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Due in part to the increasing incidence of obesity in developed nations, recent research
aims to elucidate neural circuits that motivate humans to overeat. Earlier research has
described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by
activating neuronal populations in the lateral hypothalamus (LH). However, more recent
research suggests that the LH may in turn communicate with the AcbSh, both directly and
indirectly, to re-tune the motivation to consume foods with homeostatic and food-related
sensory signals. Here, we discuss the functional and anatomical evidence for an LH to
AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity
directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating
hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical
“relay” regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular
thalamus, using a variety of neurotransmitters. This review aims to summarize studies
on these topics and outline a model by which LH circuits processing energy balance can
modulate AcbSh neural activity to regulate feeding behavior.
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INTRODUCTION
THE LATERAL HYPOTHALAMUS
The rise in obesity rates in the U.S. (Flegal et al., 2002) and other
developed nations has made an urgent case for research to unravel
the brain’s regulation of hunger and motivation to conume foods.
Through this research, various brain areas have been implicated
in food intake control. One area that has received much focus
in this field is the lateral hypothalamus (LH). Once dubbed the
“hunger center” of the brain, the LH has since been characterized
as a signal-integrating hub for diverse neural inputs that regulate
its output—the initiation of food procurement and consumption
(Wise, 2013).

Many functional studies of the LH have revealed its impact
on feeding. For instance, electrical stimulation of the LH elicits
intake (Wyrwicka and Dobrzecka, 1960), while electrolytic lesions
of the LH induce aphagia (Winn et al., 1984). Electrophysiological
monitoring of LH neurons during certain food-related activities
provides additional insight for the LH’s role in integrating food-
related sensory information. LH neurons change firing rates to
visual food cues (Mora et al., 1979) and to decreases in blood
glucose (Oomura et al., 1974), while eating reverses such changes
in firing rates (Mora et al., 1979). This collection of evidence
highlights the LH’s role in feeding behaviors.

Various behavioral studies have delineated subdivisions of the
LH into distinct feeding-regulating ensembles. These subdivisions
include the perifornical area (pfLH; Leibowitz and Rossakis,
1978), the area lateral to the fornix and adjacent to the

internal capsule/cerebral peduncle (lLH; Stanley et al., 1993a),
and the area ventrolateral to the fornix and adjacent to the
optic tract (vlLH) (Baldo et al., 2004). The pharmacological
underpinnings of food intake control via the pfLH and the
lLH are well-established. The lLH is particularly receptive to
primary amino acid neurotransmitters; injection of glutamate,
glutamate agonists, or GABAA receptor antagonists specifically
induces feeding (Stanley et al., 1993a; Duva et al., 2002; Turenius
et al., 2009a,b; Charles et al., 2014). Also, microdialysis within
the lLH reveals increased synaptic glutamate and decreased
synaptic GABA prior to onset of a meal, while the reverse
occurs prior to cessation of a meal (Rada et al., 1997). Thus,
a balancing of synaptic glutamate and GABA input to lLH
neurons is utilized to direct feeding in a minute-by-minute
fashion (Stanley et al., 2011). The pfLH is a locus through
which NPY, norepinephrine, and dopamine regulate food intake
(Leibowitz and Rossakis, 1978, 1979; Stanley et al., 1993b) in
addition to other neurotransmitters (for review, see Meister,
2007). The behavioral effects of vlLH manipulations are not
well characterized. Though functional studies support these
three general LH subdivisions, anatomical evidence further
subdivides these areas into numerous smaller regions that may
also be functionally distinct (Swanson, 2004; Swanson et al.,
2005).

The LH also regulates effort to procure food rewards.
Two neuron groups in particular, the orexin and the melanin
concentrating hormone (MCH) neurons, are distributed
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throughout the LH (Hahn, 2010) and mediate consumption
and/or food-directed effort-based actions. ICV injection of
orexin or MCH induces food intake (Rossi et al., 1999; Zhu
et al., 2002). Orexin neurons are activated by contexts associated
with food rewards. Such contexts feature either sweet foods
for satiated rats or regular chow for food-deprived rats (Harris
et al., 2005; Choi et al., 2010). Further, ICV injection of
orexin increases progressive ratio responding breakpoints for
palatable food rewards, whereas injection of its antagonist
decreases this breakpoint (Choi et al., 2010). In a related manner,
MCH directs reward-motivated behaviors. MCH knockout
mice and wild type mice given an MCH antagonist display
impairments in selectively responding to reward-associated
cues, showing how MCH inhibits generalization of responses
to non-rewarding stimuli (Sherwood et al., 2012). It should
be noted that unlike orexin, MCH originates from extra-
hypothalamic areas such as the basal forebrain and pons
(Bittencourt et al., 1992). Thus, it is unclear how these other
MCH groups contribute to behaviors manifested by ICV
MCH injections. Nonetheless, orexin and MCH can regulate
both feeding and food reward procurement in complimentary
ways.

LH innervation of mesolimbic circuitry serves to integrate
homeostatic information with motivation to procure foods
and the valuation of food tastes. Indeed, food deprivation
increases “liking” responses while caloric satiety decreases them
(Berridge, 1991). Also, ablation or inhibition of the anterior
LH will suppress “liking” responses to sucrose and reduce food
intake (Ho and Berridge, 2014). LH orexin neurons are one
likely candidate population that may at least modulate some
of these effects. Orexin neurons are activated by deficits in
available glucose (Nishimura et al., 2014) as well as by food
restriction (Kurose et al., 2002), and are inhibited by direct
application of glucose (Burdakov and González, 2009) and
leptin (Yamanaka et al., 2003). Aside from direct effects on
orexin neurons by circulating factors (Hâkansson et al., 1998;
Burdakov and González, 2009; Qi et al., 2010), some effects
may be mediated indirectly via the arcuate nucleus and its
peptides (Zheng et al., 2002), via long-form leptin receptor-
possessing (LepRb) neuron innervation of orexin neurons (Louis
et al., 2010), and/or via direct action of leptin on orexin
neurons.

THE NUCLEUS ACCUMBENS SHELL
Another brain region, the nucleus accumbens, is most typically
associated with hedonia and motivation (Broekkamp et al., 1975;
Kelley et al., 2002) yet also regulates the conversion of motivation
into goal-directed actions (Mogenson et al., 1980). Rats self-
stimulate when an electrode is implanted into the accumbens
(Schaefer and Michael, 1992). Accumbens neurons can fire to
the receipt of a reward or in reward-associated contexts (Apicella
et al., 1991a,b), and some accumbens neurons produce action
potentials in anticipation of a reward (Schultz et al., 1992).
Activation of accumbens neurons also occurs in animals re-
exposed to drugs of abuse after withdrawal and abstinence
(Todtenkopf et al., 2002). Further, the accumbens innervates
components of the basal ganglia (Mogenson et al., 1983), and

alterations in accumbens activity change exploratory behaviors
(Mogenson and Nielsen, 1984), implicating this area in initiation
of goal-directed actions. These are a select few of many studies
implicating this region in reward perception and motivated
behaviors.

However, the accumbens also regulates feeding, particularly
through the accumbens shell (AcbSh) subregion. Lesioning the
AcbSh increases food intake, while AcbSh stimulation decreases
it (Ramaswamy et al., 1998; van der Plasse et al., 2012).
Activation of AcbSh GABA, mu opioid, or δ opioid receptors, or
blockade of AcbSh AMPA receptors, induces feeding specifically
(Maldonado-Irizarry et al., 1995; Stratford and Kelley, 1997;
Stratford et al., 1998; Castro and Berridge, 2014a). Also, AcbSh
neurons pause firing prior to initiation of drinking sucrose
solution (Krause et al., 2010), synaptic glutamate levels within
the AcbSh decrease during onset of eating (Rada et al., 1997), and
AcbSh neurons are activated by contexts associated with palatable
meal availability (Park and Carr, 1998). Further, rats recently fed
to satiety show reduced expression of preproenkephalin within
the AcbSh, signifying a decrease in intra-AcbSh synthesis of the
mu opioid receptor (MOR) ligand enkephalin (Will et al., 2007).
These data indicate a role for the AcbSh in controlling feeding
behaviors.

Glutamate, GABA, and opioid neurotransmission in the
AcbSh does not solely affect food intake, but instead acts on
the motivation to procure food, the motivation to eat food,
and/or hedonic valuation of foods. AcbSh GABAA receptor
activation or MOR activation increases operant responding
for food reward (Wirtshafter and Stratford, 2010; Stratford
and Wirtshafter, 2012a), suggesting that these receptors govern
the motivation to procure foods. Although AcbSh AMPA
receptor blockade does not affect progressive ratio responding
breakpoint for food reward, AMPA receptor activation decreases
this breakpoint (Mena et al., 2013), suggesting that AcbSh
glutamate negatively modulates food-directed efforts. Altering
activity of each of these receptors within the AcbSh influences
food intake in satiated rats (Maldonado-Irizarry et al., 1995;
Stratford and Kelley, 1997; Zhang et al., 1998), demonstrating
the roles of these receptors in the motivation to consume
foods. However, these receptors have dissociable roles in
modulating the rewarding value of foods. Specifically, GABAA

or opioid receptor activation increases hedonic value of foods
(Peciña and Berridge, 2005; Castro and Berridge, 2014a),
whereas AMPA receptor blockade does not (Faure et al.,
2010).

Interestingly, these motivational and hedonic effects differ
between anterior and posterior AcbSh subregions (aAcbSh and
pAcbSh). Activation of GABAA receptors within the aAcbSh will
increase food consumption and “liking” reactions to sweet tastes.
In contrast, GABAA receptor activation within the pAcbSh will
reduce food intake, suppress “liking” reactions to sweet tastes, and
increase aversive responses to bitter tastes (Reynolds and Berridge,
2001, 2002; Faure et al., 2010). Opioid receptor activation within
the aAcbSh or the pAcbSh alters hedonic responses to sweet taste
similarly to GABAA receptor activation, though food intake effects
differ between opioid receptor subtypes (Castro and Berridge,
2014a).
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In a complimentary manner, AMPA receptor blockade in the
aAcbSh increases food intake while in the pAcbSh such blockade
decreases intake, though no effects on “liking” or “disliking” are
observed from this manipulation (Faure et al., 2010). However,
the testing environment can re-adjust this rostrocaudal difference
in AcbSh behavioral control. In a normal testing environment,
aAcbSh and pAcbSh DNQX administrations produce appetitive
and avoidance behaviors, respectively. Testing in the quiet,
dark, familiar home cage causes DNQX injections to all but
the caudal 10% of the AcbSh to induce appetitive behaviors,
whereas testing in a noisy, bright, unfamiliar environment causes
DNQX injections to all but the rostral 10% of the AcbSh to
induce aversive behaviors (Reynolds and Berridge, 2008). Thus,
environmental stressors can “re-tune” the AcbSh AMPA receptor-
mediated neuroanatomical sites governing appetitive and aversive
behaviors.

Another intriguing finding is that blockade of metabotropic
glutamate receptors 2 and 3 (mGluR2/3) in most of the
AcbSh suppresses food intake and hedonic reactions to sucrose
while increasing defensive treading and aversive reactions to
sucrose (Richard and Berridge, 2011). As AcbSh mGluR2/3
activation decreases extracellular glutamate and mGluR2/3
blockade increases it (Xi et al., 2002), mGluR2/3 function as
a pre-synaptic “brake” on glutamate release into the AcbSh.
Considering these data, increased glutamate efflux to both the
aAcbSh and pAcbSh can blunt motivation to consume food and
can reverse tastes from palatable to aversive. Indeed, activation
of AcbSh AMPA receptors decreases sucrose intake (Stratford
et al., 1998). In contrast, decreased glutamate input to the AcbSh
(mimicked by AMPA receptor blockade) only acts on motivation
to eat, and does so in a neuroanatomically “fluid” manner
dependent on the presence of environmental stressors.

In summary, GABA and opioid neurotransmissions to the
AcbSh regulate food directed effort, the motivation to eat,
and the hedonic and aversive properties of food tastes. These
neurotransmitters perform these behavioral functions oppositely
within the aAcbSh vs. the pAcbSh. Hedonic and motivational
effects of glutamate neurotransmission to the AcbSh are more
nuanced. Excess glutamate neurotransmission to most of the
AcbSh hinders motivation to procure and to consume food
and reverses hedonic perception of sweet tastes to aversive.
In contrast, decreased AcbSh glutamate input acts to alter
“wanting” without altering “liking”. Stressors substantially alter
which AcbSh subregions, in response to decreased glutamate,
produce appetitive vs. avoidance behaviors. These changes in
the motivation to eat and the rewarding value of foods are
transmitted to downstream behavioral effector regions, including
the LH.

DESCENDING AcbSh TO LH CIRCUITS
Anatomical evidence reveals a direct projection from the
AcbSh to the LH (Usuda et al., 1998; Duva et al., 2005). In
particular, the dorsomedial aAcbSh “hedonic hotspot” projects
strongly to the anterior vlLH and the pfLH, likely innervating
orexin neurons, whereas the ventromedial aAcbSh projects
predominantly to the lLH (Yoshida et al., 2006; Thompson and
Swanson, 2010; Zahm et al., 2013). Thus, the aAcbSh “hotspot”

is poised to regulate hedonic value of tastes through pfLH
orexin neurons, while the ventromedial aAcbSh likely drives
food intake through the primary amino acid neurotransmitter-
sensitive lLH.

Multiple functional studies support this AcbSh to LH
circuit model. AcbSh GABA- or glutamate-mediated feeding
is suppressed or halted by pharmacological inhibition of the
LH (Maldonado-Irizarry et al., 1995; Stratford and Kelley,
1999) or by LH lesions (Stratford and Wirtshafter, 2012b).
Further, unilateral LH lesions or unilateral lLH inhibition reduces
AcbSh feeding in a behaviorally-specific manner (Stratford and
Wirtshafter, 2012b; Urstadt et al., 2013a,b). Indeed, feeding
induced by unilateral AcbSh AMPA receptor blockade with
DNQX is suppressed by NMDA receptor blockade of the
ipsilateral but not contralateral LH (Figure 1), demonstrating
that unilateral LH inhibition specifically suppresses AcbSh
mediated feeding. As the projection neurons of the AcbSh
are primarily GABAergic (Oertel and Mugnaini, 1984), some
suggest AcbSh inhibition disinhibits the LH, allowing for feeding
to occur (Kelley et al., 2005a) and increasing motivation
to procure foods (Wirtshafter and Stratford, 2010). aAcbSh
inhibition with muscimol results in increased c-fos expression
in the pfLH, lLH, and vlLH subregions (Stratford, 2005),
and particularly in orexin neurons but not in MCH neurons
(Zheng et al., 2003; Baldo et al., 2004). Based on these
data, AcbSh-mediated feeding is regulated through multiple LH
subregions.

Some recent data implicates the ventral pallidum (VP) as
an indirect route for AcbSh to LH signaling in the control
of food intake. Anterograde tracing studies have shown that

FIGURE 1 | Evidence for a feeding-specific connection between the
AcbSh and the LH. Unilateral aAcbSh injection of the AMPA receptor
antagonist DNQX (0.75 µg in 0.3 µL of a mixed DMSO-artificial CSF vehicle)
significantly increases feeding. This feeding is suppressed by concurrent
administration of D-AP5 (2 µg in 0.3 µL of artificial CSF) into the LH of the
ipsilateral, but not contralateral, brain hemisphere. This figure was
duplicated from a prior study (Urstadt et al., 2013a).

Frontiers in Systems Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 8 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Urstadt and Stanley Direct and indirect hypothalamic accumbens signaling

the AcbSh projects to the medial VP (Usuda et al., 1998)
and the medial VP in turn projects to the LH (Groenewegen
et al., 1993). Functional evidence measuring food intake also
supports a model of this three-part circuit. Feeding elicited by
unilateral AcbSh muscimol injection is halted by excitotoxic
lesion of the ipsilateral VP or the ipsilateral LH (Stratford and
Wirtshafter, 2012b). Also, unilateral AcbSh muscimol induces
c-fos expression in both the ipsilateral VP and the ipsilateral
LH (Stratford, 2005). How this indirect AcbSh—VP—LH circuit
operates in parallel with the direct AcbSh to LH circuit to
control feeding remains unclear. Also, the neurotransmitters
used in this three-part circuit are only partly described; AcbSh
projections are GABAergic (Oertel and Mugnaini, 1984), but
the VP may secrete either GABA or acetylcholine (Walaas and
Fonnum, 1979) and opioid co-transmitters (Harlan et al., 1987)
to the LH.

DIRECT ASCENDING PATHWAY FROM LH TO AcbSh
Evidence for a direct LH to AcbSh projection also exists.
Early retrograde tracing studies using AcbSh injections of
Fluorogold or wheat germ agglutinin revealed AcbSh-projecting
neurons in the pfLH, lLH, and vlLH (Phillipson and Griffiths,
1985; Brog et al., 1993). Moderate numbers of retrogradely-
labeled neurons were observed within the pfLH and lLH
after injections in either the medial aAcbSh or the medial
pAcbSh. In contrast, numerous vlLH neurons were labeled
by pAcbSh tracer injections while few were labeled by
aAcbSh injections. These anatomical findings suggest that two
distinct LH populations differentially innervate the AcbSh,
one arising from the pfLH and lLH, the other from the
vlLH.

Due to differences in the neurotransmitters used by each
subregion, the pfLH/lLH and the vlLH differently regulate
AcbSh activity. The pfLH and lLH secrete a myriad of peptide
neurotransmitters in addition to orexins and MCH, which
include but are not limited to dynorphin, enkephalin, cocaine
and amphetamine regulated transcript (CART), nesfatin-1,
corticotropin releasing factor (CRF), neurotensin, and galanin
(Skofitsch and Jacobowitz, 1985; Fallon and Leslie, 1986;
Broberger, 1999; Watts et al., 1999; Goebel et al., 2009; Hahn,
2010). Retrograde tracing with pseudorabies virus showed
that roughly one-third of AcbSh-projecting pfLH and lLH
neurons contain orexin and one-third contain MCH (Kampe
et al., 2009), leaving the remaining third uncharacterized.
Other anatomical work corroborates these pfLH/lLH to AcbSh
connections; moderate amounts of receptors for orexin and
MCH are located in the AcbSh as are fibers containing these
peptides (Bittencourt et al., 1992; Trivedi et al., 1998; Saito
et al., 2001; Baldo et al., 2003). In contrast, the nearby vlLH
has far fewer of these peptidergic neuron types, though it
contains neurons possessing either vesicular GABA transporter
or, to a lesser degree, vesicular glutamate transporter 2
(Vong et al., 2011). In summary, the pfLH and lLH can
potently modulate both aAcbSh and pAcbSh activity using
peptide neurotransmitters whereas the vlLH can directly regulate
pAcbSh activity, but not aAcbSh activity, using glutamate and
GABA.

Some functional evidence reveals how the LH may influence
food intake and food-directed effort via direct innervation of
the AcbSh. Injection of orexin A into the AcbSh will induce
feeding and locomotion (Thorpe and Kotz, 2005). Also, as intra-
accumbal orexin administration increases phasic dopamine efflux
into the AcbSh (Patyal et al., 2012), orexin likely influences
movement patterns and potentially motivated behaviors. In
contrast, MCH knockout mice display sensitized dopamine
responses via the AcbSh and increased locomotion (Pissios et al.,
2008), implying that MCH normally inhibits certain movement
patterns. Interestingly, these mice display increased responding to
non-rewarding stimuli in a conditioned reinforcement paradigm
(Sherwood et al., 2012), which indicates that MCH inhibits
actions that are not tied to the receipt of rewards such as
food. Sherwood et al. (2012) noted that this process may occur
via the AcbSh due to MCH receptor associations with AcbSh
dopamine receptors and control over AcbSh neuron excitability
(Georgescu et al., 2005; Sears et al., 2010), both of which modulate
appetitive responses. Considering that these two peptides are
secreted by the LH to the AcbSh, and considering the behavioral
effects of orexin and MCH in the AcbSh, the LH is poised to
differentially regulate food intake and motivated behaviors via the
AcbSh.

Numerous other neuropeptides exist in the LH, and some of
these neurotransmitters may also directly regulate AcbSh activity
and thus food intake. CART frequently co-localizes with MCH in
LH neurons (Broberger, 1999), so CART can be co-transmitted
with MCH to the AcbSh. AcbSh injection of CART decreases
both regular and AcbSh muscimol-elicited food intake, and CART
mRNA levels are decreased within the medial pfLH during fasting
(Yang et al., 2005), suggesting that the pfLH may secrete CART
to the AcbSh to suppress feeding. Also, recent evidence shows
dynorphin injection into the AcbSh alters the hedonic value of
sucrose solution (Castro and Berridge, 2014a), and dynorphin
can be co-transmitted to the AcbSh by LH orexin neurons (Chou
et al., 2001). These other peptide neurotransmitters secreted by
the LH are poised to regulate feeding and food-seeking behavior
via the AcbSh.

AcbSh input of one other neurotransmitter, CRF, has been
associated with modulation of food-directed behaviors. Medial
pAcbSh CRF microinjections increase cue-triggered operant
responding for sucrose, indicating that AcbSh CRF increases
incentive salience of cues that predict availability of palatable food
(Peciña et al., 2006). This behavioral effect of AcbSh CRF action
is likely mediated by increased AcbSh dopamine release (Lemos
et al., 2012). However, prior severe stress prevents this CRF-
mediated dopamine release and decreases appetitive behaviors
(Lemos et al., 2012). Further, intra-AcbSh CRF administration
also decreases sucrose solution intake in two-bottle tests and
increases AcbSh acetylcholine (Chen et al., 2012b). Increased
AcbSh acetylcholine has been implicated as a marker of satiety
(Mark et al., 1992) and may regulate the avoidance of food or
decreased motivation to feed (Hoebel et al., 2007). Also worth
noting is that AcbSh CRF injection induces oral stereotypy in
the absence of foods or objects to interact with (Holahan et al.,
1997). This mechanism implicates AcbSh CRF neurotransmission
in orofacial motor pattern control. It is unclear whether these
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AcbSh CRF effects are mediated specifically by LH CRF input,
though such input may have feeding suppressive effects. LH CRF
neurons are activated by dehydration, and are involved with
dehydration-induced anorexia (Watts et al., 1999; de Gortari et al.,
2009).

Lastly, the LH transmits glutamate and GABA to the AcbSh.
Orexin neurons utilize glutamate as a co-transmitter as they
possess vesicular glutamate transporters (Rosin et al., 2003),
whereas MCH neurons express glutamic acid decarboxylase,
implicating GABA as their co-transmitter (Elias et al., 2008).
LH LepRb neurons could also secrete GABA to the AcbSh
(Patterson et al., 2011). Through pfLH and lLH innervation of
both the aAcbSh and pAcbSh (Kampe et al., 2009), glutamate
via orexin neurons and GABA via MCH neurons can modulate
the effort to consume foods and the hedonic value of foods. In
contrast, the vlLH usually secretes glutamate and GABA without
orexin or MCH as co-transmitters. Immunohistochemical
and in situ hybridization evidence shows vesicular GABA
transporter expression in this region (Vong et al., 2011).
Glutamatergic and GABAergic projections arising from the
vlLH and terminating in the pAcbSh are poised to directly
regulate avoidance and aversive qualities of food (Reynolds
and Berridge, 2001, 2002; Faure et al., 2010). Ultimately, each
route by which LH subregions alter activity of the AcbSh and
change food intake is subsequently re-directed back through
the LH, as ablation or inhibition of the LH halts AcbSh-
mediated feeding (Stratford and Wirtshafter, 2012b; Urstadt et al.,
2013a).

INDIRECT LH TO Acb PATHWAYS
Considering the food-directed motivational and hedonic effects
of GABA, glutamate, and peptide neurotransmission within
the AcbSh, it is of much interest to determine the extra-
accumbal sources of such input. Additionally, identifying the
afferents to rostral vs. caudal AcbSh regions reveals how other
brain regions differentially regulate the motivation to eat and
the rewarding or aversive value of foods. Notable inputs to
the AcbSh include glutamatergic efferents from the prefrontal
cortex, paraventricular thalamic nucleus (PVT), hippocampus,
and amygdala (Walaas and Fonnum, 1980; Christie et al.,
1985, 1987; Moga et al., 1995) and subcortical GABAergic
efferents from the lateral septum (LS), VP, and ventral tegmental
area (Churchill and Kalivas, 1994; Van Bockstaele and Pickel,
1995; Zhao et al., 2013). Various neuropeptides are co-
transmitted in these inputs. Importantly, the LH innervates all
of these brain regions (Goto et al., 2005; Hahn and Swanson,
2010).

There are many brain regions that indirectly connect the
LH and the AcbSh. However, this review focuses on select
subcortical regions that can “relay” signals from the LH to
the AcbSh. As much work has already focused on how the
VTA is one relay in LH to AcbSh signaling (Sharf et al.,
2010), we instead discuss similar intermediary roles for the
LS, VP, and PVT. These regions were selected to address their
understudied roles in AcbSh-mediated food intake regulation
and to highlight recent research that has begun to suggest these
roles. These areas possess orexin and MCH fibers and show

expression of receptors for one or both of these neurotransmitters
(Bittencourt et al., 1992; Marcus et al., 2001; Saito et al., 2001;
Fadel and Deutch, 2002; Baldo et al., 2003), indicating that
they receive LH innervation. Additionally, tract tracing evidence
reveals direct projections from the LH to these three regions
(Chen and Su, 1990; Cullinan and Záborszky, 1991; Risold
and Swanson, 1997b; Goto et al., 2005; Kirouac et al., 2006;
Hahn and Swanson, 2010). Each of these areas projects to the
AcbSh. The nuances of these projection patterns, as well as the
functional evidence for their roles in relaying information from
the LH to the AcbSh to shape feeding behavior, are discussed
below.

An important point to note is that in this review we term these
intermediate brain regions in the LH to AcbSh circuit as “relays”.
This term gives an overly simplistic impression of their purpose in
food intake regulation. Instead of merely relaying signals between
LH and AcbSh, they integrate and process signals both from the
LH and from their various other afferents. For instance, some
authors directly state that the LS had long been referred to as a
relay node in affective signaling, whereas it performs far more
complex and integrative tasks (Sheehan et al., 2004). For the
sake of brevity we refer to these areas as relays, but these regions
integrate, process, and transmit other information, such as stress,
emotional state, and sensory input, to various other brain areas.
Each of these processes can impact food intake.

THE LATERAL SEPTUM
Similar to the nearby accumbens, the LS contains medium-sized
spiny neurons. Interestingly, most LS neurons are projection
neurons that also colateralize on other LS neurons, allowing
them to regulate intra- and extra-LS signaling (Sheehan et al.,
2004). LS neurons are primarily GABAergic (Zhao et al., 2013).
The LS is intricately subdivided based on neurotransmitter
input; intra-LS compartments are distinguished by intensity
of fibers labeled for somatostatin, neurotensin, enkephalins,
dopamine beta-hydroxylase, tyrosine hydroxylase, calcitonin
gene-related peptide, CRF, and other neurotransmitter markers
(Risold and Swanson, 1997a). In particular, the caudal LS,
distinguished by heavy somatostatin fiber immunoreactivity, is
bidirectionally connected with the LH, whereas the rostral LS
and ventral LS are bidirectionally connected with medial and
anterior hypothalamic sites, respectively (Risold and Swanson,
1997b).

The LS is typically associated with fear and defensive reactions,
as manipulations of the LS modify behaviors to fearful stimuli.
One well-described phenomenon is LS lesion-induced “septal
rage”, an exaggerated defensive behavioral state (for review,
see Sheehan et al., 2004). However, the LS also impacts food
intake in multiple ways. First, the LS interacts with the viscera.
Gastric distention excites or inhibits LS neurons, the appetitive
gut hormone ghrelin excites LS neurons, and intra-LS ghrelin
increases gastric clearance, allowing for consumption of more
food (Gong et al., 2014). Second, the LS regulates neophagia,
an avoidance of unfamiliar foods. LS histamine infusion reduces
neophagia (Chee and Menard, 2013), as do LS lesions (Chee and
Menard, 2011). Third, the LS controls food-directed motivation.
LS electrical stimulation increases operant responding to obtain
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food (Altman and Wishart, 1971), while large LS lesions cause
sporadic meal bout interruptions due to hyperactivity and
diversion of efforts to grooming and exploration (Flynn et al.,
1986). More recent work reveals that the ventral LS may be
the locus for food-directed behavior. For instance, ventral LS
lesions curb neophagia while dorsal LS lesions do not (Chee
and Menard, 2011). Also, the inclusion of sucrose into a
restricted feeding schedule diet induces c-fos expression in
the ventral LS more robustly than in the dorsal LS (Mitra
et al., 2011). These data implicate the LS in various aspects of
feeding.

Particularly important is that the LS regulates food intake via
opioid receptors. Injection of morphine or the delta receptor
agonist (D-Ala2)-Met-enkephalinamide (DALA) into the caudal
LS increases in food intake in satiated rats, but LS administration
of the broad spectrum opioid receptor agonist MR-2034 (Johnson
and Pasternak, 1983) does not affect intake, as shown in
Figure 2 (Stanley et al., 1988). Also, fasting promptly decreases
leucine-enkephalin (Leu-Enk) fiber density in the LS (Kovács
et al., 2005), where Leu-Enk is the endogenous ligand for mu
and delta receptors. The authors propose that the decrease
in apparent fiber density may be from increased release of
Leu-Enk into the LS, implying that enkephalin input to the
LS is a feeding signal. As fasting also increases NPY and
galanin fiber density in the LS (Kovács et al., 2005, 2007),
NPY and galanin input may shape this process. The LH is
one potential source of LS enkephalin, galanin, and NPY input
(Chronwall et al., 1985; Fallon and Leslie, 1986; Laque et al.,
2013).

As mentioned before, the LS and the LH innervate each
other (Deller et al., 1994; Risold and Swanson, 1997b; Duva
et al., 2005). Fluorogold deposits in most LS subregions label
neurons in the LH, and LH Fluorogold infusions label many
LS neurons. Further, both orexin and MCH fibers innervate
the LS, and the LS expresses their receptors (Bittencourt et al.,
1992; Marcus et al., 2001; Saito et al., 2001; Baldo et al., 2003).
CART fibers also innervate the LS (Janzsó et al., 2010); some
of these fibers likely originate from LH neurons co-expressing
MCH (Broberger, 1999) or potentially from LepRb neurons
co-transmitting GABA (Patterson et al., 2011; Laque et al.,
2013). It is unclear whether orexin, MCH, CART, or GABA
neurotransmission to the LS can directly affect food intake,
though orexin can control food anticipatory behavior. Orexin
neurons in the pfLH and lLH exhibit increased c-fos expression in
animals anticipating a meal during a restricted feeding paradigm
(Jiménez et al., 2013), and orexin expression in the LH is
upregulated when this meal is a sweetened chow diet (Olszewski
et al., 2009). Similarly, meal anticipation in food-restricted rats
increases c-fos expression in the ventral LS, especially those
given access to sucrose with their chow (Mitra et al., 2011).
Thus, pfLH/lLH orexin neurons, operating potentially via the
ventral LS, influence expectations of palatable meals when food
availability is limited.

LS regions receiving LH innervation project to the AcbSh.
The caudal LS, which is the primary LS recipient of LH input
(Risold and Swanson, 1997b), sends terminals throughout the
AcbSh with some LS neurons innervating the aAcbSh and many

FIGURE 2 | Morphine and DALA increase food intake significantly
above controls when injected into the caudal LS but not into the
nearby caudate putamen (CP) (panel A). MR-2034 did not significantly
increase intake in either of these brain areas. Numbers at the base of each
bar represent the number of animals used per group. A Nissl-stained
section with an injection site into the the border of the caudal LS and
septofimbrial area is shown in panel (B). These figure components were
adapted from a prior study (Stanley et al., 1988).

more innervating the pAcbSh (Brog et al., 1993). Particularly
noteworthy is that the rostral LS projects to the aAcbSh (Zahm
et al., 2013). As LS neurons are GABAergic (Zhao et al., 2013)
and co-express either dynorphin or enkephalin (Fallon and Leslie,
1986; Harlan et al., 1987), caudal LS input to the whole AchSh
is poised to retune food-directed behaviors, and rostral LS input
specifically to the aAcbSh could potentiate hedonic valuation of
tastes and food consumption (Reynolds and Berridge, 2002; Faure
et al., 2010; Castro and Berridge, 2014a). Further, the LS can
generally inform the AcbSh of predicted availability of regular and
palatable meals. By interacting with the LS, the LH can control
various aspects of AcbSh-mediated feeding.

Frontiers in Systems Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 8 | 6

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Urstadt and Stanley Direct and indirect hypothalamic accumbens signaling

THE VENTRAL PALLIDUM
The VP, a basal forebrain region, has recently become an area of
much interest in the research fields of drug abuse and food intake.
This region shares some of the properties of its more rostral
neighbor, the accumbens, in that it also possesses medium spiny
neurons (Kupchik and Kalivas, 2013). However, more caudal and
lateral areas of the VP have medium-sized aspiny GABAergic
neurons that fire spontaneously. Further, although the VP has
cholinergic neurons like those in the accumbens, VP cholinergic
neurons project to other brain areas instead of serving solely as
interneurons (Carlsen et al., 1985). The entirety of the VP is
anatomically identified by a dense Substance P-immunoreactive
fiber network, and is subdivided by strong neurotensin and strong
calbindin staining in the anteromedial and posterolateral parts
of the VP, respectively (Zahm, 1989; Zahm et al., 1996). As the
VP diagonally traverses the basal forebrain from rostromedial to
caudolateral (Paxinos and Watson, 2013), we henceforth refer
to VP subdivisions as anteromedial (amVP) or posterolateral
(plVP).

The VP is implicated in the “liking” of foods and the
motivation to feed (for detailed review, see Castro and Berridge,
2014b). VP neurons are excited by sucrose reward and cues
that predict it (Tindell et al., 2004). VP neurons also increase
firing when sucrose solutions are infused into the mouth (Tindell
et al., 2006). Interestingly, salt solutions that are aversive to
sodium-replete rats do not increase VP neuron firing, but
such solutions robustly increase VP neuron firing in sodium-
depleted rats (Tindell et al., 2006). This effect highlights the
VP’s role in the hedonic evaluation of tastes and how it can
be altered by homeostatic signals. Lesions of the VP, and not
surrounding structures such as the LH, produce aversion to
otherwise pleasurable tastants (Cromwell and Berridge, 1993);
such effects are mediated primarily through the plVP (Ho and
Berridge, 2014). VP lesions also disrupt the acquisition of food-
associated conditioned place preference (McAlonan et al., 1993),
indicating a role for the VP in learning about food-associated
cues.

Numerous neuropharmacological studies have described
behavioral roles of specific neurotransmitter receptors within
the VP. VP GABAA receptor activation decreases intake and
increases negative orofacial responses to palatable, neutral, and
unpalatable solutions (Shimura et al., 2006). Interestingly, this
inhibition of the plVP decreases effort to procure palatable food,
yet increases chow intake in rats given the choice between sucrose
and chow (Farrar et al., 2008). Conversely, VP GABAA receptor
blockade increases food intake (Stratford et al., 1999) and causes
a robust preference for foods high in fat (Covelo et al., 2014). VP
orexin receptor or MOR activation increases “liking” reactions
to sweet foods (Smith and Berridge, 2005; Ho and Berridge,
2013). The fact that VP MOR activation increases “liking”
reactions may seem paradoxical, given that opioids inhibit VP
neurons (Mitrovic and Napier, 1995). However, opioid input can
disinhibit VP neurons via inhibition of inhibitory presynaptic
inputs (Napier et al., 1992; Kupchik et al., 2014). Collectively,
these manipulations indicate that certain neurotransmitters act
within the VP to regulate the motivation to procure and the liking
of foods, as well as altering macronutrient selection.

Anatomical work links the LH, VP, and AcbSh. LH projections
innervate the VP and surrounding basal forebrain areas (Cullinan
and Záborszky, 1991; Goto et al., 2005; Hahn and Swanson, 2010).
These projections arise from the pfLH and lLH, particularly
from orexin neurons (Baldo et al., 2003) and potentially from
LepRb neurons (Patterson et al., 2011). Some projections also
originate from the vlLH (Cullinan and Záborszky, 1991). The
VP in turn projects to the accumbens in a topographic manner
(Haber et al., 1985). The amVP projects to the anterior
half of AcbSh, the subcommissural VP projects to the AcbC,
and the plVP projects to the lateral pAcbSh (Phillipson and
Griffiths, 1985; Brog et al., 1993). Most of these VP to
AcbSh projections utilize GABA as their neurotransmitter, as
suggested by stains for GAD mRNA (Churchill and Kalivas,
1994). These VP neurons may also use opioid peptides
as co-transmitters (Fallon and Leslie, 1986; Harlan et al.,
1987).

Functional evidence also links these three brain regions. VP
electrical stimulation induces c-fos expression in the accumbens,
including the aAcbSh (Panagis et al., 1997). MOR activation
in the plVP induces increased c-fos expression in the pAcbSh,
while MOR antagonism reduces baseline c-fos expression in
both aAcbSh and pAcbSh. Further, MOR antagonism in the
aAcbSh blunts plVP MOR-mediated food intake and plVP MOR-
elicited increases in “liking” of foods (Smith and Berridge, 2007),
indicating a VP to AcbSh opioid projection. Paradoxically, though
these hedonic “hotspots” functionally interact, they do not
directly innervate each other; the amVP “coldspot” innervates the
aAcbSh “hotspot” and the plVP “hotspot” innervates the lateral
pAcbSh (Phillipson and Griffiths, 1985; Brog et al., 1993). Further
investigation of intra-accumbal and intra-pallidal processing may
resolve this issue. Additionally, as VP disinhibition induces a
preference for fatty foods, it would be interesting to see if VP to
AcbSh signaling is involved with fatty food preferences induced by
accumbens MOR activation (Zhang et al., 1998).

Anatomical evidence suggests that the LH secretes orexin,
opioids, and GABA (from LepRb neurons) into the VP (Fallon
and Leslie, 1986; Baldo et al., 2003; Patterson et al., 2011; Laque
et al., 2013). The VP then sends GABAergic and opioidergic
input to the AcbSh (Fallon and Leslie, 1986; Harlan et al., 1987;
Churchill and Kalivas, 1994). Indeed, accumbens-projecting VP
neurons likely receive input from the pfLH and vlLH (Figure 3).
How then may this LH—VP—AcbSh circuit influence feeding?
Activation of the LH LepRb neuron population or another
GABAergic population can inhibit the VP and suppress intake
either by causing foods to become “disliked” or by hindering
motivation to obtain foods. In particular, if the LH secretes
GABA to the amVP, this would in turn release the aAcbSh
from VP inhibition and also suppress feeding. Conversely, orexin
or enkephalin input from the LH to the plVP could increase
hedonic perception of foods, and can further enhance this effect
via activation of the aAcbSh (Smith and Berridge, 2007). Thus,
the LH sends homeostatic signals to the VP, which alter the
hedonic evaluation of foods and the motivation to procure them.
This information is then sent to the AcbSh to transform these
motivational and hedonic signals into the initiation or cessation
of food procurement and consumption.
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FIGURE 3 | Anterograde tract tracing evidence from various studies
indicates an ascending trans-pallidal LH to AcbSh circuit in the rat brain.
PHA-L-infiltrated neurons in the suprafornical LH (LHAs; panel A) and the
anterior subfornical LH (LHAsfa; panel C) send moderate amounts of fibers to
the amVP (panels B and D) (Goto et al., 2005; Hahn and Swanson, 2010).
PHA-L-labeled neurons in the amVP (panel E) send projections to the anterior
(panel F) and especially posterior (panel G) medial AcbSh (Groenewegen

et al., 1993). Thus, the VP subregion receiving LH input projects in turn to the
medial AcbSh. Abbreviations: BST—bed nucleus of the stria terminalis;
cp—cerebral peduncle; fx—fornix; LHA—lateral hypothalamic area;
LPO—lateral preoptic area; MPO—medial preoptic area;
mt—mammillothalamic tract; NDB—diagonal band nucleus; och—optic
chiasm; opt—optic tract; V3—third ventricle; VP—ventral pallidum; ZI—zona
incerta.

THE PARAVENTRICULAR THALAMIC NUCLEUS
In the rat, the PVT is the most dorsomedial region of the
midline thalamus (Paxinos and Watson, 2013). This brain region
is comprised of small aspiny neurons. Though behavioral studies
discriminate between anterior (aPVT) and posterior (pPVT)
subregions, cellular morphology does not clearly reflect this
division (Kolaj et al., 2014). PVT neurons are predominantly
glutamatergic (Hur and Zaborszky, 2005).

Activation studies examining c-fos expression demonstrate
how the PVT, particularly its anterior part, is activated by

multiple food-associated and metabolic signals. The PVT tracks
the time of day; c-fos expression changes within the aPVT and
pPVT based on time of day (Novak and Nunez, 1998). Of
particular note is that, in restricted feeding schedules, aPVT
c-fos expression increases prior to expected meal availability,
and these increases correlate with food anticipatory indicators
such as increased locomotion and increased blood corticosterone.
These data suggest that the aPVT is a time-keeping oscillator
and regulates food anticipatory behaviors in situations of
intermittent food access (Nakahara et al., 2004). Further, aPVT
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activity is also modulated by meal palatability in both restricted
and non-restricted paradigms. In restricted feeding schedules,
addition of a palatable meal increases food anticipation-
associated c-fos expression in the aPVT (Mendoza et al.,
2005; Mitra et al., 2011). In ad libitum fed rats, aPVT c-fos
expression increases in contexts that signal availability of a
saccharin solution (Igelstrom et al., 2010), and aPVT orexin-
receptor containing neurons increase c-fos expression in contexts
associated with chocolate delivery (Choi et al., 2010). The aPVT
also receives metabolic signals; systemic insulin administration
and insulin-mediated lard intake increase c-fos within the
aPVT but not the pPVT (Warne et al., 2007). These studies
show how the aPVT is activated by information about meal
timing, availability of palatable foods, and peripheral signals of
satiety.

Lesion studies further associate the PVT with food
anticipation, food intake, and metabolism. Lesions of the
aPVT reduce food anticipatory-mediated increases in blood
corticosterone and locomotion without affecting food intake
(Nakahara et al., 2004) whereas pPVT lesions increase food intake
and body weight, and chronic stress causes this weight gain to
shift toward subcutaenous white adipose tissue (Bhatnagar and
Dallman, 1999). It should be noted that the pPVT regulates
habituation to chronic stressors, as pPVT lesions attenuate this
habituation (Bhatnagar et al., 2002). Thus, the aPVT governs
food anticipatory signaling and the pPVT regulates food intake,
body weight, stress-induced changes in metabolism, and likely
stress-mediated eating.

Neuropharmacological evidence examining PVT orexin and
GABA input also implicates the PVT in food intake regulation.
Orexin 1 receptor knockdown in the pPVT decreases high fat
diet consumption without affecting progressive ratio breakpoint
for high fat foods in either satiated or food-deprived conditions
(Choi et al., 2012). Also, orexin A infusion into the pPVT, but
not the aPVT, increases sucrose intake (Barson et al., 2014),
and pPVT orexin 1 receptor knockdown decreases high fat chow
intake (Choi et al., 2012). As orexin excites pPVT neurons
(Ishibashi et al., 2005; Heydendael et al., 2011), it is paradoxical
then that pPVT muscimol injection also increases food intake
(Stratford and Wirtshafter, 2013). Orexin and GABA may act
on different pPVT neuron populations to produce similar food
intake effects.

The LH innervates the PVT, as confirmed by anterograde
(Goto et al., 2005; Hahn and Swanson, 2010) and retrograde
(Chen and Su, 1990; Kirouac et al., 2006; Li and Kirouac,
2012) tracing studies. This hypothalamic projection consists
of orexin and its co-transmitter glutamate, verified by PVT
orexin receptor expression (Marcus et al., 2001) and orexin
fibers within the PVT (Baldo et al., 2003; Parsons et al., 2006).
CART fibers also innervate the PVT (Kampe et al., 2009), and
such innervation originates partly from the pfLH and vlLH
(Kirouac et al., 2006). Although MCH colocalizes with CART
in some LH neurons (Broberger, 1999) and the PVT possesses
MCH receptors (Saito et al., 2001), few MCH-containing fibers
terminate in the PVT (Lee et al., 2014), suggesting that LH to
PVT CART innervation does not use MCH as a co-transmitter.
Instead, LH LepRb neurons (Patterson et al., 2011; Laque

et al., 2013) may secrete CART to the PVT. The PVT also
expresses receptors for endogenous opioids and CRF, and the
PVT receives CRF input from the pfLH (Minami et al., 1993;
George et al., 1994; Potter et al., 1994; Otake and Nakamura,
1995; Ding et al., 1996). Interestingly, LH orexin and CART inputs
innervate AcbSh-projecting PVT neurons throughout the PVT’s
rostrocaudal axis (Parsons et al., 2006). The concept that the PVT
receives hypothalamic CART and orexin signals and sends this
information onward to the AcbSh has been proposed previously
(Kelley et al., 2005b; Martin-Fardon and Boutrel, 2012). There is
also a vlLH projection to the PVT (Chen and Su, 1990) that uses
GABA and possibly glutamate (Vong et al., 2011).

In turn, the PVT projects to the AcbSh (Brog et al., 1993;
Moga et al., 1995; Parsons et al., 2006; Li and Kirouac, 2008;
Vertes and Hoover, 2008; Hsu and Price, 2009). Though initially
some evidence indicated that glutamatergic PVT to AcbSh
projections innervate cholinergic interneurons (Meredith and
Wouterlood, 1990), more recent evidence showed that these
PVT to AcbSh projections instead innervate AcbSh medium
spiny neurons (Ligorio et al., 2009), though these inputs
may still act on cholinergic interneurons via extrasynaptic
mechanisms. Both the aPVT and pPVT project to the aAcbSh
and pAcbSh (Li and Kirouac, 2008), allowing both PVT regions
to influence feeding behavior through both AcbSh subregions.
Considering that the PVT secretes glutamate to the AcbSh
(Ligorio et al., 2009), inhibition of the PVT presumably halts this
glutamatergic input. AcbSh AMPA receptor blockade increases
the motivation to eat (Maldonado-Irizarry et al., 1995; Reynolds
and Berridge, 2003); this manipulation mimics cessation of
AcbSh glutamate input. Further, in non-stressful environments,
decreased glutamate release to both the aAcbSh and most of
the pAcbSh can induce appetitive behaviors (Reynolds and
Berridge, 2008). Thus, PVT inhibition would suppress glutamate
release to the AcbSh, allowing for the initiation of food
intake.

Although it is likely that multiple glutamatergic inputs,
not solely the PVT, regulate AcbSh-mediated feeding, the
PVT likely has at least a modulatory role on food intake.
Electrophysiological data indicates that although PVT input to
the AcbSh produces EPSPs, it does not produce action potentials
as other glutamatergic inputs do (O’Donnell and Grace, 1995).
However, it remains unclear whether a specific afferent source,
or a collection of sources, controls AcbSh glutamate-mediated
feeding. Synaptic glutamate levels in the AcbSh decrease during
the onset of feeding (Rada et al., 1997), indicating that
multiple glutamatergic AcbSh afferents must suppress their input
to allow for feeding to occur. Also, inhibition of prefrontal
cortical inputs alone does not increase food intake; suppression
of additional glutamate inputs is required to initiate feeding
(Richard and Berridge, 2013). The PVT may be an additional
input whose activity must also decrease in order to decrease
AcbSh synaptic glutamate and allow for the initiation of food
intake.

The concept of an LH to PVT to AcbSh circuit is supported
by the effects of GABA in the PVT and glutamate effects in
the AcbSh. Activating pPVT GABAA receptors induces eating
(Stratford and Wirtshafter, 2013). Inhibitory input from the LH
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to the pPVT, via pfLH/lLH CART neurons and their GABA co-
transmission, from pfLH opioid-secreting neurons (Brunton and
Charpak, 1998), from LH CRF neurons (Siggins et al., 1985), or
from vlLH GABA neurons, would halt pPVT excitatory input to
the aAcbSh and pAcbSh. By this circuit, inhibitory LH inputs to
the pPVT decrease glutamate release in the AcbSh, allowing for
feeding to occur.

However, excitation of pPVT neurons, via orexin receptor
activation, also induces intake (Barson et al., 2014; Kolaj et al.,
2014). How might increased PVT glutamate output to the
AcbSh increase food-directed behavior? One explanation may lie
in different PVT neuron populations—those mediating GABA-
elicited feeding and those mediating orexin-elicited feeding—
innervating different postsynaptic targets in the AcbSh. More
specifically, PVT neurons regulating GABA-elicited feeding
may project to AcbSh projection neurons, whereas PVT
neurons regulating orexin-elicited feeding may project to AcbSh
GABAergic interneurons. Such differences in PVT neuron
projection patterns need to be verified, however.

An alternate explanation is the existence of a presynaptic
“brake” on glutamatergic inputs to the AcbSh. Most AcbSh
glutamatergic afferents, including the PVT, express the inhibitory
mGluR2 presynaptically (Conn and Pin, 1997; Gu et al., 2008),
and activation of mGluR2 within the AcbSh decreases glutamate
release, an effect that persists for several minutes due to formation
of presynaptic long term depression (Kahn et al., 2001; Xi
et al., 2002). Robust PVT glutamate release within the AcbSh
would then activate PVT mGluR2 autoreceptors or mGluR2
heteroreceptors (on other glutamatergic terminals), suppressing
further glutamate release into the AcbSh. PVT-mediated excess
glutamate release into the AcbSh that would trip this “brake”
can occur from: (1) strong excitation of the pPVT by orexin and
glutamate input from the LH (Kolaj et al., 2014), (2) excitation
of the pPVT by activation of the aPVT from palatable food
contexts and/or metabolic signals (Vertes and Hoover, 2008);
and (3) excitation of the prefrontal cortex by PVT neurons
that collateralize to both the AcbSh and the prefrontal cortex
(Bubser and Deutch, 1998; Otake and Nakamura, 1998). It
should be noted that AcbSh neurons have two resting membrane
potentials—a slightly depolarized “up” state and a hyperpolarized
“down” state (O’Donnell and Grace, 1995; O’Donnell et al.,
1999). Although excess glutamate input would elicit action
potentials in AcbSh neurons in their “up” state (Lape and Dani,
2004), simultaneous GABAergic inputs from other sources would
maintain AcbSh neurons in their “down” state. In situations
where GABAergic inputs to the AcbSh drive neurons to their
“down” state, excess extracellular glutamate may not induce
action potentials and instead may inhibit further presynaptic
glutamate release. As a result, inhibitory inputs to AcbSh neurons
maintain these neurons in their “down” state and permit
the initiation of feeding unhindered by glutamate input. This
“presynaptic brake” hypothesis requires substantial verification,
however. In particular, it is unclear whether robust PVT glutamate
release into the AcbSh shuts down AcbSh glutamate inputs
in this manner, and it must be determined whether such a
mode of input deactivation specifically induces food-oriented
behaviors.

In summary, LH input informs PVT subregions of bodily
nutrient states and palatable food availability. Then, this
input modulates aPVT-mediated palatable food anticipation
and metabolic signaling as well as modifying the pPVT’s
motivational signals to procure foods. Finally, these PVT divisions
can collectively potentiate food-directed behaviors through
the aAcbSh and pAcbSh, particularly in non-stressful familiar
environments. Further anatomical study can clarify whether
specific PVT neuron subsets, such as those governing GABA-
mediated food intake vs. others governing orexin-mediated
intake, selectively innervate AcbSh projection neurons or AcbSh
interneurons.

CONCLUSIONS
Here we have described multiple ways that the LH can regulate
food intake via the AcbSh both directly and indirectly, and
can do so by altering various aspects of food-seeking behavior.
Multiple subdivisions of the LH differentially innervate the
AcbSh and utilize different combinations of neurotransmitters.
Neurotransmitters localized in the LH are implicated in food
intake and effort to procure foods, and administration of LH-
originating neuropeptides or their antagonists into the AcbSh
impact such behaviors. Also, the LH projects to numerous
other brain regions, some of which project to the AcbSh,
regulate its activity, and subsequently influence food-directed
behaviors. A collection of the pathways we have described
can be found in Table 1. We highlight a subcortical network
that serves to regulate aspects of food procurement and
consumption.

The AcbSh and the LH have a direct bidirectional anatomical
connection (Usuda et al., 1998; Kampe et al., 2009). This
bidirectional circuit serves to increase feeding in both directions
of its signaling. For example, inhibition of the AcbSh disinhibits
the LH (Stratford, 2005), in particular orexin neurons (Baldo
et al., 2004), and can drive food intake through this descending
pathway. On the other hand, the feeding induced by excitation
of the LH via glutamate receptor agonists (Stanley et al.,
1993a) may act in part by activating orexin, MCH, or other
LH neurons (Obukuro et al., 2010; Li et al., 2011) and by
increasing their peptidergic output to the AcbSh. Indeed, intra-
AcbSh orexin induces feeding while orexin antagonists suppress
feeding (Thorpe and Kotz, 2005). Alternatively, anorectic peptides
secreted from the LH to the AcbSh such as CART may
antagonize the descending AcbSh—LH pathway, as may LH
GABA neurotransmission to the pAcbSh. Also, the anterior vlLH
receives input specifically from the aAcbSh hedonic hotspot
(Thompson and Swanson, 2010), the vlLH region shows increased
c-fos expression after aAcbSh inhibition (Baldo et al., 2004),
and the vlLH projects back to the pAcbSh with GABA (Vong
et al., 2011). This LH feedback may serve to re-tune the hedonic
perception of foods. Energy state signals modulate LH activity and
reduce feeding by blunting appetite-inducing signals transmitted
to the AcbSh, which then inform the LH to avoid or cease
intake.

Here we have also proposed or added to three potential
indirect pathways by which the LH can regulate AcbSh activity,
either by modulating the motivation to feed or by changing the
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Table 1 | Anatomical evidence for direct projections and their neurotransmitters.

Projection
Origin of evidence Neurotransmitters

used
Origin of evidence

pfLH→ AcbSh,
lLH→ AcbSh

Phillipson and Griffiths (1985), Brog
et al. (1993), Kampe et al. (2009),
Hahn and Swanson (2010)

Orexin, MCH* Bittencourt et al. (1992), Trivedi
et al. (1998), Saito et al. (2001),
Baldo et al. (2003), Kampe et al.
(2009)

vlLH→ pAcbSh Phillipson and Griffiths (1985), Brog
et al. (1993), Goto et al. (2005)

GABA Vong et al. (2011)

pfLH→ LS,
lLH→ LS

Risold and Swanson (1997b) Orexin, MCH,
CART*

Bittencourt et al. (1992), Marcus
et al. (2001), Saito et al. (2001),
Baldo et al. (2003), Janzsó et al.
(2010)

vlLH→ LS Risold and Swanson (1997b) GABA Vong et al. (2011)
LS→ AcbSh Brog et al. (1993), Zahm et al.

(2013)
GABA Zhao et al. (2013)

pfLH→ PVT,
lLH→ PVT

Chen and Su (1990), Kirouac et al.
(2006), Hahn and Swanson (2010)

Orexin, MCH,
CART*

Marcus et al. (2001), Saito et al.
(2001), Baldo et al. (2003), Kirouac
et al. (2006)

pfLH→ PVT Otake and Nakamura (1995) CRF Otake and Nakamura (1995)
vlLH→ PVT Chen and Su (1990) GABA Vong et al. (2011)
PVT→ AcbSh Meredith and Wouterlood (1990),

Brog et al. (1993), Parsons et al.
(2006), Vertes and Hoover (2008),
Ligorio et al. (2009)

Glutamate Meredith and Wouterlood (1990),
Ligorio et al. (2009)

pfLH→ VP,
lLH→ VP

Cullinan and Záborszky (1991),
Hahn and Swanson (2010)

Orexin∗ Baldo et al. (2003)

vlLH→ VP Goto et al. (2005) GABA Vong et al. (2011)
VP→ AcbSh Haber et al. (1985), Phillipson and

Griffiths (1985), Brog et al. (1993)
GABA Churchill and Kalivas (1994)

∗Certain co-transmitters are assumed for specific neuron types. Specifically, orexin is co-transmitted with glutamate and dynorphin, MCH with GABA, and CART

with GABA.

reward value of foods. These routes are summarized in Figure 4
and in the following statements.

1. The LH sends projections to the LS (Deller et al., 1994)
which contain orexin, MCH, CART, GABA, and potentially
other neurotransmitters (Bittencourt et al., 1992; Broberger,
1999; Baldo et al., 2003; Janzsó et al., 2010). Also, opioids
that originate from the LH (Fallon and Leslie, 1986)
could directly mediate feeding behavior via the caudal LS
(Stanley et al., 1988), a region that receives much LH input
(Risold and Swanson, 1997b). As such, the LH is arranged
to alter LS-mediated food-anticipatory rhythms and food-
seeking behavior with homeostatic information (such as food
deprivation or sudden availability of palatable food), and can
use LS GABAergic and opioidergic outputs to induce feeding
via the AcbSh.

2. The plVP receives orexin input from the LH that enhances
liking of foods (Ho and Berridge, 2013). VP GABA input and
plVP opioid input can directly affect food intake (Smith and
Berridge, 2005; Shimura et al., 2006), and such input arises
in part from the LH (Fallon and Leslie, 1986; Chou et al.,
2001). The VP in turn is poised to inhibit the AcbSh through
GABAergic or opioidergic input (Harlan et al., 1987; Churchill
and Kalivas, 1994) and may drive food intake via this input.
Thus, palatable food availability or homeostatic state signals

processed by the LH can influence the hedonic valuation of
foods, food-directed effort, and fat preference governed by
the VP. This LH to VP input subsequently modulates VP
GABAergic and opioid input to the AcbSh and re-tunes food-
associated affective and motivated behaviors.

3. LH input can excite the aPVT and pPVT through orexin
innervation (Ishibashi et al., 2005), or inhibit these areas
via CART, enkephalin, GABA, or CRF (Kolaj et al., 2014).
Activation of pPVT orexin and GABAA receptors induces
food intake (Stratford and Wirtshafter, 2013; Barson et al.,
2014), suggesting that LH neuron groups differentially regulate
feeding via the pPVT. Both the aPVT and pPVT in turn send
glutamatergic projections to the AcbSh, which, when halted,
allows for feeding to occur via both the aAcbSh and pAcbSh
in non-stressful situations (Reynolds and Berridge, 2008).
Inhibitory input from the LH to the pPVT would suppress
glutamate input to the AcbSh. Alternatively, orexin neurons
that fire to palatable food cues excite aPVT neurons, which
then activate pPVT neurons via intra-PVT glutamatergic
innervation, and orexin innervation of the pPVT further
enhances this excitation. Excess glutamate release from the
pPVT to the AcbSh activates presynaptic autoreceptors or
heteroreceptors, which then halt AcbSh glutamate input and
induce motivation to feed. By this route, the LH alters
PVT activity and subsequently changes food anticipation,
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FIGURE 4 | Sagittal diagram of direct hypothalamic and indirect
trans-pallidal, trans-thalamic, and trans-septal innervation of the
AcbSh. Within a sagittal plane, the boxed region designates an area of the
rat forebrain within which the regions of interest reside (top panel); this area
is magnified to show sources of AcbSh innervation (bottom panel).
Subregions of the LH area (LHA), the pfLH, lLH, and vlLH, project both
directly to the AcbSh and to other regions that project onward to the
AcbSh. Green lines indicate glutamatergic signals, red lines indicate
GABAergic signals, and blue lines indicate mixed or neuropeptidergic
signals. Circles indicate cell bodies. Line thickness denotes “strength” of
connections. Such strengths were determined by amounts of anterogradely
labeled fibers or retrogradely labeled cells observed in prior studies of each
specific projection. This sagittal template was modified from a brain atlas
(Paxinos and Watson, 2013). plAcbSh—posterolateral AcbSh.

food procurement, and food selection, and this alteration of
PVT activity modulates food intake through changes in PVT
glutamatergic input to the AcbSh.

A few issues arise when interpretting the wealth of
aforementioned anatomical data. One issue is that many
tracing studies do not specify whether LH projections innervate
LS/VP/PVT projection neurons or interneurons. Also, inputs
to these brain regions could be en passant, allowing the LH to
regulate not only these but other regions receiving collaterals.
Further, some anatomical studies using light microscopy rely on
visualizing varicosities to suggest innervation of an efferent target,
though such innervation may not actually occur in the observed
brain region. Visualization of these circuits with electron

microscopy can resolve these issues, and further investigation
with other methods can properly define the purpose of specific
projections in these described circuits. Such data will paint a
more complete picture of how energy state integrators impact the
motivation to feed and the rewarding value of foods.

Considering the various avenues by which homeostatic and
sensory inputs can inform AcbSh-mediated motivational and
reward-related processing, how then is such processing executed
into action? We have mentioned that AcbSh output is routed
back through the LH in order to initiate feeding. Indeed, the LH
is required for AcbSh-mediated feeding behavior (Stratford and
Wirtshafter, 2012b). However, as the AcbSh translates motivation
into the initiation of movement patterns, it does so through
multiple efferent targets aside from the LH. Such downstream
regions include the globus pallidus, VP, and mesencephalic
motor regions, all of which regulate aspects of AcbSh-mediated
goal-directed actions (Jones and Mogenson, 1980; Brudzynski
et al., 1993; Stratford and Wirtshafter, 2012b). It is via these
multiple downstream regions that the AcbSh initiates the seeking
of goals such as foods, yet the LH is an essential component
of this food intake-controlling network in that its ablation
(Stratford and Wirtshafter, 2012b) or its inhibition (Urstadt
et al., 2013a) halts AcbSh-mediated feeding and not other
behaviors.

Drawing conclusions about brain structure functions
from lesion and microinjection studies can be difficult if
careful scrutiny is not paid to the specific anatomical spaces
involved. Overlaying “empirical” functional spaces with native
chemoarchitecture and connectivity maps in future studies is
absolutely essential for delineating the exact neural substrates
by which certain aspects of a behavior, such as food intake, are
regulated (Khan, 2013). Towards this goal, we present and add
to a subcortical framework formed from functional studies,
activation maps, and connectivity patterns showing how the LH
interacts directly and indirectly with the AcbSh. Through this
arrangement of connections, the LH can directly and indirectly
alter food-oriented behaviors governed by the AcbSh. In turn, the
AcbSh sends signals to motor effectors and the LH to initiate the
vital behavior of feeding.
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