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The effect of immature adult-born
dentate granule cells on
hyponeophagial behavior is related
to their roles in learning and memory
Wei Deng and Fred H. Gage*

Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA

The neurogenesis hypothesis of depression is based on the correlation between the

rate of adult hippocampal neurogenesis and the affective status of rodents. However,

studies investigating the role of neurogenesis in the causation of mood regulation have

reported inconsistent results. Here, we explored whether the affective state can be

affected differentially by adult-born neurons with distinctive physiological characteristics

at different maturation stages. We revealed that reducing the immature newborn neuron

population had no effect on anxiety- or depression-like behaviors in an array of tests;

however, it enhanced hyponeophagia in a novelty suppressed feeding test, but only

when the novel environment was drastically different from the home cage. We further

demonstrated that reducing the immature newborn neuron population led to delayed

habituation to a novel environment and impaired contextual learning. Hence, rather than

being directly involved in mood regulation, our studies raise the possibility that adult

neurogenesis may influence hyponeophagia through its role in mnemonic processing.

Keywords: adult neurogenesis, hippocampus, learning and memory, anxiety, depression

Introduction

The dentate gyrus of the hippocampus is one of the brain regions that experiences continuous
addition of new neurons throughout adulthood (Zhao et al., 2008). Adult-born neurons arising
from neural progenitor cells (NPCs) in the subgranular zone differentiate and develop into den-
tate granule cells (DGCs). The newly born DGCs undergo a lengthy process of maturation before
they become indistinguishable from their developmentally born counterparts and are fully inte-
grated into the hippocampal network. Compared tomature DGCs, the immature, adult-bornDGCs
are more excitable and more plastic (Schmidt-Hieber et al., 2004; Ge et al., 2006, 2007; Gu et al.,
2012). During the maturation process, environmental inputs have specific modulatory effects on
the immature DGCs that can influence their responses after they mature (Tashiro et al., 2007). Pre-
vious genetic and opto-genetic studies have demonstrated that adult-born DGCs at the immature
stage play a critical role in learning and memory (Deng et al., 2009; Gu et al., 2012).

The theory for a role of hippocampal neurogenesis in depression was first proposed by
Jacobs, van Praag and Gage, mainly based on the opposite effect of stress and serotonin on
the level of NPC proliferation (Jacobs et al., 2000). This hypothesis was further supported
by the findings that anti-depressant treatments can increase the proliferation of NPCs (Mal-
berg and Duman, 2003; Warner-Schmidt and Duman, 2006), whereas stressful experiences,
which are typically associated with corticosterone release (Munck et al., 1984), often result in a
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decrease in NPC proliferation (Gould et al., 1997; Mirescu and
Gould, 2006; Surget et al., 2008). Artificial boosting of corticos-
terone levels also causes decreased NPC proliferation (Karishma
and Herbert, 2002). In studies investigating the casual relation-
ship between neurogenesis and affective regulation, some reports,
but not others, suggest that hippocampal neurogenesis is neces-
sary for the efficacy of anti-depressants, depending on the specific
rodent behavioral tasks used (Santarelli et al., 2003; David et al.,
2009). Because immature, adult-born DGCs with distinct physio-
logical properties are critically involved in learning and memory,
we postulated that this population of adult-born DGCs may also
make specific contributions to anxiety- and depression-related
behaviors.

To test this hypothesis, we used Nestin-tk transgenic (tg) mice
to reduce adult-born DGC populations at various maturation
stages (Deng et al., 2009). Examination of these mice in the nov-
elty suppressed feeding (NSF) test using a large, novel arena
revealed that a reduction specifically in the immature, adult-
born DGC population aggravated hyponeophagia, an indicator of
anxiety- and depression-like behavior. However, similar changes
in hyponeophagia were not detected when the testing environ-
ment was more similar to the home environment in two different
tests. Moreover, reducing the number of immature, adult-born
DGCs did not alter the behavior of mice in an array of clas-
sic tests for anxiety- and depression-related behaviors. Further
analysis demonstrated that the immature, adult-born DGCs were
involved in both habituation to a novel environment and learn-
ing of a new context, consistent with our previous study showing
a key function of immature, adult-born DGCs in learning and
memory. Therefore, we propose that it is the learning and mem-
ory functions of immature adult-born DGCs that, under cer-
tain conditions, mediate behavioral changes in hyponeophagia,
a commonly utilized measurement for anxiety- and depression-
like behaviors.

Materials and Methods

Mice and Treatments
The Nestin-tk tg mice were generated as described previously
(Deng et al., 2009). Mice were housed two to five per cage under
standard 12-h light/dark cycles with free access to food and water.
For all experiments, we used both male and female mice in age-
matched litters. Wildtype (wt) littermates were used as controls.
Mice used for experiments were backcrossed to C57BL/6 for
at least nine generations. BrdU (Sigma) was injected intraperi-
toneally at 50mg/kg per day. Ganciclovir (GCV, Invivogen) was
injected intraperitoneally at 100mg/kg per day. GCV treatment
for behavioral experiments started when the animals were about
8 weeks old. In all experiments, both tg and wt mice were treated
with GCV to control for the side effect of GCV treatment. All
experimental procedures were approved by the Institutional Ani-
mal Care and Use Committee at The Salk Institute for Biological
Studies.

Immunofluorescence Staining
To validate the transient ablation of neurogenesis in Nestin-tk tg
mice, mice were treated with GCV for 14 days and BrdU was

administered during the last 4 days of GCV treatment. Mice were
sacrificed at 4 weeks post-GCV treatment by transcardial perfu-
sion with saline followed by 4% paraformaldehyde. Brain sections
were prepared according to previously reported procedures and
a one-in-twelve series was selected for immunostaining (Deng
et al., 2009). The primary antibody rat anti-BrdU (Accurate) was
used at 1:200 dilution and the secondary antibody donkey anti-
rat conjugated with Cy3 (Jackson ImmunoResearch) was used at
1:250 dilution.

Novelty-Suppressed Feeding
The procedure for this test was modified from that described
by Santarelli et al. (2003). Mice fasted for 24 h prior to the test.
Body weights before and after the fasting were recorded. Mice
were then introduced into a brightly lit novel chamber with food
(regular rodent chow) in a weighing boat in the center of the
chamber (Figure S1A). The novel chamber was made of trans-
parent plexi-glass and measured 43 × 43 × 15 cm (W × L ×

H). Mice were allowed to feed in the novel chamber for 6min.
Latency to the first bite was recorded as a measure of anxiety-
related behavior. Subsequently, mice were returned to their home
cage where food was available in a weighing boat, and they
fed there for 20min. The amounts of food consumed in both
the novel chamber and the home cage were measured. Total
food consumption was used as an indicator of feeding motiva-
tion. In the experiment described in Figure 6A, a replica of the
home cage—without top and bedding—was used as the novel
chamber.

Novelty-Induced Hypophagia
For the novelty-induced hypophagia (NIH) test, we followed the
procedure described by Dulawa and colleagues with some modi-
fications (Dulawa et al., 2004). Mice had free access to both food
and water during training and were individually housed for at
least 5 days before training. Mice were trained to drink diluted,
sweetened condensed milk (SCM, 3:1, water:SCM) for 30min in
their home cage for 3 days (Figure S1B). The latency to drink
milk and the amount consumed were recorded as baselines. On
the fourth day, mice were introduced to a novel cage that was a
clean replica of the home cage except that the bedding and top
were removed. There the mice were allowed to drink SCM for
10min. We chose the modified home cage replica as the novel
chamber because a considerable proportion of mice did not drink
SCM in a brightly lit open field box. The latency to drinkmilk and
the amount consumed were recorded as measures of anxiety-like
behavior.

Open Field Test
Open field chambers, measuring 43 × 43 × 30 cm (W × L ×H),
were obtained from Med Associates Inc. The open field cham-
bers were identical to the novel chambers used in the novelty-
suppressed feeding (NSF) (Figure 1 and Figure S1). Two arrays
of 16 pulse-modulated infrared beams were installed on both X
and Y dimensions to record the movement of the subject. Mice
were allowed explore the chamber for 30min. Their behaviors
were recorded and analyzed with the “Activity” software from
Med Associates Inc. We designated a square in the center of the
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FIGURE 1 | A reduction in the immature, but not mature,

adult-born DGC population prolongs the latency to feed in

the NSF. (A) Experimental design for NSF. (B) At 1 week after

GCV treatment, latency to feed in the novel chamber is

significantly increased in tg mice compared to wt mice

[t(51) = 2.85, p < 0.0063; tg, n = 25; wt, n = 28]. Reducing

neurogenesis in this cohort has no effect on feeding motivation,

as indicated by body weight loss [t(51) = 1.25, p > 0.22] and total

food consumption [t(49) = 0.32, p > 0.74]. (C) At 4 weeks after

GCV treatment, latency to feed is also increased in tg mice

compared to wt mice but does not reach statistical significance

[t(25) = 2.00, p = 0.056; tg, n = 13; wt, n = 14]. No change in

body weight loss [t(25) = 1.03, p > 0.31] or total food consumption

[t(25) = 1.17, p > 0.25] was detected. (D) At 12 weeks after GCV

treatment, latency to feed in the novel chamber is not significantly

different between tg mice and wt mice [t(28) = 0.49, p > 0.63; tg,

n = 15; wt, n = 15]. No change in body weight loss [t(28) = 0.40,

p > 0.69] or total food consumption [t(28) = 1.03, p > 0.31] was

detected. Data are shown as mean ± SEM and ∗ denotes

statistically significant difference.

area that occupied about a quarter of the total area as the central
zone and defined the rest of the area as the periphery zone. We
analyzed the total ambulatory distance and total ambulatory time

as indications ofmotility andmeasured the activity of the subjects
and time spent in the central zone as indicators of anxiety-related
behavior.
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Light-Dark Choice
The light-dark choice test was performed in an open field appa-
ratus equipped with a darkened enclosure located along one wall
and occupying about one third of the total field. There was an
open doorway on the wall of the dark chamber, allowing ani-
mals to pass between the darkened enclosure and the lighted
compartment. The mice were placed into the dark compartment
and were allowed free exploration for 5min. Their activities were
recorded with the “Activity” software. For analysis, the dark zone
was defined as 1/4 of the total field covered by the dark chamber,
the light zone was defined as the 5/8 of the total field at the oppo-
site end of the dark area and the remaining area was considered
the transition zone. Ambulatory distance and total time spent in
each zone were quantified.

Elevated Plus Maze
The elevated plusmaze consisted of a central platform (5× 5 cm),
two closed arms (5× 30× 15 cm) and two open arms (5×30 cm);
it was elevated 30 cm above the floor. A cylinder (diameter =
5 cm) was put on the central platform at the beginning of the
test. Mice were placed in the cylinder, which was removed within
1min. Mice were then allowed to freely explore the maze for
5min and their behaviors were recorded by a camcorder posi-
tioned above themaze. The entries into open and closed arms and
time spent on the open arm were scored from the video tapes.

Forced Swimming Test
The forced swimming test (FST) was performed in 4-l glass
beakers with a diameter of 15 cm containing 15 cm (height) of
water (∼25◦C). A 1-day protocol was used by placing mice into
the beakers and recording their behaviors for 6min using a cam-
corder (Lutter et al., 2008). To measure depression-like behavior,
the duration of immobility in the last 4min and the latency to the
first episode of immobility were scored from video tapes. Immo-
bility was defined as no movements other than those necessary to
keep their heads above water.

Contextual Fear Conditioning
A contextual fear conditioning protocol that combined the
immediate shock procedure with context pre-exposure was used
(Fanselow, 1990, 2000). The fear conditioning apparatus and
software were obtained from Med Associates, Inc. Mice were
handled for at least 1 week before behavioral testing. On the days
of testing, mice were acclimated to the procedure room for at
least 30min before testing. On day one, an individual mouse was
put into the training chamber (29 × 25 × 26 cm, context A, see
Figure S2) and allowed to freely explore for 10min before being
returned to the home cage. In context A, the grid floor of the reg-
ular conditioning chamber was covered by a plastic board. We
excluded grid floor from pre-exposure because it was the most
salient cue for fear response and could elicit a fear response inde-
pendently of context. On day two, individual mice were subjected
to an immediate shock paradigm in context A′, which was identi-
cal to context A except with the grid floor exposed (Figure S2).
The mouse received a foot shock (0.7mA, 2 s) 5 s after it was
placed into the chamber. Thirty to forty minutes later, mice were
individually introduced into context A and context B, which was

modified from context A (Figure S2), for 3min each in a coun-
terbalanced order. Freezing behaviors in context A were ana-
lyzed using video freeze software (Med Associates) to evaluate
contextual learning.

Results

Reducing the Population of Immature Adult-Born
DGCs but not of their Mature Counterparts
Affected Hyponeophagia in the NSF Test
To reduce the adult-born DGC population at a particular mat-
uration stage, we used the Nestin-tk tg mouse model in which
proliferating NPCs, which express thymidine kinase (tk) from
the nestin promoter, can be ablated by the administration of
GCV, a nucleotide analog. We showed in our previous study
that GCV treatment could effectively reduce the proliferation
of NPCs and that neurogenesis could recover after drug with-
drawal (Deng et al., 2009). Therefore, by varying the time interval
between the GCV treatment and behavioral tests, we were able
to study the functions of adult-born DGCs in emotional reg-
ulation at various maturation stages. We verified our previous
finding that GCV treatment effectively reduced NPC prolifera-
tion (Deng et al., 2009) by treating tg mice and wt littermates
with GCV for 14 days and sacrificing the mice at 4 weeks post-
treatment (Figure S3). BrdU was administered during the last 4
days of GCV treatment tomonitor neurogenesis at the time of the
drug treatment. The number of BrdU-positive cells was reduced
in tg mice, confirming the reduction of neurogenesis by GCV
treatment (Figure S3).

To investigate the function of adult-born DGCs in affective
regulation, we tested three cohorts of mice in the NSF test at
either 1, 4, or 12 weeks after GCV treatment (Figure 1A and
Figure S1A). We chose this task because it has been widely
used to assess the necessity of adult hippocampal neurogenesis
in the efficacy of antidepressants (Santarelli et al., 2003; Petrik
et al., 2012). At 1 week after GCV treatment, when the affected
adult-born DGCs were about 1–3 weeks of age, the latency to
feed in the novel testing chamber, a hyponeophagia measure-
ment commonly used to indicate anxiety level (Santarelli et al.,
2003), was significantly longer in tgmice compared to wt controls
(Figure 1B). This finding suggests that a reduction in the imma-
ture, adult-born DGC population may play a role in anxiety-
related behavior. The body weight loss in tg mice post-fasting
was similar to that in wt mice, and the tg and wt mice con-
sumed equivalent amounts of food in the testing chamber and
their home cages (Figure 1B), suggesting no significant change
in feeding motivation in tg mice. Therefore, the enhanced hypo-
neophagia of the tg mice in the novel chamber was not due to
changes in feeding motivation.

In the 4-week post-treatment cohort, the affected adult-born
DGCs were about 4–6 weeks of age. In this group, feeding
latency was considerably longer in tg mice compared with wt
mice, though the difference between the groups did not reach
statistical significance (Figure 1C, p = 0.056). This result sug-
gested that adult-born DGCs at 4–6 weeks of age could still play
a role in hyponeophagia. By contrast, no significant difference
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could be detected in the feeding latencies between tg mice and
wt mice in the 12-week post-treatment cohort (Figure 1D), in
which the affected adult-born DGCs had become fully mature. In
both the 4- and 12-week cohorts, the weight losses subsequent
to fasting and food consumption in home cages were similar
between tg and wt mice (Figures 1C,D), suggesting that the feed-
ing motivation was not significantly affected. Hence, enhanced
hyponeophagia in NSF was caused by a reduction in the imma-
ture, but not mature, adult-born DGC population. Thus, in all
the subsequent behavioral experiments, we tested the animals
between 1 and 2 weeks post-GCV treatment. Finally, integra-
tion of the transgene randomly into mouse genome may cause
changes unrelated to neurogenesis alteration and may contribute
to behavioral changes. However, the lack of behavioral phenotype
in the 12-week post-treatment cohort ruled out this possibility
and suggested that the behavioral phenotype was likely due to the
changes in neurogenesis.

Reducing the Immature, Adult-Born DGC
Population had No Effect in the NIH Test
To confirm these findings, we next examined whether a reduc-
tion in the immature, adult-born DGC population could affect
anxiety-like behavior in another hyponeophagia-based test, the
NIH test (Dulawa and Hen, 2005). In this test, mice were trained
to drink sweetened milk in their home cage and were subse-
quently tested for their behavior in seeking the highly palatable
sweetened milk in a novel cage, which was a replica of the home
cage but without bedding and top (Figure 2A and Figure S1B).
In a cohort of animals tested 1 week after the 14-day GCV
treatment, feeding latencies in the novel cages were considerably
longer than those in the home cages in both wt and tg mice, as
expected (Figures 2B,C). However, to our surprise, no signifi-
cant difference in feeding latency could be detected between tg

and wt mice in either novel cages or home cages (Figures 2B–E).
This finding apparently contrasted with what we had observed
in the NSF test (Figure 1B). Thus, the behavioral changes in
NSF cannot be simply explained by neurogenesis-mediatedmood
alteration.

Reducing Immature, Adult-Born DGC Population
had No Effect on Anxiety-Related Behaviors in
the Open Field, the Light-Dark Choice or
Elevated Plus Maze Tests
Given these results, we further explored the role of immature
adult-born DGCs in several classic anxiety and depression tests
in which an animal’s tendency to avoid risky situations, such as
open and brightly lighted environments, was usually measured as
an indicator of anxiety status. Because our previous data showed
that young newborn DGCs were involved in hyponeophagia (see
Figures 1B,C), mice were tested between 1 and 2 weeks after the
14-day GCV treatment for the rest of the study.

In a new cohort ofmice tested at 8 days after GCV treatment in
the open field test (Figure 3A), there was no significant difference
between tg and wtmice in the ambulatory distance, suggesting no
effect on the overall motility of the animals (Figure 3B). Further-
more, there was no significant difference between tg and wt mice
in the parameters for anxiety status, such as ambulatory distance
and time spent in the center area, suggesting similar anxiety levels
(Figures 3C,D). Hence, a reduction in the immature, adult-born
DGC population did not result in a change in the anxiety-like
behavior in the open field test.

When another cohort of mice was tested 10 days after
treatment in the light-dark choice test (Figure 4A), both tg
and wt groups spent less time and showed less activity in
the lighted compartment than in the darkened compartment
(Figure 4B). In addition, the time spent and activities in the

FIGURE 2 | A reduction in the immature, adult-born DGC

population has no effect on feeding behavior in the NIH test.

(A) Experimental design for NIH. (B) tg and wt mice are not

significantly different in the feeding latency in home cages on the last

day of training [t(21) = 0.75, p > 0.46; tg, n = 12; wt, n = 11]. (C)

Reducing neurogenesis does not affect the feeding latency in novel

cages [t(21) = 0.70, p > 0.49]. (D) There is no significant difference

between tg and wt mice in the normalized feeding latency (feeding

latency in novel cages/feeding latency in home cages on the last day

of training, [t(21) = 0.081, p > 0.93]. (E) Neurogenesis reduction does

not affect the amount of milk consumed [t(21) = 0.78, p > 0.44]. Data

are shown as mean ± SEM.
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FIGURE 3 | A reduction in the immature, adult-born DGC population

does not affect anxiety-like behavior in the open field test. (A)

Experimental design for the open field test. (B) Reducing the number of

immature, adult-born DGCs does not affect total ambulatory distance

[t(29) = 0.91, p > 0.37; tg, n = 16; wt, n = 15]. (C) Reducing neurogenesis

has no effect on the ambulatory distance in the central zone [t(29) = 0.35,

p > 0.72] or (D) time spent in the central zone [t(29) = 0.41, p > 0.68]. Data

are shown as mean ± SEM.

lighted compartments of tg mice were not significantly differ-
ent from those of the wt controls, suggesting no effect on anx-
iety state (Figure 4B). Four days later, the same cohort of mice
was tested in the elevated plus maze (Figure 4A). No signifi-
cant difference was detected between tg and wt mice regarding
time spent in the open arms, percentage of entries to the open
arms and total number of arm entries (Figure 4C). Because the
activity/time in the light compartment in the light-dark choice
test and the entries/time in the open arms in elevated plus maze
were indicators of anxiety-like behaviors, these data suggest that
a reduction in the immature adult-born DGC population did not
affect anxiety-related behaviors in these tests.

Reducing the Immature, Adult-Born DGC
Population had No Effect on Depression-Like
Behavior in a FST
We next asked whether a reduction in the immature adult-born
DGCpopulationmight affect depression-like behavior in the FST,
where immobility is usually measured as an indicator of depres-
sion. In a new group of mice subjected to FST 13 days after
GCV treatment (Figure 5A), neither the total immobility time
nor the latency to the first episode of immobility in tg mice was
significantly different from those of wt mice (Figure 5B). Thus,
reducing the number of immature adult-born DGCs did not
significantly change depression-like behavior in mice in FST.

Immature, Adult-Born DGCs Mediate
Hyponeophagia in NSF through their
Mnemonic Function
In previous studies, we have demonstrated that immature adult-
born DGCs are important for learning and memory (Deng et al.,
2009). Because a reduction in the immature, adult-born DGC
numbers aggravated hyponeophagia in NSF but had no effect
in other anxiety- and depression-related tests, the behavioral

changes in NSF might result from compromised cognitive abil-
ity to learn and adapt to the novel environment rather than from
affective changes. To test this possibility, we first attempted to
perform the NIH test in the novel chamber used in the NSF
test, but found that many mice would not feed in this novel
environment that was so completely different from their home
cage, possibly due to a lack of motivation. We therefore asked
whether the aggravated hyponeophagia could be observed if the
novel environment was more similar to home cage. We subjected
another cohort of mice to the NSF test at 1 week after GCV
treatment, using a modified home cage replica instead of the big,
transparent open field chamber as the novel chamber, to reduce
the learning demands (Figure 6A). Under this condition, no dif-
ference in feeding latency could be detected between tg and wt
mice (Figure 6B), suggesting that the enhanced hyponeophagia
in the original NSF test (Figure 1B) was likely due to prolonged
habituation to a novel environment.

Because the dimensions of the novel chamber used in the NSF
test were identical to those used in the open field test, we directly
examined habituation of mice to the novel chamber in the open
field test (described in Figure 3), using motility decline over time
as a measure. As expected, there was a significant interaction
between group and time in ambulatory distance (Figure 7A). The
difference between tg and wt groups was more obvious when the
motility of subsequent time blocks was normalized by the motil-
ity of the first block, with the activity decreasing more slowly
across time in tg mice (Figure 7B). Thus, habituation to a novel
environment was affected by a reduction in the immature, adult-
born DGC population, suggesting a role for these newborn DGCs
in hippocampus-dependent learning. Because we used the same
novel chamber in the NSF test (Figure 1 and Figure S1), it is pos-
sible that the function of newborn DGCs in learning may influ-
ence their feeding behavior, which was used as a measurement for
their affective status.
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FIGURE 4 | A reduction in the immature, adult-born DGC population

does not affect anxiety-like behavior in the light-dark choice test or the

elevated plusmaze. (A) Experimental design for light-dark choice and

elevated plus maze. (B) In the light-dark choice test, ambulatory distances of

both tg and wt mice are longer in the dark compartment than in the lighted

compartment, but there is no difference between tg andwtmice [ANOVA, zone

× genotype interaction, F(1, 31) = 0.47, p > 0.49; zone effect, F(1, 31) = 42.95,

p < 0.0001; genotype effect, F(1, 31) = 2.86, p > 0.10; tg, n = 15; wt, n = 18].

Both tg mice and wt mice spendmore time in the dark compartment than the

lighted compartment, but there is no difference between tg and wt mice

[ANOVA, zone× genotype interaction, F(1, 31) = 1.00, p > 0.32; zone effect,

F(1, 31) = 90.60, p < 0.0001; genotype effect, F(1, 31) = 0.29, p > 0.32]. (C) In

the elevated plus maze, tg mice and wt mice are not significantly different

regarding time spent in the open arm [t(31) = 0.22, p > 0.82], the percentage of

entries into the open arms [t(31) = 0.47, p > 0.63] and the total number of arm

entries [t(31) = 0.30, p > 0.76]. Data are shown asmean± SEM.

To directly address whether environmental learning could
be affected by a reduction in the immature, adult-born DGC
population, we tested a new cohort of mice in a contextual fear
conditioning task 12 days after GCV treatment using a proto-
col combining the contextual pre-exposure with the immediate
shock procedure (Figures 8A,B, see Materials and Methods).
In this task, contextual learning was thought to occur during
the pre-exposure to the novel context under neutral conditions
(Rudy et al., 2002). The freezing level displayed by tg mice was
significantly lower than that of wt control mice in context A,
where the conditioning occurred (Figure 8C), indicating that the
tg mice were impaired in learning a new environment. In con-
trast, we found that reduced immature, adult-born DGC popu-
lation did not affect freezing behavior in context B, which was
different from the conditioning context (Figure 8D). Together,
these results suggested that immature, adult-born DGCs were
involved in learning and habituation to a novel environment,

which could result in altered hyponeophagia under certain cir-
cumstances.

Discussion

In this study, we demonstrated that a reduction in the immature,
adult-born DGC population had no effect on the anxiety- and
depression-related behaviors of mice in an array of com-
monly used tasks but did alter hyponeophagia in the NSF
test, when the novel testing environment was drastically dif-
ferent from home cages. We further revealed that this behav-
ioral change was likely attributable to a decrement in learning
ability rather than to heightened anxiety in mice. It is notable
that olfactory neurogenesis was also decreased in GCV-treated
Nestin-tk mice (Deng et al., 2009). However, because neuro-
genesis in the olfactory bulb is mainly involved in olfaction-
dependent social behavior (Feierstein, 2012), it is unlikely that
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FIGURE 5 | A reduction in the immature, adult-born DGC population

does not affect depression-like behavior in FST. (A) Experimental

design. (B) Neither the immobility level nor latency to immobility is

significantly different between tg and wt mice [immobility level: t(18) = 0.86,

p > 0.40; latency to immobility: t(18) = 0.25, p > 0.80, tg, n = 8; wt, n = 12].

Data are shown as mean ± SEM.

FIGURE 6 | A reduction in the immature, adult-born DGC population

does not affect feeding in a similar environment. (A) Experimental

design. (B) Reducing the immature, adult-born DGC population has no effect

on the NSF test if the novel feeding occurs in a modified home cage replica,

as measured by feeding latency in a novel environment [t(34) = 0.60,

p > 0.55; tg, n = 19; wt, n = 17]. (C) Reducing neurogenesis has no effect

on body weight loss [t34) = 0.72, p > 0.47] or (D) total food consumption

[t34) = 1.07, p > 0.29]. Data are shown as mean ± SEM.

the affected olfactory neurogenesis is responsible for the observed
phenotype here, although this possibility cannot be formally
ruled out.

The possibility of a role for adult hippocampal neurogenesis
in mood regulation was first proposed by Jacobs and colleagues
based on studies about the effect of serotonin neurotransmis-
sion and stress on hippocampal neurogenesis in animal models
(Jacobs et al., 2000). For instance, anti-depressant treatments,
such as selective serotonin reuptake inhibitor (e.g., fluorextine)
administration and electroconvulsive shocks, effectively reduced

anxiety level and, at the same time, enhanced hippocampal neu-
rogenesis by increasing NPC proliferation (Madsen et al., 2000;
Malberg et al., 2000; Nakagawa et al., 2002; Malberg and Duman,
2003; Santarelli et al., 2003; Warner-Schmidt and Duman, 2006;
Perera et al., 2007; Petrik et al., 2012). On the other hand, stress, a
factor associated with mood disregulations, decreased NPC pro-
liferation (Gould et al., 1992, 1997; Mirescu and Gould, 2006).
Elevated levels of stress hormones (e.g., corticosterone) also led to
suppression of NPC proliferation (Karishma and Herbert, 2002;
David et al., 2009; Surget et al., 2011).
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FIGURE 7 | Habituation to a novel environment is affected in mice with

reduced immature adult-born DGCs. (A) Habituation is slower in tg mice

compared to wt mice, as indicated by the ambulatory distance over time [left

panel, ANOVA, genotype× time interaction, F(5, 145) = 2.53, p < 0.032;

genotype effect, F(1, 145) = 0.68, p > 0.42; time effect, F(5, 145) = 11.24,

p < 0.0001; tg, n = 16; wt, n = 15]. (B) The ambulatory activity of mice at

every time block is normalized to that of the first block [ANOVA, genotype×

time interaction, F(5, 145) = 2.70, p < 0.024; genotype effect, F(1, 145) = 3.82,

p = 0.060; time effect, F(5, 145) = 3.81, p < 0.0029]. Data are shown as mean

± SEM and ∗ denotes statistically significant difference.

FIGURE 8 | Contextual learning is affected by reducing the immature,

adult-born DGC population (A) Experimental design. (B) Illustration of

the behavioral procedures. (C) Freezing behavior is reduced in tg mice

compared to wt mice in the conditioned context [i.e., context A, t(17) = 2.42,

p < 0.027; tg, n = 9; wt, n = 10]. (D) No significant difference between tg

and wt mice in freezing behavior in a different context [i.e., context B,

t(17) = 0.0052, p > 0.99]. Data are shown as mean ± SEM and * denotes

statistically significant difference.

However, recent studies have reported many exceptions to
such correlations and revealed a rather complicated relation-
ship between hippocampal neurogenesis and depression. For
example, anti-depressant treatment enhanced NPC proliferation
in some strains of mice (e.g., 129SvEv, DBA) but not in oth-
ers (e.g., C56BL/6, balb/c, A/J) (Santarelli et al., 2003; Holick
et al., 2008; Miller et al., 2008; David et al., 2009). Furthermore,
neurogenesis levels were not always correlated with the behav-
ioral measurements of affective status (Holick et al., 2008; Miller
et al., 2008). In mouse models for depression (such as mice with
mutations in serotonin receptor 5HT1A or mice treated with
unpredictable chronic mild stress or chronic corticosterone),

alterations in hippocampal neurogenesis were not consistently
observed (Santarelli et al., 2003; Surget et al., 2008; David et al.,
2009); neither was an elevation in neurogenesis associated with
an antidepressant effect (Fuss et al., 2010; Sahay et al., 2011).
Similarly, even though stress is a negative regulator for NPC pro-
liferation, its role in regulating the survival of newly born DGCs
is less clear (Wong and Herbert, 2004; Lee et al., 2006; Mirescu
and Gould, 2006; Airan et al., 2007; David et al., 2009). Finally,
few studies using classical tests for anxiety- and depression-
like behaviors reported a direct impact of adult hippocampal
neurogenesis on emotional states of animals. In fact, many stud-
ies failed to detect any effect of neurogenesis ablation on anxiety-
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and/or depression-like behaviors in rodent models (Reviewed by
Petrik et al., 2012). Consistently, we also found that reducing neu-
rogenesis did not cause behavioral alterations in tests for anxiety-
and depression-related behaviors, such as the open field, elevated
plus maze, light-dark choice, FST and NIH tests (Figures 2–5).
Moreover, most of the classic rodent tests for anxiety- and
depression-like behaviors were developed based on their sensi-
tivity to antidepressant medications for human patients. While
they served as valuable tools in preclinical research, how the
behavioral changes in rodents reflected the mood change was not
well understood. Hence, there is no simple causal relationship
between neurogenesis and affective regulation.

Although we could not establish a causal relationship between
hippocampal neurogenesis and affective regulation, we did find
that a reduction in the number of adult-born DGCs at the imma-
ture stage enhanced hyponeophagia in the NSF task, a common
behavioral paradigm for assessing the efficacy of chronic antide-
pressants in rodents (Figure 1B). However, enhanced hypo-
neophagia by neurogenesis reduction was not found in some
studies (e.g., Santarelli et al., 2003). The detection of this pheno-
type is probably due to our specific experimental condition which
was associated with high learning demand. Indeed, by altering
the novel environment, we showed that this aggravated hypo-
neophagia could only be detected when the novel chamber was
very different from the home cage (Figures 2, 6). In this situation,
the measurement of novelty feeding latency could be influenced
by how quickly animals could learn and habituate to a novel envi-
ronment. Our investigation further revealed an involvement of
hippocampal neurogenesis in habituation to a novel environment
and contextual learning (Figures 7, 8), suggesting that the altered
learning ability, rather than heightened anxiety, may account for
the increased feeding latency. In agreement with this hypothe-
sis, a role of hippocampal neurogenesis in learning and memory
has been established by numerous studies (ref in Deng et al.,
2011). Consistent with time frame in detecting the hyponeopha-
gia phenotype, we and others previously reported that immature,
adult-born DGCs are involved in learning and memory, possi-
bly due to their distinct physiological characteristics compared
to adult-born DGCs (Deng et al., 2009; Gu et al., 2012). More-
over, we were not able to detect the behavioral effect in the NSF
task when the population of fully mature, adult-born DGCs was
reduced (Figure 1D), a finding that was consistent with a previ-
ous report that a reduction in the fully mature, adult-born DGC
population had no effect on learning and memory (Deng et al.,
2009). Alternatively, the enhanced hyponeophagia in NSF task
could be due to elevated stress upon exposure to our particular
novel environment. Previous studies suggested that adult neu-
rogenesis can influence anxiety- and depression-like behaviors
through regulation of the HPA axis (Surget et al., 2008, 2011),
and thus reduction of neurogenesis exacerbated hyponeophagia
under stressful conditions (Snyder et al., 2011). However, sim-
ilar to NSF, the experimental environments used in the open
field tests, the light-dark choice and the elevated plus maze were
also completely different from the home cage, but no phenotype
was detected in these tests by reducing the immature, adult-born
DGC population. It was worth noting that the parameters used to
indicate anxiety- and depression-like behavior in these tasks were

all measured from different compartments in the novel envi-
ronment. Therefore, the prolonged novelty adaptation could be
due to the cognitive impairment caused by a reduction in the
immature, adult-born DGC population.

We noticed that our finding of delay habituation to a novel
open field chamber was inconsistent with previous reports, which
was probably due to the drastic variations in detailed experi-
mental conditions (Meshi et al., 2006; Dupret et al., 2008). For
example, these studies used different mice strains, different appa-
ratus configurations, and different methods for data collection
and analysis. In addition, these studies also employed different
methods to reduce neurogenesis and the developmental stages of
the affected adult-born DGCs were not the same among stud-
ies. Therefore, it is not possible to direct compare the results
among different studies, especially when the overall effect of adult
neurogenesis on behavior was small.

The NSF test was also the behavioral paradigm that was con-
sistently used in previous studies to show the importance of
hippocampal neurogenesis for the effectiveness of antidepres-
sants (Santarelli et al., 2003; Petrik et al., 2012). However, the
involvement of hippocampal neurogenesis in antidepressant effi-
cacy was not consistently detected in other anxiety and depres-
sion tests, such as the open field and FST tests. Our findings
suggest that the differential dependency in adaptation to novel
environments in various anxiety- and depression-related tasks
might account for the task-selective detection of the role of hip-
pocampal neurogenesis in anti-depressant efficacy. Moreover, in
other studies, hippocampal neurogenesis was only required to
mediate the effect of monoaminergic drugs (e.g., fluorextine) but
not that of other classes of antidepressants (David et al., 2009).
Interestingly, the serotoninergic system, which was the target
for the monoaminergic antidepressants, has also been implicated
in learning and memory through the serotonin receptors in the
septo-hippocampal complex (Buhot et al., 2000). Finally, depres-
sion was a common comorbid disorder in patients suffering from
dementia and Alzheimer’s disease (Doody et al., 2001; Olin et al.,
2002). Therefore, modulating serotonin may affect mnemonic
processing through altered neurogenesis, which in turn can affect
behaviors in the novel and aversive conditions used in many
anxiety- and depression-related behavioral tests.

In conclusion, our data indicate that a reduction in the adult-
born DGC population at an immature stage did not affect the
emotional states of mice but impaired their learning ability, rais-
ing the possibility that altered behavior in some anxiety- and
depression-related tests with high learning demand may be due
to affective cognition.
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Figure S1 | Experimental apparatus and designs for the

novelty-suppressed feeding test (A) and the novelty-induced hypophagia

test (B).

Figure S2 | Illustration of several contexts used in the contextual

conditioning test.

Figure S3 | Reduction of neurogenesis in Nestin-tk transgenic mice.

(A) The experimental scheme. Nestin-tk (tg) and wildtype control (wt) mice were

treated with GCV for 14 days and were injected with BrdU on the last 4 days of

GCV treatment to label the proliferating NPCs. Mice were sacrificed 4 weeks later

for histological examination of neurogenesis. (B) Representative images of BrdU

staining in wt and tg mice. (C) The number of BrdU-labeled cells is greatly

reduced in tg mice [t(18) = 5.505, p < 0.0001]. The bar represents 100µm for all

panels. Data are shown as mean ± SEM and ∗ denotes statistically significant

difference.
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