ior of the rodents that consume very limited quantities of any
new even if highly palatable food and only after considerable
investigation. This response is unconditioned, requires no train-
ing, and can be elicited in food-deprived or satiated animals by
substituting a highly palatable food source for standard food. As
the test sessions go on, the latency to the first taste decreases and
the total amount of consumed food increases (Dulawa and Hen,
2005).

Approach-Avoidance conflict paradigm consists of a rectangular
box subdivided into two compartments. One distinctive visual
cue is associated with each compartment: one compartment has
white walls and black floor, whereas the other one has black
walls and white floor. For three consecutive days, the animal is
placed in only one compartment that becomes familiar. In the
following days, the animal placed in the familiar compartment
is allowed to freely explore the whole apparatus (both familiar
and novel compartments). The time spent in each compartment
and frequency of crossings between compartments are indices of
approach and avoidance behaviors (Adriani et al., 1998; Zoratto
et al., 2013).

A/A Y-maze has a starting arm from which two arms stemmed,
arranged at an angle of 90◦ to each other (Figure 4A). One of
the two arms has black and opaque floor and walls and no light
inside, while the other one has white floor and walls and is lighted.
At the end of each arm of choice there is a food tray. The depth
of the tray prevents mice from seeing the reward at a distance
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FIGURE 4 | Responses to conflicting stimuli of mice in A/A Y-Maze and
OF task. (A) Curves of distribution of the white and black choices of animals
during the A/A Y-Maze sessions (on the left). Curve of distribution of the A/A
conflict index, considered as the difference (∆) in the number of white
choices between sessions (on the right). (B) In the OF task (on the right), the

AP mice significantly (*** P < 0.0005) spent more time in contacting the
novel object than the AV and BA mice (on the right). Abbreviations: W: white
arm; B: black arm; S1: first session; S2: second session; AV: avoiding animals;
BA: balancing animals; AP: approaching animals. In (B), data are presented as
means ± SEM.

but allows for an easy reward (eating) and the appreciation of
reward scent, not reducing the olfactory cues. Since the appetites
for palatable foods have to be learned (Wise, 2006; Lafenêtre
et al., 2009), a week before behavioral testing the animals have
to be exposed to a novel palatable food (Fonzies, KP Snack Foods,
Munchen, Germany) in their home cages for three consecutive
days (Bassareo et al., 2002). At the beginning of behavioral testing,
mice are subjected to 1-day habituation phase in which all Y-
Maze arms are opened to encourage maze exploration. During
habituation phase, no food is present in the apparatus. To increase
the motivation to search for the reward, 12 h before exposure to
the experimental set-up, the animals are slightly food deprived
by limiting the food access to 12 h/day. Such a regimen has to
result in no significant body weight loss. Testing phase consists
of two 10-trial sessions with 1 min-inter-trial interval. In the
Session 1 (S1), the mouse is placed in the starting arm and may

choose to enter one of the two arms, both containing the same
standard food reward. During the Session 2 (S2; starting 24 h after
S1), the white arm is rewarded with the highly palatable food,
while the black arm is rewarded with the standard food pellet.
Thus, the A/A Y-maze task requires an animal to choose between
two conflicting drives: reaching a new reward (highly palatable
food) in an aversive (white and lighted) environment or reaching
a familiar food (standard pellets) in a not aversive (black and
opaque) environment. The considered parameters were: white
choices, the frequency of entry into the white arm in S1 and S2;
A/A conflict index, the difference in the number of white choices
between S1 and S2; entry latencies exhibited in white and black
arms, separately or regardless arm color or reward in each trial of
both S1 and S2.

Open field apparatus consists of a wide circular arena delimited
by a wall (Figure 4B). In S1, a mouse is allowed to explore
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the empty OF and its baseline level of activity is measured.
In S2, the object is put in the arena center. Notably, the
approach to the object requires the subject to overcome its
innate fear toward open spaces and indicates thus that the
animal is reacting to the mismatch between the initial (empty
arena) and new (presence of the object) situations. Novelty
preference is considered an inverse index of anxiety whereby
an anxious mouse tends to avoid the potential dangers asso-
ciated with a novel and unknown environment. The con-
sidered parameters were: total and peripheral distances trav-
eled in the arena; central crossings; freezing duration; number
of defecation boluses; latency and time of contact with the
object.

In these tasks there is a clear conflict between positive and
negative poles that simultaneously evoke approach and avoidance
behaviors. Typically, when the positive and negative poles have
similar strengths, the subject remains suspended or, at best, grav-
itates toward the slightly heavier pole of the conflicting situation.
Many other tests are devoted to selectively assess behaviors of
approach (as drug intake, response to positive conditioned stim-
ulus, brain self-stimulation) or avoidance (as conditioned taste
aversion, operant behavior to avoid an electric shock by a lever-
press, aversive brain stimulation).

NEUROBIOLOGICAL ASPECTS
Approach and avoidance behaviors are posited to emerge from
mechanisms operative in the spinal cord (Berntson et al., 2003;
Schutter et al., 2011), brain stem (Berridge and Peciña, 1995;
Nelson and Panksepp, 1998; Challis et al., 2013) and cortex
(Nasser and McNally, 2012). Namely, approach and avoidance
behaviors are associated with the corticolimbic circuitry that
comprises the prefrontal cortex, amygdala, and striatum and
that controls cognitive functions, attention, reward sensitivity,
and emotional expression (Figure 3; Cain and LeDoux, 2008;
LeDoux, 2012; Bravo-Rivera et al., 2014). The intensity of appet-
itive or defensive motivation-related behaviors are modulated by
the levels of neurotransmitters (dopamine, acetylcholine), neu-
ropeptides (corticotrophin-releasing hormone, oxytocin, orexin),
and neuromodulators (endocannabinoids) (Robbins and Everitt,
1996; Berridge, 2000; Gerra et al., 2000; Linfoot et al., 2009;
Groppe et al., 2013; Mogi et al., 2014). Understanding neuro-
chemical systems is crucial in addressing approach and avoidance
topic (Tops et al., 2010). The avoidance situations (satiation,
conditioned taste aversion, aversive brain stimulation) have the
acetylcholine release in common, while the approach situations
(eating, sugar bingeing, drug intake, positive conditioned stimu-
lus, brain self-stimulation) have the dopamine release in common
(Hoebel et al., 2007). However, it has to be considered that
dopamine is an important factor also in responding to positive
punishment provoked by the exposure to an aversive stimulus,
and is involved in the motor aspects of both approach and avoid-
ance behaviors. In the nucleus accumbens it has been demon-
strated that dopamine and acetylcholine exert opposing roles in
the control of GABAergic output in relation to approach and
avoidance, and acetylcholine counteracts any excessive approach
behavior mediated by the dopamine (Helm et al., 2003; Kelley
et al., 2005; Hoebel et al., 2007). Interestingly, adult offspring of

dams treated with corticosterone and a tryptophan-deficient diet
showed increased avoidance behavior in the approach-avoidance
conflict paradigm and anhedonia toward highly palatable reward
in an operant progressive ratio test (Zoratto et al., 2013). These
behaviors were associated with reduced dopamine and serotonin
levels in the prefrontal cortex and reduced striatal and increased
hypothalamic Brain Derived Neurotrophic Factor (BDNF) levels.
Also neuropeptides are retained to be critical in approach and
avoidance behaviors and have been much studied in animal
research over the last several years. It has been demonstrated
that in odor-recipient rats the odor cues from healthy con-
specifics induced approach behavior, while the odor cues from
sick conspecifics produced avoidance response (Arakawa et al.,
2008, 2009, 2010a, 2011). In the odor-recipient rats, c-Fos mRNA
expression was induced in olfactory bulb, amygdala, bed nucleus
of stria terminalis, and hypothalamic paraventricular nucleus
(Arakawa et al., 2010b). Interestingly, in the amygdala, the expres-
sion of oxytocin receptor mRNA was increased when the rats were
exposed to healthy conspecific odor, while induction of arginine
vasopressin receptor mRNA was found when exposed to sick
conspecific odor. Into the amygdala the infusion of an antagonist
of oxytocin receptor blocked approach behavior to “healthy”
odor, while the infusion of antagonists of arginine vasopressin
receptor inhibited avoidance response to “sick” odor. Thus, the
approach and avoidance behaviors appear to involve similar brain
regions but with different mechanisms (Ikemoto and Panksepp,
1999; Cain and LeDoux, 2008; Nasser and McNally, 2012). Recent
findings indicate that also the orexins, hypothalamic neuropep-
tides that regulate feeding and sleeping behaviors, modulate
avoidance behaviors. Rats treated with an antagonist of orexin-1
receptor approached a typically negative stimulus (cat odor) more
than vehicle-treated rats (Staples and Cornish, 2014). Notably,
exposure to cat odor induced Fos expression in the hypothala-
mus, suggesting that hypothalamic system is functionally involved
with antipredator defensive behaviors (Blanchard et al., 2005). In
accordance, microinjections of orexins in the paraventricular tha-
lamic nucleus that innervates the amygdala decreased approach
behavior to novelty in rats, indicating a negative emotional state
(Li et al., 2010).

A very significant neuromodulatory system on approach and
avoidance behaviors in humans (McDonald et al., 2003; Van
Laere et al., 2009) as well as rodents (Pattij et al., 2007; Lafenêtre
et al., 2009) is the endocannabinoid system (ECS) that deserves a
detailed description.

As we recently demonstrated, spontaneous forms of approach
and avoidance behaviors rely on ECS modulation in corticolimbic
and striatal areas (Laricchiuta et al., 2012b, 2014a,d).

NEUROCHEMICAL ASPECTS: ENDOCANNABINOID AND
DOPAMINERGIC SYSTEMS
After their synthesis from arachidonic acid, endocannabinoids,
such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG),
modulate synaptic transmission by stimulating cannabinoid type-
1 (CB1) receptors (Freund et al., 2003; Piomelli, 2003; Marsicano
and Lutz, 2006; Matias and Di Marzo, 2007; Kano et al.,
2009). These receptors are primarily expressed in the corticol-
imbic, striatal and cerebellar pathways (Herkenham et al., 1990;
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Katona et al., 1999; Marsicano and Lutz, 1999; Palmiter, 2008;
Koob and Volkow, 2010). Cannabinoid type-1 receptors presy-
naptically inhibit glutamatergic and GABAergic neurotransmis-
sion (Pagotto et al., 2006; Matias and Di Marzo, 2007; Kano
et al., 2009) and this inhibitory control of excitatory and
inhibitory neuronal subtypes determines the bimodal effects of
endocannabinoids (Bellocchio et al., 2010). Thus, the ECS is
engaged in myriad of physiological functions. During neural
development, the ECS mediates neuronal proliferation, migra-
tion, and axonal growth (Berghuis et al., 2007; Harkany et al.,
2008; Mulder et al., 2008; Trezza et al., 2008). Throughout life,
the ECS influences synaptic transmission, neuroprotection, and
neuroinflammation (Fowler and Jacobsson, 2002; Cota et al.,
2003; Maldonado et al., 2006; Marsicano and Lutz, 2006; Kano
et al., 2009; Lutz, 2009; Fowler et al., 2010). Further, the ECS
governs emotional processes, anxiety, stress coping and extinction
of aversive memories (Witkin et al., 2005; Lutz, 2007, 2009;
Patel and Hillard, 2008; Laricchiuta et al., 2013). The involve-
ment of the ECS in fear extinction is supported by the different
responses of the human subjects genotyped for two polymor-
phisms of CB1 receptors in a fear-potentiated eyeblink startle
reflex paradigm (Heitland et al., 2012). In adults with trauma-
related psychopathologies, increased CB1 receptor availability
in the amygdala is associated with increased attentional bias
to threat and increased severity of the symptomatology linked
to threat (re-experiencing, avoidance, and hyper-arousal), but
not the symptomatology linked to loss (emotional numbing,
depression, generalized anxiety) (Pietrzak et al., 2014). Also a
common polymorphism that affects the enzymatic degradation
of endocannabinoids by fatty acid amide hydrolase (FAAH) is
linked to reactivity of the amygdala in relation to threat during
a face allocation task involving fearful and angry faces, and to
reactivity of the striatum in relation to reward in a gambling task
with positive and negative feedback (Hariri, 2009). Further, the
individuals with the FAAH polymorphism exhibit quick habit-
uation of amygdala reactivity to threat (Gunduz-Cinar et al.,
2013). Thus, the effects of the FAAH polymorphism demonstrate
the engagement of ECS in the defensive and appetitive moti-
vational systems (Conzelmann et al., 2012). Moreover, genetic
deletion or inhibition of FAAH has context-dependent anxiolytic
effects, as demonstrated in mice tested on Elevated Plus-Maze and
Light-Dark Exploration Test (Naidu et al., 2007; Moreira et al.,
2008).

In mice, experimental manipulations with strong reward-
ing and reinforcing properties, such as cocaine-induced condi-
tioned place preference, spontaneous running wheel activity, and
sucrose consumption, are associated with hypersensitivity of stri-
atal GABAergic synapses to CB1 receptor stimulation (Centonze
et al., 2007a,b; De Chiara et al., 2010). Conversely, social defeat
chronic stress down-regulates CB1-controlled GABAergic stri-
atal neurotransmission in mice (Rossi et al., 2008). Notably,
the reinforcing effects of the primary rewards (food or drug)
or the environmental stimuli associated with them enhance the
dopaminergic release in corticolimbic and basal ganglia areas
(Figure 3, yellow solid line) (Bassareo et al., 2002; Lupica and
Riegel, 2005; Alcaro and Panksepp, 2011). Endocannabinoid sys-
tem and dopaminergic system dynamically interact in controlling

neuronal, endocrine, and metabolic responses to reward (Di
Marzo et al., 2004; Fernández-Ruiz et al., 2010). In rats, the ECS
inhibition on mesolimbic dopaminergic neurons influences the
processes of attribution of salience to the reward represented by
cocaine and heroin (De Vries et al., 2001; Fattore et al., 2003). The
ECS has been implicated in several dopamine-related disorders,
such as schizophrenia (Robson et al., 2014), Parkinson’s disease
(Maccarrone et al., 2003), and drug addiction (Maldonado and
Rodríguez de Fonseca, 2002; Rivera et al., 2013; Nader et al.,
2014). In these conditions, ECS involvement likely reflects the
activity of midbrain dopaminergic neurons and their target struc-
tures (Berke and Hyman, 2000; Everitt and Wolf, 2002; Castelli
et al., 2011).

To analyze individual differences in spontaneous approach
and avoidance behaviors, we tested adolescent (about post-natal
day 32nd) C57BL/6JOlaHsd inbred mice in the A/A Y-maze
(Laricchiuta et al., 2012b, 2014a,d). In the large sample of mice
(more than seven hundred) tested in the A/A Y-maze task,
we assigned the individuals into three phenotypes—avoiding
(∼6% of individuals that spontaneously reacted with withdraw-
ing responses to the conflicting stimuli), balancing (∼25% of
individuals that reacted with balanced responses to the conflicting
stimuli), and approaching (∼7% of individuals that reacted with
advancing responses to the conflicting stimuli, Laricchiuta et al.,
2012b, 2014d; Figure 4A). All mice had similar explorativity levels
in the initial trials of the task, but only approaching animals main-
tained high reactivity as trials went by. To eliminate the “food”
and “palatability” dimensions and maintain the conflicting drives
given by a new object placed in an anxiogenic central location
of a wide arena, OF task has been used. In the OF, only the
approaching animals were highly explorative and attracted by
the new object (Figure 4B; Laricchiuta et al., 2012b). The close
relation between approach behavior and explorativity has been
proposed also in human studies that report that impulsivity and
extraversion (Martin and Potts, 2004; Cohen et al., 2005), and risk
aversion and low motivation (Tobler et al., 2007) are related to
each other.

Because the A/A Y-maze and OF tasks integrate approach-
avoidance conflict, the inevitable anxiogenic component that
is linked to the conflict had to be considered. No differences
in anxiety-related parameters of both tasks (defecation boluses,
freezing times and central crossings) were found in the three
phenotypes. Also, in the Elevated Plus-Maze, a well-validated
anxiety test, all animals had similar anxiety levels.

To analyze the neuronal correlates of the approach and
avoidance behaviors displayed by the three sub-populations of
animals, we analyzed the CB1-mediated neurotransmission in
medium spiny neurons (MSNs) of the dorsomedial striatum
that is crucially involved in motivated and goal-directed behav-
iors (Palmiter, 2008; Koob and Volkow, 2010; Laricchiuta et al.,
2012b). Presynaptic control of CB1 receptors on GABAergic
transmission in the dorsostriatal MSNs was nearly absent in
the avoiding animals but rose increased in the approaching ani-
mals. Specifically, application of a CB1 receptor agonist (HU210)
to striatal slices provoked peak reductions of GABAA-mediated
inhibitory postsynaptic currents of approximately 40%, 20%, and
0% in approaching, balancing, and avoiding animals, respectively.
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By enhancing the AEA endogenous tone with URB597, a drug
that inhibits FAAH, the avoiding animals exhibited increased
approach behavior and explorative drive. These behavioral
responses were paralleled by the rescue of CB1 receptor sensitivity
to HU210. On blocking CB1 receptors with AM251, a CB1 inverse
agonist, the approaching animals reduced their contact times
with object and explorative behavior in the OF task, behaviors
accompanied by complete inhibition of CB1 receptor activity.
Thus, the behavioral features of the avoiding and approaching
animals treated with ECS agonists and antagonists tended to fade.
In a nut shell, the treatment rendered them less inhibited and
less “advanced”, respectively. These findings were confirmed by
counterbalancing the pharmacological manipulations in avoiding
and approaching animals. Avoiding animals that had a reduced
CB1 control on GABAergic MSNs when further inhibited by
AM251 treatment did not display any behavioral as well as elec-
trophysiological modification in comparison to avoiding animals
treated with vehicle. In parallel, approaching animals that had
an enhanced CB1 control on GABAergic MSNs when further
potentiated by URB597 treatment did not display any behavioral
as well as electrophysiological modification in comparison to
approaching animals treated with vehicle.

Balancing animals treated with URB597 developed a robust
approach behavior toward palatable food in the A/A Y-maze
and the new object in the OF task (Laricchiuta et al., 2014a).
In these animals, the administration of AM251 alone or in
combination with URB597 attenuated the approach behavior
toward palatable food in the A/A Y-maze and the new object
in the OF test, and suppressed the effects of HU210 on dorsos-
triatal GABAergic MSNs. These findings demonstrate that the
effect of URB597 on approach behavior is mediated by CB1

receptors. Notably, in balancing animals, haloperidol (dopamin-
ergic D2 receptor antagonist) blocked their approach behav-
ior toward palatable food in the A/A Y-maze and the new
object in the OF task, like AM251 did, and suppressed the
effects of HU210 on dorsostriatal GABAergic MSNs (Laricchiuta
et al., 2014a). These findings are consistent with the observa-
tion that D2 stimulation activates the dorsostriatal ECS, which
in turn influences the GABAergic MSNs (Centonze et al.,
2004, 2007a,b), and with the disparities in impulsivity that
are associated with differences in monoamines in the striatum
and nucleus accumbens in inbred rodents (Moreno et al.,
2010).

In balancing animals, the co-administration of URB597 and
haloperidol counteracted the effects of haloperidol on approach
behavior in the A/A Y-maze but not in the OF task. Further,
ECS potentiation combined with D2 receptor blockade arose only
when the reward was represented by palatable food (Laricchiuta
et al., 2014a). Such a facilitatory effect on food reinforcement
was due to the higher salience of palatable food, based on the
hedonic properties of its palatability, compared with the lower
salience of the object, regardless of its novelty. On the elec-
trophysiological level, CB1 receptor sensitivity to HU210 was
rescued when URB597 and haloperidol were co-administered.
These findings are consistent with the increased preference for
palatable substances (evaluated by sucrose drinking) and sweet
taste (evaluated by behavioral and electrophysiological responses

to sweet mixtures) that is induced by the administration of
exogenous cannabinoids or endocannabinoids (Higgs et al., 2003;
Jarrett et al., 2005; Yoshida et al., 2010). In parallel, in rodents
the AM251 treatment decreased the palatable food intake (Di
Marzo and Matias, 2005; Pagotto et al., 2006). Further, mice
injected with the selective CB1 antagonist Rimonabant repeatedly
exposed to novel palatable food or a novel object, exhibited
decreased reactivity to palatable food intake, but not to novel
object (Lafenêtre et al., 2009). Cannabinoid type-1 antagonists
decreased and CB1 agonists increased dopamine release induced
by rewarding stimuli (Fadda et al., 2006; Solinas et al., 2006).
Thus, by regulating the dopaminergic processes the striatal ECS
increased the hedonic aspects of food-seeking, evaluated by an
operant reinstatement procedure in rats (Duarte et al., 2004).
Further, exogenous cannabinoids increased the hedonic reactions
to highly palatable food (sucrose) but did not affect the reac-
tions to aversive (quinine and saturated NaCl solutions) tastes.
Consistent with the ability of cannabinoids to increase sucrose
palatability, under cannabinoid pretreatment the sucrose induced
a release of dopamine in the nucleus accumbens (De Luca et al.,
2012).

As previously reported, enhanced or reduced CB1-mediated
control on dorsostriatal GABAergic MSNs was associated
with spontaneous approach/exploratory or avoidance behaviors,
respectively (Laricchiuta et al., 2012b). A possible explanation for
this observation could have been that approaching, balancing,
and avoiding animals had varying densities of CB1 receptors and
disparate activities of FAAH in the brain regions that govern the
approach and avoidance behaviors. To test this hypothesis, we
measured the density of CB1 receptors (by using [3H]CP55,940
binding autoradiography) and FAAH activity in many brain
regions in the three subpopulations of mice (Laricchiuta et al.,
2012a). Because significant changes in receptor density do not
necessarily translate into gross alterations in receptor function-
ality or the presence of receptor reserve, we also examined CB1

receptor functionality (by using [35S]GTPγS binding autora-
diography). Notably, only approaching animals had higher CB1

receptor functionality in the amygdaloid nuclei and hypotha-
lamic dorsomedial nucleus. Interestingly, when compared with
balancing animals, both approaching and avoiding animals,
which attribute increased motivational salience to stimuli, had
greater CB1 receptor densities in the amygdaloid nuclei and
hypothalamic ventromedial nucleus. An intriguing parallel on
the relation between opposite temperamental traits and similar
receptor availability is provided by a PET study that reported the
lower availability of striatal dopamine D2/3 receptors in healthy
subjects with both high or low sensation-seeking, in compari-
son to subjects with moderate sensation-seeking (Gjedde et al.,
2010).

Thus, the subcortical circuit that involves the amygdala and
hypothalamus appears to drive individual differences in response
to motivational cues, regardless of the opposite direction of the
behavioral output. Amygdala mediates the processing of sig-
nificant stimuli in conditioned fear learning (Pape and Pare,
2010), emotional memory (McGaugh, 2004; LaBar and Cabeza,
2006; LeDoux, 2012), assessment of novel (Schwartz et al., 2003;
Weierich et al., 2010), ambiguous (Davis and Whalen, 2001),
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and threatening (LeDoux, 2000; Cain and LeDoux, 2008; Pape
and Pare, 2010) stimuli. Further, in the amygdala, CB1 receptors
presynaptically inhibit GABAergic neurotransmission (Freund
et al., 2003). In theory, in avoiding and approaching animals
the decreased inhibitory neurotransmission due to increased CB1

expression could influence the amygdaloid output that converges
on other limbic regions, such as the hypothalamus that in
turn mediates the reactive component (autonomic and somatic
responses) of action. Hypothalamic ventromedial nucleus that
regulates ingestive behavior and energy homeostasis exhibits the
highest level of CB1 and cannabinoid receptor gene expression
(Herkenham et al., 1990; Marsicano and Lutz, 1999; Jamshidi
and Taylor, 2001; Pagotto et al., 2006). The increased CB1

density in the hypothalamic ventromedial nucleus in avoiding
and approaching animals (and the greater CB1 functionality in
the hypothalamic dorsomedial nucleus in approaching animals)
could influence their autonomic and somatic responses and affect
their phenotypes.

Overall, our data demonstrate that in response to conflicting
stimuli, mice exhibit variance of spontaneous behaviors, rang-
ing from avoiding to approaching (Laricchiuta et al., 2012b,
2014a,d). The increased hedonic response and explorative behav-
ior of the approaching animals are linked to greater CB1-
mediated control on dorsostriatal inhibitory neurotransmission.
Conversely, the inhibitory response to reward of the avoid-
ing animals correlates with decreased CB1-mediated control on
dorsostriatal inhibitory neurotransmission. The robust differ-
ences among behavioral phenotypes in striatal CB1-mediated
currents are not a direct consequence of striatal CB1 recep-
tor expression levels, but they reflect more subtle changes in
ECS signaling (Laricchiuta et al., 2012a). In this context, sig-
nificant evidence indicates that striatal neurotransmission is
important for generating anticipatory/preparatory responses in
the presence of a conditioned stimulus paired with a posi-
tive or negative unconditioned stimulus (Berridge and Robin-
son, 1998; Ikemoto and Panksepp, 1999; Cardinal et al.,
2002).

It has been proposed that the subjects that attribute higher
salience to reward-related cues may be vulnerable to addic-
tion (Flagel et al., 2009; Robinson and Flagel, 2009; Saun-
ders and Robinson, 2010), and the subjects that show higher
NS behavior may be vulnerable to depressive-like symptoms
(Duclot and Kabbaj, 2013). Conversely, the subjects that attribute
higher value to aversive cues may be vulnerable to anxiety and
post-traumatic stress disorders (Bush et al., 2007; Yehuda and
LeDoux, 2007). By using a Pavlovian conditioned approach
procedure, Morrow et al. (2011) classified the rats based on
whether they learned to approach and interact with a cue
that predicted food reward (sign-tracker animals) or conversely
learned to go to the location of the food delivery (goal-tracker
animals). Sign-trackers were more fearful of discrete cues that
predicted foot-shock, while goal-trackers exhibited greater con-
textual fear even in the absence of discrete cues, suggesting
that a subset of individuals attributes high salience to pre-
dictive cues regardless of emotional valence. Because motiva-
tional systems have evolved primarily to support drives and to
direct actions, their outputs facilitate information processing,

motor recruitment, action readiness, and affective and attentional
engagement.

A POSSIBLE SYNAPTIC SCENARIO OF APPROACH AND
AVOIDANCE BEHAVIORS
As underlined by McNaughton and Corr (2014), the approach
and avoidance behaviors have to be anchored to the long-term
global sensitivities of the underpinning neural systems. Consider-
ing the huge bulk of experimental and human findings (see Elliot,
2008 for an overview), we propose a possible synaptic scenario of
approach and avoidance behaviors.

Figure 3 schematizes the main brain structures retained to
mediate approach and avoidance behaviors. Information from
the sensory systems reaches the thalamus that in turn projects
to neocortex and amygdala, first to its lateral and then to its
central nucleus (Figure 3, solid black line) (Pape and Pare, 2010).
Outputs from the lateral to central and basal nuclei are critical
in the increased processing of salient stimuli, whether they are
pleasant or aversive (Cain and LeDoux, 2008). The amygdala
in turn projects to the hypothalamus (Miguelez et al., 2001).
Notably, in the amygdaloid and hypothalamic nuclei the avoiding
and approaching animals display an increased density of CB1

receptors (Laricchiuta et al., 2012a). Furthermore, from the amyg-
dala direct or indirect (via orbitofrontal cortex) outputs reach the
dorsal striatum and these connections appear to be involved in
avoidance responses (Figure 3, solid red line) (Lang and Bradley,
2008). The outputs from the basolateral and central amygdaloid
nuclei reach the ventral striatum and the orbitofrontal cortex,
and these connections appear to be likely contributors to the
execution of approach behavior (Figure 3, solid green line) (Lang
and Bradley, 2008). Since both amygdaloid-hypothalamic-striatal
and striatal-cerebellar networks are involved in the emotional and
motivational processes linked to putting into action behaviors
toward or away from emotionally salient stimuli, the striatum
that inherently serves as a gating mechanism represents a crucial
crossroad in the neuroanatomical geography of approach and
avoidance behaviors (McNab and Klingberg, 2008; Koziol et al.,
2010). The goal-directed and hedonic nature of the striatal con-
tribution to action is supported by pioneering studies on “com-
pulsory approaching syndrome”, in which animals with striatal
lesions compulsively followed and contacted humans, other ani-
mals, or even stationary objects (Villablanca et al., 1976), and on
reinforcing and rewarding effects of striatal micro-stimulations
in animals (Plotnik et al., 1972; Phillips et al., 1976, 1979) and
humans (Lilly, 1960; Heath, 1963). The dopaminergic nature
(Kilpatrick et al., 2000) of the reinforcing and rewarding effects
has been conclusively confirmed by recent innovative optoge-
netic studies (Tsai et al., 2009; Bass et al., 2010; Adamantidis
et al., 2011; Witten et al., 2011). Striatal neurons appear to
not respond to movement per se but rather to features of the
movement that supports reinforcement, such as the anticipation
or expected reward value (Kawagoe et al., 1998; Schultz et al.,
2000, 2003). However, striatal neurons and dopaminergic release
play a role not only in reward processing but also in aversive
processing (Ferreira et al., 2003, 2008; Pezze and Feldon, 2004;
Matsumoto and Hikosaka, 2009; Bromberg-Martin et al., 2010;
Cohen et al., 2012). Roitman et al. (2005) showed that distinct

Frontiers in Systems Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 238 | 12

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Laricchiuta and Petrosini Approach and avoidance behavior

FIGURE 5 | Modeling striatal plasticity of direct and indirect pathways in
reinforcement and punishment, related to approach and avoidance. (A)
Positive Reinforcement may be associated with LTP onto direct pathway
neurons, whereas Positive Punishment may be associated with LTP of
indirect pathway neurons. Negative Reinforcement may be associated with
LTD onto indirect pathway neurons, whereas Negative Punishment may be
associated with LTD of direct pathway neurons. (B) By applying this modeling
to the A/A Y-maze task, the Positive Reinforcement is represented by
Palatable Food; the Negative Reinforcement by Dark Environment; the
Positive Punishment by Lighted Environment; the Negative Punishment by
Standard Food. (C) ECS modulations of direct and indirect pathways may

reduce the LTP reversal in the approaching animals, and increase the LTD in
the avoiding animals. (D) By modulating the synaptic plasticity, ECS might
shift the behavior toward the most significant component of a conflicting
context (in the case of approach behavior: Positive Reinforcement against
Negative Punishment; in the case of avoidance behavior: Negative
Reinforcement against Positive Punishment). (E) By decreasing reversal of
LTP, the potentiation of ECS of direct pathway may contribute to the approach
behavior, prompting the animal toward the Positive Reinforcement; by
increasing LTD, the de-potentiation of ECS of indirect pathway may contribute
to the avoidance behavior, prompting the animal toward the Negative
Reinforcement.

populations of striatal neurons respond to rewarding (sucrose)
or aversive (quinine) taste. Besides the amygdaloid projections,
the striatum receives also glutamatergic inputs from neocortical
and thalamic areas (Figure 3, solid blue line) and dopaminergic
inputs from the substantia nigra (Figure 3, solid yellow line).
These inputs establish synapses with striatal GABAergic MSNs
and cholinergic interneurons (Calabresi et al., 2014). The MSNs
are distinct in “direct” and “indirect” pathway projection neurons
(DeLong, 1990; Graybiel et al., 1994). Direct pathway MSNs
project to the internal globus pallidus and substantia nigra pars
reticulata (SNr; Figure 3, dashed green line), whereas indirect
pathway MSNs project to the SNr by way of the external globus
pallidus and subthalamic nucleus (Figure 3, dashed red line).

The activation of the direct or indirect pathways facilitates or
inhibits the motor output, respectively (Durieux et al., 2009).
In this framework, Kravitz and Kreitzer (2012) propose that
positive reinforcement (caused by the presence of a positive
stimulus) may be associated with plasticity that enhances synap-
tic efficacy (long-term potentiation, LTP) onto direct pathway
neurons, whereas positive punishment (caused by the presence
of a negative stimulus) may be associated with LTP of indirect
pathway neurons. Conversely, negative reinforcement (caused
by the absence of a negative stimulus) may be associated with
plasticity that depresses synaptic efficacy (long-term depression,
LTD) onto indirect pathway neurons, whereas negative punish-
ment (caused by the absence of a positive stimulus) may be
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associated with LTD of direct pathway neurons (Figure 5A).
By applying this interesting schema to the approach-avoidance
(A/A Y-Maze) task we used (Laricchiuta et al., 2012b, 2014a,d),
the reinforcements and punishments can be labeled as depicted
in Figure 5B. Notably, the substrate for the cross-talk between
direct and indirect pathways is represented by ECS that induces
the LTD of the dorso-striatal MSNs and of their afferent and
efferent connections (Lovinger, 2010). However, an opposite
synaptic consequence results when the activation of ECS is kept
persistent. In fact, in the dorso-striatal MSNs the long-lasting
activation of the ECS impairs both LTD and the reversal of LTP
(Nazzaro et al., 2012), mechanisms of synaptic plasticity involved
in the habit formation (as drug-related habits or compulsive
behaviors) and in reinforcement- or reward-related behaviors
(Gerdeman et al., 2003; Gerdeman and Lovinger, 2003; Kravitz
et al., 2012; Nazzaro et al., 2012). Interestingly, in our approach-
ing or avoiding mice the striatal ECS is potentiated or down-
regulated, respectively (Laricchiuta et al., 2012b). It is reasonable
to hypothesize, although it has been not yet demonstrated, that
such ECS modulations may influence the mechanisms of synap-
tic plasticity, by reducing the LTP reversal in the approaching
animals, and by increasing the LTD in the avoiding animals
(Figure 5C). The next step of this chained modeling is linked
to the rewarding or aversive nature of the direct and indirect
pathways. Specifically, are the neurons activated by rewarding
stimuli belonging to the direct pathway and the neurons activated
by aversive stimuli belonging to indirect pathway? Optogenetic
activation of direct or indirect pathway neurons heightens or
impairs the strength of cocaine-induced conditioned place pref-
erence, respectively (Lobo et al., 2010). Consistently, the activa-
tion of direct or indirect pathway neurons heightens or impairs
amphetamine sensitization (Ferguson et al., 2011). Furthermore,
impaired dopamine-mediated transmission of direct pathway
neurons reduces cocaine-locomotor sensitization and impairs
conditioned place preference for a food reward, and conversely
the impaired transmission of indirect pathway neurons evokes
aversive learning deficits (Hikida et al., 2010). Moreover, the
stimulation of direct or indirect pathway evokes the rapid learning
to contact or to avoid a trigger, respectively (Kravitz et al., 2012),
exerting then an opposite control over not just movement, as
classically indicated (DeLong, 1990; Graybiel et al., 1994), but
also on approach and avoidance behaviors. Thus, in response
to the previous questions, it appears that the direct pathway
activation is rewarding and indirect pathway activation is aversive.
Once more it is possible to hypothesize that by modulating
the synaptic plasticity of direct and indirect pathways neurons,
the ECS might shift the behavior toward the most significant
component of any conflicting context (in the case of approaching
behavior: positive reinforcement against negative punishment;
in the case of avoiding behavior: negative reinforcement against
positive punishment), determining thus the ultimate behavioral
outcome (Figure 5D). The further final step of the chained
modeling can be performed by integrating the schema by Kravitz
and Kreitzer (2012), the findings by Nazzaro et al. (2012) and
our own results (Laricchiuta et al., 2012b). We suggest that by
decreasing the reversal of LTP the potentiation of ECS on direct
pathway might contribute to the approach behavior, prompting

the animal toward the positive reinforcement (palatable food).
Conversely, by increasing LTD the de-potentiation of ECS on
indirect pathway might contribute to the avoidance behavior,
prompting the animal toward the negative reinforcement (dark
environment) (Figure 5E).

CONCLUSIONS
Approach and avoidance behaviors are the foundation of emo-
tional and motivational experience. These behaviors are mod-
ulated by the functioning of the network encompassing the
subcortical structures implicated in the action (amygdala, dorsal
striatum, cerebellum) and re-action (amygdala, hypothalamus)
to salient stimuli. The nodes of this network are strongly inter-
connected and the final behavioral output probably depends
upon the weight of the various nodes. By acting on them
the endocannabinoid and dopaminergic systems increase the
intensity of appetitive or defensive motivation (Häring et al.,
2011; Fiorillo, 2013; Ohno-Shosaku and Kano, 2014; Piomelli,
2014). Large individual differences in endocannabinoid and
dopaminergic transmission at the striatal, limbic and cortical
level have been described in animals (Verheij and Cools, 2008;
Yamamoto et al., 2013; Coria et al., 2014; Flagel et al., 2014)
and humans (Moresco et al., 2002; Van Laere et al., 2009), as
if the primitive model of response to salient stimuli is main-
tained as a “phylogenetic footprinting” that allows survival and
adaptation.
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