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This paper investigates controlling humanoid robot behavior via motion-onset specific
N200 potentials. In this study, N200 potentials are induced by moving a blue bar through
robot images intuitively representing robot behaviors to be controlled with mind. We
present the individual impact of each subject on N200 potentials and discuss how to
deal with individuality to obtain a high accuracy. The study results document the off-line
average accuracy of 93% for hitting targets across over five subjects, so we use this major
component of the motion-onset visual evoked potential (mVEP) to code people’s mental
activities and to perform two types of on-line operation tasks: navigating a humanoid robot
in an office environment with an obstacle and picking-up an object. We discuss the factors
that affect the on-line control success rate and the total time for completing an on-line
operation task.
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INTRODUCTION
Event related potentials (ERPs) are able to set up a commu-
nication between external stimuli and people’s cognitive tasks.
Assigning specific meanings to visual stimuli allows to “read”
people’s mind by identifying a target stimulus related with their
attention (Lebedev and Nicolelis, 2006). A P300 model based on
visual attention mechanism (Jin et al., 2012) is commonly used in
the ERP-based brain-computer-interfaces (BCIs). When we eval-
uated the P300 model on Cerebot—a mind-controlled humanoid
robot (Li et al., 2011, 2012), we noted some issues of this model
(Li et al., 2013a,b). First, this model needs to flash a visual stim-
ulus by growing its visual contrast, which easily causes people’s
visual fatigue (Hong et al., 2009). Second, the P300 potential is
correlated with both the people’s attention allocation (Farwell
and Donchin, 1988) and the biological determinants of cogni-
tive operation (Polich and Kok, 1995), so the people’s states and
experimental environments significantly affect the P300 signal
quality. Considering the problems above, we investigate a N200
potential-based robot brain interaction (BRI) model.

The stimulus appearing in moving a bar through images
instead of flashing the images (Heinrich, 2007) induces a N200
potential with a negative deflection occurring at 180–325 ms
post-stimulus (Patel and Azzam, 2005). The N200 potential is
an involuntary component that less depends on people’s atten-
tion, and even people’s fixation can induce this kind of potential
(Frensel and Neubert, 2010). N200 potentials may promise a
useful BCI model for controlling external devices due to the
interface’s low requirements of luminance and contrast, the large
amplitude of the induced brain signal, and the low individual
difference of mVEP (Schaeff et al., 2012). A N200-speller based
Internet browser (Liu et al., 2010) reports that the N200 stimulus

interface causes less visual discomfort and the induced N200
potential is more stable and less affected by the adaption effect. A
BCI system is presented by combining mVEP and P300 potentials
(Jin et al., 2012).

Comparing with manipulators and mobile robots, humanoid
robots are more advanced as they are created to imitate some of
the same physical and mental tasks that humans undergo daily
(Hirai et al., 1998), but control of humanoid robots is much
more complex. Humanoid robots are being developed to per-
form a wide range of complex tasks like personal assistance, where
they should be able to assist the sick and elderly, and dirty or
dangerous jobs. Recently, controlling a humanoid robot via brain-
waves becomes more attractive. Bell et al. (2008) and Choi et al.
(Choi and Jo, 2013) used ERPs to select an object as a target
that a humanoid robot should reach, while our study focuses on
telepresence control of humanoid robot behavior via the N200
potentials, including walking in an environment with obstacles
and picking-up an object. The challenge to develop an ERP-based
model is to make a trade-off between improving the classifica-
tion accuracy and shortening the intervals between commands in
controlling the humanoid robot in real time under the limited
information transfer rate (ITR) (Wolpaw et al., 2000).

When investigating the P300-based BRI models (Li et al.,
2013a,b), we noticed that the N200 components in brainwaves
acquired from our experiments were stable and their amplitudes
were relative high. The prominent shape of ERP is very helpful to
build feature vectors for improving the classification accuracy. In
this article, we propose a BRI model based on the N200 potentials.
In order to acquire N200 potentials with high quality, we design
an interface by replacing characters in a regular speller with robot
images representing robot behaviors to be controlled with mind.
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We evaluate this N200-based model by telepresence controlling a
humanoid robot with live video feedback. We analyze the N200
potentials induced by the experiment procedure to suggest how
to improve the proposed model.

The paper is organized as follows. In Section Materials and
Methods, we present the materials and methods for this study,
including our mind-controlled humanoid robot system-Cerebot,
the detailed experiment procedure, and the method for ana-
lyzing and recognizing the N200 potentials. In section Results,
we off-line analyze the N200 potentials elicited by the experi-
ment procedure and present the model performance regarding
the accuracy, the ITR and the practical bit rate (PBR) (Jin et al.,
2012). In this section, we apply the N200-based model to telepres-
ence control a humanoid robot to accomplish two types of tasks.
In section Discussion, we discuss the factors that affect the per-
formance of the on-line control operation tasks and draw some
conclusions.

MATERIALS AND METHODS
CEREBOT
Cerebot is a mind-controlled humanoid robot platform (Li et al.,
2011, 2012). Cerebus™ is the neural signal acquisition system
in this platform. It is able to record both invasive and noninva-
sive neural signals and its processor can deal with on-line signal
pre-processing, such as filtering and line noise removing. The
platform uses two kinds of humanoid robots. The first one is
a NAO humanoid robot made by Aldebaran in France [http://
www.aldebaran.com/en]. The other one is a KT-X PC humanoid
robot made by Kumotek in USA [http://kumotek.com]. Both of
the humanoid robots with high degree of freedoms (DOFs) are
equipped with microphones, a camera, a sonar rangefinder, etc.,
to provide environment information. The Cerebot platform can
be used: first, to challenge brainwave-based methods since con-
trol of a humanoid robot with full body movements is difficult;
second, to evaluate different methods for controlling a humanoid

robot under a uniform platform; third, to testify neuroscience
assumptions; fourth, to investigate the effect of telepresence con-
trol on the subject’s mental activities. In this study, we implement
the N200 model on Cerebot to on-line navigate a NAO humanoid
robot in an office environment and to pick-up an object based on
live videos sent back by the camera embedded in the robot.

The control architecture of Cerebot is developed under the
OpenViBE-based programming environment. OpenViBE is a free
and open-source software platform for designing, testing, and
using brain-computer interfaces. It consists of a set of modules
devoted to the acquisition, pre-processing, processing, and visu-
alization of cerebral data, as well as to the interaction with Virtual
Reality (VR) (Renard et al., 2010). It offers a powerful interface
named “Virtual-Reality Peripheral Network (VRPN)” to commu-
nicate with other scripts programmed in Matlab or Python. In
the Cerebot system (Zhao et al., 2013), OpenViBE integrates the
signal acquisition section, the signal processing section, and the
control section, as shown in Figure 1. In order to control the NAO
robot via N200 potentials, an OpenViBE module generates a serial
of visual stimuli in a random order to a subject who focuses on
a target stimulus (a robot image) that codes the subject’s men-
tal activity. Cerebus™ records brainwaves and sends them to the
signal processing section to pre-process them, to extract their fea-
tures of N200 potentials, and to classify them according to the
codes of the subject mental activities. Once the subject mental
activity is identified, its corresponding control command is sent
to the control section to activate the robot behavior.

N200 MODEL
Flow diagram
We implemented the N200 model on Cerebot under the
OpenViBE programming environment. Figure 2 shows the model
flow diagram. The white boxes in the diagram are the toolboxes
provided by the OpenViBE packages, while the colored boxes are
modules developed in C++ or Matlab. The arrows in the diagram

FIGURE 1 | A N200 model based mind-controlled humanoid robot.
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FIGURE 2 | Diagram of N200 model under the OpenViBE programming environment. The white boxes are functions provided by the OpenViBE software
package, and the colored boxes are the modules for the N200 model. The boxes enclosed in the red dashed rectangle are only for the on-line control procedure.

indicate data flow paths. The N200 model uses the Start Program
toolbox and the Open N200 Interface toolbox in Figure 2 to start
up the User Interface module programmed in C++. To start an
experiment, the N200 model uses the N200 Stimulator toolbox
provided by OpenViBE to determine the settings, e.g., the stimu-
lating timeline of the visual stimuli, for the User Interface module.
The communication from the N200 Stimulator toolbox to the
User Interface module is established via VRPN. The User Interface
module activates six robot images in random order as the visual
stimuli to evoke N200 potentials and sends their event markers
to Cerebus™ via serial port to lock the time point at which the
relevant image is activated.

The model is designed for both off-line analyzing the acquired
N200 potentials and on-line controlling the humanoid robot via
brainwaves. The off-line procedure uses the Central software to
record the brain signals acquired from the Cerebus™ system.
The off-line N200 signal processing scripts developed in Matlab,
which are not displayed in Figure 2, process the recorded data
to analyze the brain signal features and to investigate classifi-
cation algorithms. In the on-line procedure, the On-line N200
Signal Processing toolbox starts up the On-line Processing mod-
ule via the Matlab engine to load the configured parameters, to
acquire the brain signals from Cerebus™ in real-time and to clas-
sify them according to the N200 feature vectors generated during
the off-line process. The Display Classification Result toolbox
displays the hit visual stimulus on the user interface by fram-
ing the corresponding robot image. The Control Robot Behavior
toolbox converts the classification result to its corresponding
command for Control Module, which activates the behavior to
be controlled with mind. Figure 2 shows how the toolboxes and
modules exchange data with each other under the OpenViBE
environment.

Interface and protocol for acquiring N200 potentials
Figure 3A shows the user interface with a 2 × 3 matrix of images.
These images taken from the real represent six robot behaviors:
walking forward, walking backward, shifting left, shifting right,
turning left and turning right. We attached red arrows on the
images to make the meanings of the images more impressive. In
order to induce N200 potentials, a blue bar scans an image from
right to left. Figure 3B shows that the blue bar is moving on the
image to activate the visual stimulus of robot working forward.

We applied the Single Character (SC) method (Guger et al.,
2009) to randomly activate the images one by one with the prob-
ability of 1/6. The duration of the stimulus onset asynchrony
(SOA) (Wei and Luo, 2010) is 220 ms consisting of 150 ms for
scanning and 70 ms for a break between two consecutive activa-
tions. A repetition is defined as a process in which each image
is scanned. The repetition duration is 220 ms × 6 = 1320 ms.
Figure 4 displays the entire process of a repetition. It uses the
blue bar to scan the image of walking forward for 150 ms and
takes a break for 70 ms, and afterward it uses the blue bar to scan
the image of turning left, and so on. The repetition is completed
after 1320 ms as the blue bar has scanned all the six images. Each
image is randomly selected for scanning in a repetition, so the
subject cannot predict which image will be the next visual stim-
ulus. A number of repetitions constitute a trial in which the blue
bar repeatedly scans each image for several times.

Experiment procedure
We conducted experiments in a quiet environment and asked sub-
jects to sit in a comfortable armchair. The horizontal distance
between the armchair and a monitor was 70 cm. The monitor
was a 22-inch LCD one with a resolution of 1280×1024 pix-
els. The electroencephalogram (EEG) signals were recorded at
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FIGURE 3 | (A) User interface of visual stimuli is a 2 × 3 matrix of six robot images depicting six humanoid robot behaviors. (B) The visual stimulus for walking
forward is activated by using a blue bar to scan the robot walking forward image from left to right.

FIGURE 4 | Protocol of inducing N200 potentials activates the six visual stimuli one by one in a random order.

1000 Hz from 32 surface channels using an EEG cap accord-
ing to the “International 10-20 system.” The linked mastoids
were reference channels and the channel AFz was the ground
channel.

Five subjects (one female, four males, aged 26–28) signed a
written informed consent to participate in experiments. Tianjin
medical university general hospital ethics committee gives the oral
approval of the consent form and experimental procedure before
any subjects participated. All of their visual acuities were normal
or corrected to normal. Three of them had no prior experience on
the experiments. Each subject conducted 360 repetitions, i.e., 36
trials. In each trial, the subject selected a robot image as a target
stimulus according to his/her mental activity. During a trial, the
subject needed to focus on the target stimulus, tried his/her best to
ignore the non-target stimuli, and had to avoid making any move-
ments. Cerebus™ received the visual stimuli and simultaneously
recorded the evoked potentials.

SIGNAL ANALYSIS AND FEATURE EXTRACTION
Signal analysis
We analyzed the recorded brain signals to extract their features.
First, the brain signals were cut into epochs that were simultane-
ously with the visual stimuli. The length of each epoch was from
post-stimulus 0 ms to post-stimulus 800 ms to cover the poten-
tials. Because the delta (0.5–4 Hz) and theta (4–7.5 Hz) oscillation
contribute to the N200 potentials (Karakas et al., 2000a) and the
drift mainly appears in a low band, a digital band-pass filter with

1–10 Hz was chosen to process the epochs. Second, we removed
the signal drift by the method of common average reference
(CAR). Finally, the epochs were divided into two groups: the
epochs induced by the target stimulus and the ones induced by
the non-target stimulus, and then both the groups of the epochs
were averaged, respectively.

Feature extraction and classification
Being able to represent the feature of brain signals in low dimen-
sion space can reduce the amount of computation (Bian and
Zhang, 2000). According to Shannon’s theorem, we were able to
reduce the dimension of the feature vectors by down-sampling
the data epochs from 1000 to 20 Hz (Krusienski et al., 2008). We
used the N200 signal processing scripts to remove noises from the
epoch from post-stimulus 100–500 ms and to average the epochs
induced by the same visual stimulus in a trial. The brain signals
from a single channel yielded an 8-dimension [(500-100)/1000 ×
20] feature vector. If n channels were used to extract the features,
the total dimension of a vector was 8 × n. The selected channel
number depended on the characteristics of individual subject’s
brain signals.

We adopted the Fisher’s linear discriminant analysis (FLDA)
as a two-class classifier to discover which visual stimulus was the
target one by checking each feature vector. The idea of this algo-
rithm is to find the optimal direction of projections that groups
the vectors with the same features into a class (Mika et al., 1999)
as bellow:
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w = Sw
−1 (M1 − M2)

Sw = S1 + S2

Si =
∑

xk∈Xi

(xk−Mi) (xk−Mi)
T,i = 1, 2

Mi = 1

ni

∑
xk∈Xi

xk, i = 1, 2

where xk is the feature vector, Xi represents the class set and ni is
the number of feature vectors in the ith class.

We trained the FLDA classifier using the feature vectors and
tested it by the brain signals recorded in a trial that established
six feature vectors according to the six visual stimuli. The trained
classifier processed each feature vector successively and outputted
the classified value. The classifier outputted no control command
if it classified the six features vectors as non-targets or outputted
a control command if it classified one or more feature vectors as
targets.

RESULTS
INDUCED N200 POTENTIALS
The solid and dotted curves in Figure 5 represent the average
brain signals induced by the target stimulus and non-target stim-
ulus from channel P3, respectively. The brain signal induced by
the target stimulus appears with a sharp negative deflection with
amplitude of 5 uV at 258 ms and a positive deflection with ampli-
tude of 3.5 uV at 358 ms. The negative deflection is known as the
N200 potential that is the response to scanning over the target
image by the blue bar. The positive deflection resembles the P300
potential. The brain signals induced by the non-target stimuli do
not appear with obvious deflection. The results demonstrate that
the designed interface can induce N200 potentials by scanning
over a target image with the blue bar. The negative deflection pro-
vides a recognizable feature of the N200 potential for us to classify
the brain signals.

We plot the average brain signals acquired from each subject
through channels P3 and CP3 to discuss their individual dif-
ference, as shown in Figures 6A,B. The black thick curve is the
average N200 potentials across the five subjects, while the other
thin color curves are the N200 potentials from the individual
subject. The N200 potential amplitudes acquired from the subj5,
represented by the green curves in Figures 6A,B, are smaller than
the others. The latencies of the N200 potentials acquired by the
subj4, represented by the pink curves in Figures 6A,B, is 20 ms
shorter than the average latency. The N200 potentials induced
from the subjects show different amplitude distributions over
channels P3 and CP3. For example, the N200 potential ampli-
tude acquired from the subj2 through channel P3 is larger than
the one through channel CP3, represented by the blue curves
in Figures 6A,B, while the N200 potentials amplitudes acquired
from the subj5 through channels P3 and CP3 are very close. The
amplitude topographic maps show the distribution of the induced
potentials. Figures 6C,D represent the amplitudes of average
brain signals at 258 ms and 358 ms after the visual stimuli, respec-
tively. The darker the red color indicates the positive amplitude
the greater, and the darker the blue color indicates the negative
amplitude the greater. Figure 6C shows that the largest ampli-
tude of N200 potentials mainly appears in the temporal-parietal
area near channel P3, while Figure 6D shows that the P300 poten-
tials mainly distribute in the parietal area. We draw two following
remarks. First, although the N200 potentials acquired from the
subjects are slightly different, they exhibit the N200 potentials’
features that are important to control the robot behavior. Second,
the N200 and P300 potentials mainly appear in the parietal and
temporal areas in a window of post-stimulus 100–500 ms and
the channels from which the recognizable N200 potentials are
acquired vary due to the individuality, so we determine time win-
dows and select the best channels for the individual subject for
processing N200 potentials to control the humanoid robot.

The electrical potentials caused by eye movement and blink-
ing can be much larger than the ERPs (Joyce et al., 2004) and

FIGURE 5 | Evoked potentials from channel P3 are averaged. The solid curve is the brainwave of a target stimulus, and the dotted curve is the brainwave of
a non-target stimulus.
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FIGURE 6 | Evoked potentials from channel P3 and CP3 and their

topographies along with time points. (A,B) The colorful thin curves
represent the five subjects’ N200 and P300 potentials from post-stimulus

0–800 ms, respectively, and the black curve represents the average potentials
over the five subjects. (C,D) The amplitude topographic maps of the average
brain signals across five subjects are plotted at 258 ms and 358 ms.

propagate across the scalp, so these electrical potentials may dis-
tort the ERPs, but their impact on the ERPs decreases as a distance
from the frontal increases. Because the induced N200 potentials
mainly appear in the temporal—parietal area that is far from the
frontal, the distortion of the N200 potentials induced by using
a blue bar scanning visual stimulus images is irrelevant. In this
study, therefore, we directly apply the induced N200 potentials to
on-line control the humanoid robot.

However, the distortion of the P300 potentials induced by
flashing stimulus images may be significant since the P300 poten-
tials mainly appear in the parietal and central areas (Iturrate et al.,
2009). Consequently, an additional algorithm has to be designed
to remove eye artifacts to ensure high classification accuracy.

OFF-LINE EVALUATION
This subsection evaluates the off-line performance of the N200
model based on the classifier accuracy, which is the ratio between
the trials detected correctly over the total trials, the ITR and
the PBR.

We averaged the classified accuracy of each subject by the
10-fold cross-validation (Liu et al., 2010). The first step was to
determine the candidate channels based on the subject’s ampli-
tude topographic map. The second step was to calculate the
classified accuracy of each channel and their combinations. The
third step was to select the combination that yielded the high-
est accuracy as the optimal channels for the individual subject,
listed in Table 1. The three subjects denoted by N had no prior
BCI experience on the experiments, while the other two subjects

Table 1 | The off-line performance.

Subject Optimal channels Accuracy ITR PBR

(%) (bits/min) (bits/min)

subj1 (Y) P3, P4, Pz, CP3 98.6 22.22 21.58

subj2 (N) P3, P4, Pz, CP3 98.6 22.22 21.58

subj3 (N) P3, P7, CP3 92.9 18.61 15.95

subj4 (Y) P3, P4, Pz, 97.1 21.19 19.98

subj5 (N) P3, CPz 81.4 13.28 8.34

Mean – 93.7 19.50 17.49

denoted by Y had prior BCI experience. Figure 7 depicts the aver-
age accuracy for each subject vs. the number of repetitions. The
accuracy is clearly increased when increasing the number from 1
to 10. The accuracies of the four subjects reach 100%, and three
of them reach 100% with 6 repetitions. The accuracy of subj5
is slightly low. ITR measures the information rate per minute
by taking the accuracy and the time needed to classify a visual
stimulus described as

B =
[

log2N + log2P + (1 − P) × log2

(
1 − P

N − 1

)]
× M

where N = 6 stands for 6 visual stimuli in the user interface,
P is the classifier accuracy, M is the number of outputting
commands in a minute (McFarland et al., 2003). The index,
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FIGURE 7 | Red curves are the accuracies achieved by the individual subjects and the blue curve is their average accuracy.

PBR, estimates the practical speed of a system, by considering
each error classification that needs to be corrected by additional
selections (Jin et al., 2012) as below:

PBR = B × [1 − 2 × (1 − P)]

PBR is meaningful only when P ≥ 50%. Table 1 lists the five
subjects’ accuracies, ITRs and PBRs. For evaluating the off-line
ITR, we set both the interval between the repetitions and the
one between the trials as 0 ms (Jin et al., 2011), so M is 9.09
(0.22 × 6 × 5 = 6.60s, 60.00/6.60 ≈ 9.09) when the repetition
number is 5. In Table 1, each subject’s ITR is larger than 10
bits/min. ITR increases when the accuracy is increased. The high-
est accuracy of 98.57% yields the largest ITR of 22.22 bits/min.
PBR is smaller than ITR due to [1 − 2 × (1 − P)] ≤ 1. The large
accuracy reduces the difference between ITR and PBR. Clearly, a
high accuracy allows the subject to correct the error quickly and
to realize his/her intention accurately, while a low accuracy needs
the subject to spend much time to correct an incorrect command.
Improving the accuracy needs to increase the number of repeti-
tions in a trial, i.e., to increase the control cycle, so a trade-off
between the accuracy and control cycle speed must be considered
according to a task requirement.

CASE STUDIES
In order to validate the developed N200 model, the subjects
controlled on-line the NAO humanoid robot to accomplish two
popular tasks in robotics research: to navigate the NAO robot to
walk with obstacle avoidance and to control the NAO robot to

pick up an object. These tasks are challenging because the sub-
jects need live video feedback from a camera embedded in the
NAO robot to activate appropriate robot behavior.

The experiments were carried out in a normal office without
electromagnetic shielding. The subjects sat in a comfortable chair
and 70 cm away from a 22-inch LCD monitor displaying the N200
interface and the live video feedback, as shown in Figure 8A. The
live video window was placed above the interface window with a
distance to reduce mutual influences on subjects’ concentrations
caused by visual stimuli and live video. During the experiments,
the subjects needed to stabilize their heads since the head motion
may cause noises. Once a trial began, the subjects relied on live
video to observe the robot status and surroundings and focused
on a visual stimulus depicting robot behavior whose meaning rep-
resented their intention. When a trial was ended, the classification
result was transformed to a command to activate an appropriate
robot behavior. For the on-line experiments, the interval between
repetitions was set 600 ms, therefore the duration of outputting a
command with 3 repetitions was 5.76 s; the duration was 9.60 s
with 5 repetitions. The interval between trials was set 5 s as the
subjects needed this interval to have a short rest and to decide
the next behavior. Figure 8B shows an example of controlling the
NAO robot to shift left with mind. The supplementary material
(movie clip) that records the on-line control processes of navigat-
ing a humanoid robot in an office environment with an obstacle
and picking-up an object is available.

For the navigation task, the subjects controlled the humanoid
robot to walk from a start point to a destination by passing an
obstacle as shown in Figure 9A. Based on the live video from the
robot’s camera, the subjects used N200 potentials to activate six
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FIGURE 8 | (A) On-line control of the NAO humanoid robot with mind in an
office environment (B) The visual stimulus of shifting left is classified as a
target.

FIGURE 9 | On-line study cases of controlling the humanoid robot

using the N200 model. (A) Robot navigation with obstacle avoidance. (B)

Robot pick-up operation.

types of robot walking behaviors defined by: walking forward for
0.2 m, walking backward for 0.15 m, shifting left for 0.15 m, shift-
ing right for 0.15 m, turning left for 30◦, and turning right for 30◦.
We evaluate their control performance using the following crite-
ria: the total commands for activating robot behaviors, the total
time for completing the task, the on-line control success rates,
and the number of collisions with an obstacle in the three exper-
iments. The robot may collide with the obstacle when a subject
cannot appropriately estimate the distance between the robot and
the obstacle from the live video or his/her intention is incorrectly
detected. Table 2 lists the results herein averaged over the three
experiments.

For the pick-up operation task, the subjects controlled the
humanoid robot to approach a balloon and to pick up this tar-
get as shown in Figure 9B. The balloon was placed on a round
table in the right front of the robot so the subjects had to move
the robot to a position close enough to the table and to con-
figure a proper orientation to pick up the balloon. For this
task, the subjects used N200 potentials to activate the following

defined behaviors: picking-up the target, walking forward for
0.1 m, shifting left/right for 0.1 m, and turning left/right for 15◦.
A task operation was classified as a failure if the pick-up behav-
ior was activated before the robot reached the proper position.
This task operation was repeated until each subject completed
three successful experiments. In order to evaluate the on-line con-
trol performance, we recorded the total commands for activating
robot behaviors in the three successful experiments, the average
total time of completing a pick-up operation task, the average on-
line success rate averaged over the three successful experiments,
and the ratio of the successful experiments over the total ones.

Tables 2, 3 list the experimental results conducted by the five
subjects. We compare their on-line control performance using 5
repetitions for a trial as defined in Table 1 because this repetition
number documents that all the subjects achieve their accura-
cies over 80%. For comparing the on-line control performance,
Tables 2, 3 also list the test results with 3 repetitions of a trial. We
address five remarks as follows.

(1) The on-line success rates differ from the off-line accuracies.
The experiments of the navigation task documented that
subj2, subj3, and subj5’s on-line success rates (88.8, 78.4,
73.4%) were lower than their off-line accuracies (98.6, 92.8,
81.4%) when the repetition number was 5; while subj1 and
subj4’s success rates (100.0, 100.0%) were slightly higher than
their off-line accuracies (98.6, 97.1%). The experiments of
the pick-up operation task documented that subj1, subj2, and
subj4’s on-line success rates (95.2, 96.7, 92.3%) were slightly
lower than their off-line accuracies (98.6, 98.6, 97.1%), while
subj3 and subj5’s success rates (100.0, 95.8%) were higher
than the off-line accuracies (92.9, 81.4%).

(2) Most of the subjects achieved higher on-line success rates
for the pick-up operation task than those for the navigation
task. The subjects subj1, subj2, subj3, and subj4 achieved
the higher on-line success rates (100.0, 96.3, 95.5, 100.0%)
for the pick-up operation task than those (96.4, 84.5, 77.2,
90.9%) for the navigation task when the repetition num-
ber is 3. The subjects subj2, subj3, and subj5 achieved the
higher on-line success rates (96.7, 100.0, 95.8%) for the pick-
up operation task than those (88.8, 78.4, 73.4%) when the
repetition number is 5.

(3) A lower success rate results in more total commands and
longer total time for completing the operation tasks. For the
navigation task, subj2 and subj3’s success rates (84.5, 77.2%)
with 3 repetitions were lower than the ones (88.8, 78.4%)
with 5 repetitions, so their corresponding total commands
for three successful experiments (49/3, 75/3) with 3 repeti-
tions were more than ones (34/3, 51/3) with 5 repetitions
and their average total times (180.8, 265.3 s) for completing
each of the three successful experiments with 3 repetitions are
longer than those (163.4, 245.5 s) with 5 repetitions although
their duration of 5.76 s for outputting a command with 3 rep-
etitions was shorter than the one of 9.60 s with 5 repetitions.
For the pick-up operation task, when subj1, subj3, subj4,
and subj5 achieved the higher success rates (100.0, 100.0,
100.0, 95.8%), they generated the fewer commands (19/3,
16/3, 20/3, 19/3). A low success rate increases the possibility
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Table 2 | Performance of the navigation task.

Subject Repetition number Time/ command Total time (s) Total commands On-line success rate (%) Collisions

subj1 (Y) 3 5.76 99.8 28/3 96.4 0/3

5 9.60 144.3 30/3 100.0 0/3

subj2 (N) 3 5.76 180.8 49/3 84.5 1/3

5 9.60 163.4 34/3 88.8 0/3

subj3 (N) 3 5.76 265.3 75/3 77.2 0/3

5 9.60 245.6 51/3 78.4 0/3

subj4 (Y) 3 5.76 116.1 33/3 90.9 0/3

5 9.60 154.3 32/3 100.0 0/3

subj5 (N) 3 5.76 163.4 46/3 78.2 0/3

5 9.60 229.7 45/3 73.4 4/3

Table 3 | Performance of the pick-up operation task.

Subject Repetition Time/ Total Total On-line success rate Successful /

number command time (s) commands (%) for successful experiments total experiments

subj1 (Y) 3 5.76 65.4 19/3 100.0 3/4

5 9.60 99.3 21/3 95.2 3/3

subj2 (N) 3 5.76 73.7 22/3 96.3 3/3

5 9.60 105.0 23/3 96.7 3/3

subj3 (N) 3 5.76 70.4 20/3 95.8 3/4

5 9.60 73.4 16/3 100.0 3/5

subj4 (Y) 3 5.76 69.1 20/3 100.0 3/5

5 9.60 123.6 26/3 92.3 3/3

subj5 (N) 3 5.76 94.1 27/3 66.7 3/4

5 9.60 85.0 19/3 95.8 3/5

of incorrectly detecting the subjects’ intentions, so outputting
additional commands to correct the false ones increases the
number of total commands. For the three experiments, subj2
used 34 commands to navigate the NAO robot without colli-
sion with the obstacle under the success rate of 88.8%, while
subj5 used 45 commands to navigate the NAO robot with 4
collisions with the obstacle under the success rate of 73.4%.

(4) A repetition number of a trial plays an important role in
determining a total time for completing an operation task at a
high success rate. For completing three successful navigation
tasks, subj1, subj4, and subj5 varied slightly their numbers of
total commands (from 28 to 30, from 33 to 32, from 46 to
45) when the repetition number increased from 3 to 5. For
completing three successful pick-up operation tasks, subj1,
subj2, and subj3 varied slightly their numbers of total com-
mands (from 19 to 21, from 22 to 23, from 20 to 16) when
the repetition number increased from 3 to 5. For the above
cases, changing the repetition number does not affect the
number of total commands very much, so the duration of
a trial, i.e., the repetition number determines the total time
for completing an operation task. Increasing the repetition

number from 3 to 5, i.e., growing the duration of a trial from
5.76 to 9.60 s, increases the total times for completing the
navigation tasks discussed above from 99.8 to 144.3 s, from
116.1 to 154.3 s, and from 163.4 to 229.7 s, and the total times
for completing the pick-up operation tasks from 65.4 s to
99.3 s, from 73.7 to 105.0 s, from 70.4 to 73.4 s, as listed in
Tables 2, 3.

(5) The experience with the designed experimental procedure is
an important factor that impacts the on-line success rates.
The subjects subj1 and subj4 with prior experience on the
experiments achieved the high on-line average success rates
of 97.9 and 95.8%, while the subjects subj2, subj3, and subj5
without prior experience delivered the relatively low success
rates of 91.6, 87.9, and 78.5%.

DISCUSSION
THE N200 MODEL
The work (Karakas et al., 2000b) shows that the ERP represents
interplay between the oscillations that are mainly in the delta and
theta frequencies. We assume that the moving bar scanning over
the robot images may impact on event-related oscillations (EROs)
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in the temporal-parietal area, because the brainwaves acquired
from this area deliver the recognizable N200 potentials which
may be contributed by the theta oscillation related with orien-
tation and attention (Karakas et al., 2000a,b). We will verify this
assumption in our further research.

The interface that we design for inducing the N200 potentials
has three advantages. First, the robot images as the visual stimuli
are more intuitive and help the subjects understand the meanings
of the stimuli better. Second, scanning the static robot images by
the blue bar, instead of flashing the robot images in the traditional
P300 model, allows the subjects more intensively to concentrate
on a target stimulus. The subjects reported that the moving bar
could cause less visual fatigue than the flashing images. Third, the
proposed visual stimulus mode also induces the P300 potentials,
but the amplitudes of the N200 potentials are larger and more rec-
ognizable, so we use the N200 potentials to establish the features
vector to achieve better classification accuracy.

EFFECTS ON THE ON-LINE SUCCESS RATES
We note that the on-line success rates vary for different opera-
tion tasks and their differences depend on the individual subjects.
Here, we present the factors that affect the on-line success rates.
The on-line success rates achieved in on-line control of the robot
are usually lower than classification accuracies in the off-line eval-
uation. It would be a common fact because the off-line evaluation
is an open-loop control, while the on-line task-driven control is
a closed-loop control with live video feedback. Different from
the off-line control, the on-line telepresence control needs a sub-
ject to coordinate his/her attention to both the live video and the
visual stimuli, and especially the live video may divert a subject’s
attention away from the target stimulus, which decreases the on-
line success rates (Gergondet et al., 2012). Especially, the poor
quality of live videos may significantly deteriorate the subject’s
control performance. Auditory effect from the surrounding, e.g.,
the sound of robot’s walking steps, may be another factor that
distracts the subject’s attention. Tidoni et al. (2014) reported that
the sound of robot’s walking steps delivered synchronously with
the robot motion needs less time to control the robot than the
asynchronous sound. In general, the success rates of the naviga-
tion task with noisy walking steps’ sound are lower than those of
the pick-up task. The subjects have to make a right decision based
on the surrounding information sent by the live video to con-
trol the robot behavior. In addition, the subjects may get anxious
when the robot falls down or collides with an obstacle caused by
an incorrect command.

ANALYSIS OF THE ON-LINE CONTROLLED TASKS
We evaluate the total execution time of completing an on-line
controlled task. Because the total time depends on the total com-
mands generated by the induced N200 potentials, quickly and
accurately outputting a command shortens the total time. The
two factors mainly affect the total number of generated com-
mands. The first factor is the on-line control success rate that
indirectly indicates how many incorrect commands are outputted
for the on-line control process. Each incorrect command causes
an unexpected robot behavior that needs to be corrected by addi-
tional control commands. For the navigation task, subj2 and
subj3 achieved the success rates with 3 repetitions lower than

those with 5 repetitions and for the pick-up operation task subj5
achieved the success rates with 3 repetitions lower than those with
5 repetitions, so they spent more total time to complete their
corresponding tasks since they outputted much more additional
control commands. The second factor is the individuality of men-
tal activities of planning in real-time to complete an operation
task indicated by the following cases: 1. With 5 repetitions, subj5’s
brain activated fewer control commands than subj2’s brain did
to accomplish the pick-up operation task; 2. With 3 repetitions,
subj3’s brain activated fewer control commands than subj2’s brain
did to complete the pick-up operation task; 3. With 5 repetitions,
subj5’s brain activated fewer control commands than subj3’s brain
did to complete the navigation task.

The repetition number of a trial is a very important factor that
affects the total time of an on-line task operation. The repeti-
tion number determines the duration of outputting a command.
The large duration increases the total time. For example, subj1,
subj4, and subj5 spent more time with 5 repetitions than with 3
repetitions to accomplish the navigation task, and subj1, subj2,
and subj3 spent more time with 5 repetitions than 3 repetitions
to complete the pick-up operation task, because each of them
outputted the close number of total commands no matter the
repetition number is 3 or 5. On the other hand, the large rep-
etition number yields the high success rate. As discussed above,
the high success rate reduces the incorrect outputs in the con-
trol process. Consequently, the few incorrect commands that need
to be rectified shorten the total time. Usually, a high success rate
needs the large repetition number to increase the reliability of the
control system, but it increases the duration of a trial. How to
determine the repetition number is an important issue because
a balance between the reliability and the total time needs to
be considered.

We used the robot images as the visual stimuli successfully
to induce the N200 potentials with recognizable amplitudes. We
implemented the proposed N200 model on the Cerebot platform
to evaluate its off-line and on-line performances across five sub-
jects. The off-line evaluations show that the average accuracy is
93.71% over the five subjects with 5 repetitions in a trial and
two of the five subjects reach their accuracies of 98% with three
repetitions. The five subjects participated in the navigation and
pick-up operation tasks in an office environment in which the
live video feedback provided surrounding information. The suc-
cess rates affect the total number of commands outputted from
the N200 model, the total time for completing an on-line oper-
ation task, and the number of collisions caused by the incorrect
commands. Therefore achieving a high success rate has a priority
using the N200 model to control the humanoid robot. As dis-
cussed above, the repetition number of a trial plays a prominent
role in achieving the high success rate and shortening the dura-
tion of outputting a command. In the future work, we investigate
the optimal repetition number according to a variety of on-line
operation tasks.

Some research teams applied the steady state visually-evoked
potential (e.g., Gergondet et al., 2012; Tidoni et al., 2014) to con-
trol a humanoid robot with live video or the motor imagery (e.g.,
Cohen et al., 2012) to control the robot behavior for a naviga-
tion task. In the future work, we will evaluate the performances of
these models using the Cerebot platform.
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