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Recent advances in neuroscience give us a better view of the inner structure of the

amygdala, of its relations with other regions in the Medial Temporal Lobe (MTL) and

of the prominent role of neuromodulation. They have particularly shed light on two

kinds of neurons in the basal nucleus of the amygdala, the so-called fear neurons

and extinction neurons. Fear neurons mediate context-dependent fear by receiving

contextual information from the hippocampus, whereas extinction neurons are linked with

the medial prefrontal cortex (mPFC) and involved in fear extinction. The computational

model of the amygdala that we describe in this paper is primarily a model of pavlovian

conditioning, but its architecture also emphasizes the central role of the amygdala in the

MTL memory processes through three main information flows. (i) Thalamic and higher

order sensory cortical inputs including from the perirhinal cortex are received in the lateral

amygdalar nucleus, where CS-US associations can be acquired. (ii) These associations

are subsequently modulated, in the basal nucleus of the amygdala, by contextual inputs

coming from the hippocampus and the mPFC. Basal fear and extinction neurons indicate

the currently valid association to their main targets including in the MTL and the mPFC.

(iii) The competition for the choice of the pavlovian response is ultimately performed by

projection of these amygdalar neurons in the central nucleus of the amygdala where,

beyond motor responding, a hormonal response, including cholinergic modulation, is

also triggered via the basal forebrain. In turn, acetylcholine modulates activation in the

basal nucleus and facilitates learning in the hippocampus. Based on biologically founded

arguments, our model replicates a number of biological experiments, proposes some

predictions about the role of amygdalar regions and describes pavlovian conditioning as

a distributed systemic learning, binding memory processes in the MTL.
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1. Introduction

Since the seminal studies by Pavlov, respondent conditioning has been extensively studied, both at
the behavioral and neurophysiological levels. Particularly, fear conditioning, contextual fear extinc-
tion and renewal are prototypical protocols that brought much knowledge about the corresponding
behaviors and neuronal circuitry. In these protocols, an unconditioned stimulus (US) corresponds
to a biologically significant stimulus (e.g., an electric shock) that automatically triggers a fear
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response (e.g., freezing). In fear conditioning, an initially neutral
stimulus (the CS: conditioned stimulus) is repeatedly paired with
the US during an acquisition phase. Subsequently, the CS pre-
sented alone triggers a fear response, which can be interpreted as
an anticipation of the occurrence of the US by the CS. For exam-
ple, Herry et al. (2008) describes this protocol in mice, with the
first conditioned response appearing as soon as the third CS-US
association. Conditioning is not necessarily related to a salient
stimulus but can also involve the context in which conditioning
occurs. In contextual fear conditioning, the spatial context (the
chamber in which the rat is placed before receiving an electric
shock) can become a strong predictor of the US (Fanselow, 2000).

Fear extinction occurs when, in some context, the CS is pre-
sented but not followed by the US. In this case, CS might lose
its ability to trigger a fear response but this is a long process
(9–12 trials needed in Herry et al. (2008) to extinguish the asso-
ciation) and also rather fragile: when the animal is put back in
the original conditioning environment, the CS-US association is
renewed immediately. This indicates that extinction is a context-
dependent process and that, during extinction, the association
is not forgotten but only inhibited (Maren, 2005). Renewal only
consists in releasing the inhibition.

The neuronal circuitry of pavlovian conditioning has bene-
fited from extensive studies, from the molecular to the behavioral
levels. The amygdala plays a central role in that circuitry, imple-
menting pavlovian conditioning as a learning process to extract
emotional values of stimuli in the world and to trigger corre-
sponding emotional responses. It is composed of several nuclei
with distinct roles and physiological properties. Following most
of the literature, three nuclei will be more particularly consid-
ered here: the lateral nucleus (LA), the basal nucleus (BA) and
the central nucleus of the amygdala (CeA). In summary, the for-
mer two nuclei share some properties with the cortex (composed
of excitatory glutamatergic principal neurons) and integrate sen-
sory information, while the CeA nucleus is more similar to the
striatal regions of the basal ganglia (inhibitory gabaergic neurons)
(LeDoux, 2007) and is responsible for the motor, hormonal and
autonomic expression of pavlovian responses.

Pavlovian processes are supposed to result from the
interactions between the amygdala and other cerebral structures,
particularly in the Medial Temporal Lobe (MTL). Accumulated
experimental evidences about these interactions contribute to a
better understanding of the inner amygdalar processes and of
their role within the MTL.

Concerning sensory input, it is widely acknowledged that LA
is responsible for learning CS-US association in fear condition-
ing (LeDoux, 2007). LA receives sensory input from the thalamus
and the cortex (including pain-related information). Thalamic
input brings crude sensory information (like a pure tone); corti-
cal processing builds more elaborated sensory information (that
might correspond to more structured CS) along its ventral axis
including key regions of the MTL, like the perirhinal cortex. Fear
responses in LA are rather short (100ms reported in Burgos-
Robles et al., 2009). As shown in Pendyam et al. (2013), longer
CS will elicit (via LA) a sustained activity in the pre-limbic region
(PL) of the medial prefrontal cortex (mPFC) that projects in turn
to BA where more complex associations can be learned.

BA is the region of the amygdala that has benefited from the
largest expansion in the recent evolutionary process (Cardinal
et al., 2002). It integrates information from LA and is a key struc-
ture at the interface with other cerebral regions. BA plays a major
role in contextual fear conditioning (Goosens and Maren, 2001;
Biedenkapp and Rudy, 2009), particularly due to its afferences
from the hippocampus, essential for learning to integrate cues
in their spatial and temporal context (Eichenbaum et al., 2012;
Carretero-Guillén et al., 2013). BA is also widely reported to be
involved in extinction, particularly due to its afferences from
the infralimbic (IL) division of the mPFC (Sierra-Mercado et al.,
2011), a region reported to keep track of the recent reward history
(Wallis, 2007). These roles were particularly well-corroborated by
the observation in Herry et al. (2008) of two distinct populations
of neurons in BA, called fear and extinction neurons, differen-
tially connected to the hippocampus and the IL and respectively
involved in contextual fear conditioning and extinction.

In addition to its central role in providing emotional signif-
icance of events to structures responsible for instrumental con-
ditioning (Cardinal et al., 2002; Balleine and Killcross, 2006)
(particularly the ventral striatum and the mPFC), BA also partici-
pates in a fundamental learning process in the MTL, favoring the
transfer of cortical information from the perirhinal cortex to the
entorhinal cortex and the hippocampus (Paz and Paré, 2013), to
create in this latter structure an episodic memory of the current
situation, based on its emotional significance.

CeA is primarily considered as the motor pole of the amyg-
dala, triggering pavlovian motor responses. In the case of fear
conditioning, Ciocchi et al. (2010) reports projections from LA
and BA nuclei, sometimes passing through masses of inhibitory
intercalated cells (ITC), reaching in the lateral subdivision of
CeA, so-called CeLOn and CeLOff neurons. These neurons
respectively participate in the excitation and inhibition of the
medial subdivision of CeA (CeM), driving fear response. Direct
projections from ITC to CeM are also reported to participate in
the inhibition of fear response (Amano et al., 2010; Lee et al.,
2013). Freezing behavior is triggered via the periaqueductal gray
(PAG) and this motor response is generally considered in exper-
imental works as a marker of fear expression and its measure is
used to evaluate the level of conditioning (LeDoux, 2007; Herry
et al., 2008; Ciocchi et al., 2010; Sierra-Mercado et al., 2011).
Another component of pavlovian responses involves neuromod-
ulators and neuropeptides (Lee et al., 2013), introducing global
factors (for example related to the level of attention, stress, nov-
elty, etc. of the corresponding episode) in the elaboration of
pavlovian conditioning. Among multiple roles attributed to neu-
romodulators (including some still in discussion), the release of
acetylcholine (ACh) by the basal forebrain has been proposed in
Yu and Dayan (2005) to be a marker of the level of uncertainty
of the environment. Concerning its impact, ACh is characterized
by a role in memory process, by switching the hippocampus in
the storage mode (Hasselmo, 2006) and by its ability to modify
the balance of activation between BA and LA: particularly a high
level of ACh was experimentally associated in fear conditioning
to a higher activation in the BA region (Calandreau et al., 2006).

At themoment, the diversity and complementarity of the roles
of amygdalar nuclei and regions have been poorly incorporated
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in computational models, whereas they seem critical in light
of the recent physiological studies. Early models of pavlovian
conditioning were mainly interested in defining an associative
learning rule, to relate sensory inputs to a faithful prediction of
US. Some are based on the Rescorla-Wagner competitive error-
driven learning rule (Rescorla and Wagner, 1972), that modifies
the associational weights as a function of the error of predic-
tion of the US. Others draw inspiration from the Makintosh rule
(Mackintosh, 1975) and lay emphasis on the associative history
of the sensory cues. As each kind of rules best explains spe-
cific aspects of pavlovian conditioning, hybrid models have also
been proposed (Le Pelley, 2004), integrating in a single learn-
ing rule specific processings on the CS and US information. All
these models can be considered behavioral, in the sense that they
mainly insist on the accuracy of US prediction and not on a real-
istic representation of information in the inner neuronal mech-
anisms. For example in many models (Schmajuk and DiCarlo,
1992; Kruschke, 2001), the sensory input is a unique vector of
neurons, with some undifferentiated neurons representing “the
context.”

With the advance of neurobiological knowledge about pavlo-
vian conditioning, some models were developed to describe the
interplay between the amygdala, the mPFC, the posterior cortex
and the hippocampus (Armony et al., 1997; Meeter et al., 2005;
Pauli et al., 2011; Moustafa et al., 2013) but do not differentiate
the BA and LA regions. Others integrate more biophysical details
(Li et al., 2009; Kim et al., 2013; Pendyam et al., 2013), but they
remain at the level of simple CS-US association in LA. Recently,
Vlachos et al. (2011) proposed a model integrating experimen-
tal observation in BA by Herry et al. (2008) of fear and extinction
neurons but themodel restricts amygdalar contribution to the BA
nucleus.

None of these existing models are differentiating LA and BA
nuclei and particularly their specific contributions to different
MTL pathways. We have designed an integrated model of the
amygdala where eachmain nucleus has beenmodeled such that it
is possible to understand and differentiate its interplay with other
regions of the MTL (the hippocampus and the perirhinal cor-
tex) and also with specific regions of the mPFC (IL). This model,
replicating a number of recent experimental results in electro-
physiology, underlines the complementary roles of the BA and
LA nuclei in the exchanges with these regions and the critical role
of the ACh neuromodulation.

2. Materials and Methods

2.1. Network Architecture and Functioning Rules
Our modeling study uses the DANA library for neuronal repre-
sentation and computation (Rougier and Fix, 2012) and is coded
in Python.

Though our study takes special care to model neuronal
dynamics in the amygdala, it also includes a basic representa-
tion of the cortex (this term in the model refers to the spectrum
of sensory inputs from the thalamus to the perirhinal cortex, as
reported above), the hippocampus, the mPFC (including IL) and
the basal forebrain (including cholinergic neurons), as depicted
in Figure 1. Importantly, this figure also indicates information

flows implemented between these structures. At the implemen-
tation level, one connection between two neuronal structures
consists of a full connectivity between neurons of the input and
output populations.

Special efforts were made to keep a reduced number of param-
eters and to test that the model was not too sensitive to their
change (cf. Table 1 for a summary of all the parameters men-
tioned throughout the paper).

The amygdala is represented by five different neuronal popu-
lations. In addition to a population of neurons representing the
lateral nucleus (LA), the basal nucleus is represented by a popula-
tion of fear neurons (BAf) and a population of extinction neurons
(BAe) in mutual inhibition, as described in Herry et al. (2008).
The central nucleus (CeA) also possesses two populations, to
model CeLOn and CeLOff neurons triggering and inhibiting fear
responses as reported in Ciocchi et al. (2010).

The cortex and hippocampus provide sensory inputs, respec-
tively to LA and BAf. They are represented by input vectors
(Cortex andHippo), fed by an input flow depending on the learn-
ing protocol, as described in Section 2.4. Similarly, IL provides a
contextual input IL to BAe, as a vector of the same size as Hippo,
intended to represent contexts of extinction from the monitoring
of reward history (Wallis, 2007).

Other variables are made available throughout the amyg-
dala. US is a boolean variable indicating if a fearful US has
been received. ERR is the error of prediction reported in Li and
McNally (2014) to be computed in the PAG and sent back to the
amygdala. ACh is the tonic level of ACh broadcast by the basal
forebrain to all the network (McGaugh, 2004).

The output of the system is elaborated by the mutual inhi-
bition between CeLOn and CeLOff neurons and the resulting
activity in the CeLOn neurons, reported to be responsible for trig-
gering the fear response via the medial subdivision of CeA (Cioc-
chi et al., 2010), will be considered here as the level of prediction
of the US. All these relations between neuronal structures are
consistent with bibliographic information reported in the section
above and are depicted in Figure 1.

For each neuron i in an amygdalar population Amyg receiving
an input from a cerebral structure or another amygdalar popu-
lation (both kinds referred to as Input), its level of activation is
evaluated through two main variables, V representing the mem-
brane potential and U the firing rate, as classically defined with
the mean-field formalism:

dV
Amyg
i

dt
=

(

−V
Amyg
i + F

(

6jW
Amyg− Input
ij ∗ U

Input
j

))

/τ

U
Amyg
i = noise

(

sigmoid
(

V
Amyg
i

))

− 6kW
Amyg− Inhib

ik
∗ UInhib

k

τ is a time constant defining the dynamics of activity evolution
and set to 0.05 throughout all the experiments. F is a non-linear
threshold function:

F(U)= max(min_value,U − θ)

wheremin_value is a small value, set to 10−3 and θ is set to 0.3. A
sigmoid (non-linear) function is applied to V to obtain the firing
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FIGURE 1 | Main features of our model of the amygdala. LA and

BAf are two fear neurons populations, which differ by their afferent

connections. LA learn to predict fear based on sensory input from

cortex and thalamus, and projects to BAf and CeLON. BAf receive

contextual inputs from Hippocampus and sensory-based prediction from

LA, resulting in a prediction based on both sensory or contextual

information. BAe is a population of extinction neurons receiving

contextual inputs from medial Prefrontal Cortex (Infralimbic cortex, IL)

during extinction. BAe and BAf are in mutual inhibition and respectively

project to CeLOn and CeLOff populations in CeA. CeLOn and CeLOff

are also in mutual inhibition. CeLOn activity is considered as the level of

US prediction of the model.

rate U and a noise() function is added to represent intrinsic neu-
ronal noise, using a uniform distribution centered on the value
sigmoid(V). Results reported here are robustly obtained with an
interval length of 1% of sigmoid(V). Yet raising noise up to 20%
does not alter network performance on the different paradigms.
Dynamics are still similar with even higher noise, but network
predictions become less precise.

U
Input
j is the firing rate of the jth neuron of the Input popula-

tion, rectified to positive values and W
Amyg−Input
ij is the value of

the synaptic weight between this neuron and the neuron i consid-
ered in the equation. The weights are modified according to the
learning rules defined in Section 2.2 below.

Principal neurons in BA and LA are glutamatergic neurons
and all the WInput weights are considered excitatory. Inhibitory
weights WInhib coming from inhibitory populations Inhib and
influencing the evaluation of U in amygdalar populations are
intended to integrate several cases. GABAergic CeLOn and
CeLOff neurons are reported to be directly in mutual inhibition
(Ciocchi et al., 2010). Mutual inhibition is also mediated by local
inhibitory neurons between BAf fear neurons and BAe extinction
neurons (Herry et al., 2008), and between LA glutamatergic neu-
rons (Lee et al., 2013). All these cases of mutual inhibition might
also be viewed as a global effect at the population level and will
not be considered for learning below.

2.2. Learning Rules
Plasticity is implemented on connections from Cortex to LA,
and from Hippocampus and IL to BAf and BAe, respectively.
The other weights are kept constant. The initial values of all the
weights are drawn from an uniform distribution with an interval
length of 0.04, centered on 0.03 for learning weights and centered
on 0.2 for constant excitatory weights from LA or BAf to CeLOn
and from BAe to CeLOff, and on 0.1 from LA to BAf. Inhibitory
weights are centered on 0.25 within LA and between CeLOn and
CeLOff and on 0.05 between BAf and BAe.

Concerning LA and BAf, both engaged in learning to pre-
dict fear (respectively from a feature encoded in the cortex or a
context encoded in the hippocampus), learning obeys a Rescorla-
Wagner like rule:

dWPost− Pre
ij

dt
= ERR ∗ US ∗ α ∗ UPre

j ∗ UPost
i

where Pre and Post are the presynaptic and post-synaptic pop-
ulations, α is a constant learning coefficient (set to 1.0 for LA,
BAf and BAe post-synaptic neurons) and US is the value of the
US, received as defined in the learning protocol described in Sec-
tion 2.4 below. ERR = (US− UCeLOn) is the prediction error and
implements the main idea of the Rescorla-Wagner rule: weights
stabilize when the output of the networkUCeLOn is able to predict
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TABLE 1 | Parameters describing network architecture and parameters

used in activation and learning rules.

Parameter Meaning Value

ARCHITECTURAL PARAMETERS

input_size Size of input vectors from cortex, hippo, IL 10

la_size Number of neurons in la 10

baf_size Number of neurons in baf 10

bae_size Number of neurons in bae 10

CeLOn_size Number of neurons in CeLOn 1

CeLOff_size Number of neurons in CeLOff 1

EQUATION PARAMETERS

τ Amygdala neurons time constant 0.05

α Modulates learning speed in LA, BAf and

BAe

1

il_tau Time constant for ACh equation 5

noise_level % of neurons intrinsic noise 1

θ Neurons input threshold 0.3

ACh_min Minimum of ACh level 1

ACh_max Maximum of ACh level 2.5

ACh_strength Modulates effect of ACh concentration on

BA

0.5

ACh_uncertainty_

strength

Modulates effect of uncertainty on ACh

concentration

5

wmin Minimum for modifiable weights initialization 0.01

wmax Maximum for modifiable weights

initialization

0.05

Cel_input_W Constant weights from BAf, BAe and LA to

Cel

0.2

LA_to_BAf_W Constant weights from LA to BAf 0.1

LA_inhib_W Constant weights inside LA 0.1

Cel_inhib_W Constant weights between CelOn and

CelOff

0.25

BA_inhib_W Constant weights between BAf and BAe 0.05

the actual US, else they are modified as a function of the predic-
tion error. The present equation, designed for fear neurons, also
implies that these neurons will only learn when the fearful US is
received (if not, US = 0 and dW = 0).

The learning rule of connections between IL and extinction
neurons in BAe is designed to track changes in the accuracy of
prediction of the US and is sensitive to negative values of the pre-
diction error ERR, when the US is predicted but not coming (as
the main intention is to report extinction).

dWBAe− IL
ij

dt
= −ERR ∗ α ∗ UBAe

i ∗ UIL
j

In the experiments reported below, UIL is designed to be active
only when the recent history of US arrival indicates an extinction
context, as it has been proposed that IL is computing such statis-
tics (Wallis, 2007). This results in preventing IL-BAe connections
from learning an extinction context in the case of stochastic US
occurrence (Yu and Dayan, 2005) and from unlearning when
ERR is positive.

2.3. The Role of Neuromodulation
Based on information flows described above, LA, BAf, and BAe
populations predict a fearful US or an extinction context and acti-
vate CeLOn or CelOff populations with a degree of confidence
depending on the degree of matching between their actual input
and their learnt experience. In this simple view, the resulting pre-
diction is only a function of the indirect competition between
LA and BA populations, accumulated in CeA. In our model, we
propose, in accordance to biological observations (Calandreau
et al., 2006), that cholinergic modulation is going to play an addi-
tional role in this competition, primarily by modulating the lev-
els of activation in BA. Accordingly, UBAf and UBAe are going
to be computed as described above and multiplied by a value
representing the tonic level of ACh, ACh.

ACh = ach_strength ∗
(

baseline+ ach_uncertainty_strength

∗ noise
(

sigmoid
(

VACh
)))

dVACh/dt =
(

−VACh + F (|ERR|)
)

/τACh

where baseline is the baseline level of tonic ACh (set to 1.0),
τACh is the constant of time set to 5, F is the threshold function
and ERR the prediction error defined above. ach_strength mod-
ulates the effect of ACh concentration on BA activities, and is
set to 0.5. ach_uncertainty_strength modulates the effect of the
recent uncertainty VACh on ACh concentration, and is set to 5.
This simple formula is intended to represent the level of known
uncertainty (or stochasticity) of the environment, as this role is
attributed to ACh in Yu andDayan (2005). In short, these authors
argue that in case of high stochasticity (as can be measured by
frequent errors of prediction, whatever their sign), the decision
should not rely on precise cues but rather promote the role of the
context, hence the interest for ACh to favor BA receiving more
contextual information as compared to LA receiving well-learnt
sensory cues from the cortex.

2.4. Defining Learning Protocols
The model has to be activated to represent behavioral episodes
including sensory events, motor responses and neuronal activa-
tion taking place in space and time. The goal of the experiments
reported in the next section is to reproduce protocols described
in experimental papers and to compare both model responses
and internal activations to that reported in the papers, includ-
ing in the case of some manipulations on the sensory inputs as
well as on internal factors. We explain here how this procedure
is implemented, concerning model activation and monitoring.
Since this study is dedicated to pavlovian learning, the critical
aspect is about representation in space and time of the sensory
inputs. Concerning time, each behavioral episode is divided in
three phases (see Figure 2). In the first phase, the external input
is set on the Cortex, Hippo and IL vectors and remains for 500
cycles, for network activity stabilization. At the end of this phase,
the activity in the CeLOn neuron gives the prediction of US by
the network.

In the second phase, the US is given (possibly with value 0 in
case of noUS) and remains for 500 cycles. At the very beginning
of this phase, the error of prediction ERR is computed and the
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FIGURE 2 | In our experimental protocol, each trial is composed of

three phases of identical duration. In the first phase, only the sensory CS

and/or the context is shown to the network. The second phase is the learning

phase, and begins with US arrival. Prediction error is computed based of the

network output at the end of phase 1. During phase 3, no input is presented

and amygdalar neurons return to their baseline level of activation.

learning weights and level of ACh are updated. In the third phase
with 500 cycles, no input are given and the network comes back
to a rest state, ready for the next episode. Except for the simple
case of extinction (US is anticipated but not occurring), we do not
experiment variability of events in time. In our model, cortical,
hippocampal, and IL inputs are represented by a vector of units
representing sensory features and contexts. In these structures, in
normal conditions, an input will correspond to a vector with one
strongly activated unit (level of activation set to 1 inHippo and IL
and to 1.5 in Cortex) and the other units set to randomized values
uniformly drawn between 0 and n = 1/size_of _the_vector. The
strong activation is intended to represent salient features cap-
tured by an attentional process (as it is often the case in pavlovian
conditioning) and the other fluctuating smaller values represent
noise or non-significant details. It is hypothetized that learning
could also perform well with lower levels of activation but would
require more trials.

3. Results

In all the experiments reported in this paper, the architecture of
the network was defined as follows: Input vectors Cortex, Hippo,
and IL are of size 10 and LA, BAf, and BAe populations are
composed of 10 neurons. For these simple experiments on fear
conditioning, there are only one CeLOn and one CeLOff neuron.

The goal of the experiments is to run our model on specific
protocols related to pavlovian learning and to compare its acti-
vation with observations reported in experimental papers, specif-
ically emphasizing in a first set of experiments the complemen-
tary roles of the BA and LA nuclei in the exchanges with other
MTL regions and in the second set, the critical role of the ACh
neuromodulation.

3.1. Extinction-Renewal Experiment
The activation of LA, BAf, and BAe populations has been con-
trasted in the simulation of the classical pavlovian paradigms of
fear conditioning, fear extinction and renewal and compared to
results reported in Herry et al. (2008) and Ciocchi et al. (2010).

In the acquisition phase, a sensory CS (input from the cortex
to LA) and a context CTX1 (input from hippocampus to BAf)
are presented together to the network (phase 1) and maintained
until the arrival of the US (phase 2). This trial is repeated 11
times, to ensure both full fear acquisition and ACh return to base-
line after acquisition. In the extinction phase, CS is paired with
another context, CTX2 (phase 1), without any US presentation in
phase 2. This trial is repeated 14 times. For renewal, CS in paired
again with CTX1 and the US prediction is observed at the end of
phase 1.

Figure 3 shows the responses of the model to the condi-
tioning, extinction and renewal paradigms. In the conditioning
phase, both LA and BAf populations are strengthening their
connections with respectively the Cortex and Hippocampus,
so that in a few trials, CeLOn activity is correctly predicting
US arrival (Figure 3B). BAe and CeLOff activities are decreas-
ing due to respectively BAf and CeLOn inhibition. Figure 3A
shows that learning is similarly distributed between LA and
BAf. Since uncertainty is high in the first trials, ACh concen-
tration rises, allowing BAf to learn faster. As soon as the net-
work is making better US prediction, uncertainty and ACh
concentration decrease, and LA and BAf responses equilibrate.
Figure 3E Shows that both LA and BAf weights increase during
conditioning.

During extinction, LA firing rates remain stable, BAf activ-
ity starts to increase due to ACh effect, then decreases as BAe
increases and inhibits BAf. BAe increase of activity also provokes
an increase in CeLOff activation, which causes the inhibition of
CeLOn activation still powered by LA (Figure 3C). Since no US
is presented, only weights to extinction neurons can learn and
strengthen (Figure 3F). During renewal, IL is no longer provid-
ing extinction signal, which causes BAe to stop firing, and restau-
res both BAf and CeLOn firing, thus enabling the immediate
renewal of the fear response. Figure 3G shows how ACh con-
centration is changing, depending on uncertainty, and is helping
extinction acquisition in BAe. The observed neuronal dynamics
of BAf and BAe populations is in full accordance with exper-
iments reported in Herry et al. (2008) and reproduced by the
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FIGURE 3 | Trial 1 (not shown here) was a trial without any stimulus

presentation for network stabilization to baseline values. Fear

conditioning takes place from trial 2 to trial 10. Fear extinction from trial 11 to

trial 21. Renewal is tested in trial 22. Graphs (A–D) are showing average

activities at the moment of US arrival. Graphs (E,F) show average weights

evolutions, normalized by their initial values. Graphs (G,H) show the evolution

of ACh concentration over trials. (A) Both LA (blue triangles) and BAf (blue

squares) activities increase during conditioning. BAe activity (green squares)

decreases due to BAf inhibition. After a few trials, BAf reaches a maximum,

then decreases weakly, due to ACh decrease. (B) Due to LA and BAf

increase, CeLOn (blue circles) activity increases, and correctly predicts US

arrival after conditioning. CeLOff activity (green circles) is inhibited by CeLOn

(C) during the first trials, uncertainty rises, so does ACh, and BAf increases

weakly. After a few trials, BAe activity starts to overcome BAf inhibition, and

BAe strongly increases, which provokes BAf inhibition. LA firing rates remain

steady. In the renewal context, IL does not provide any longer extinction

information to BAe, which stops BAe firing and releases its inhibition on BAf.

(D) During extinction, CeLOff activity increases with BAe increase and

overcome CeLOn inhibition, still powered by LA firing. In the renewal trial,

CeLOff is no longer sustained by BAe, and CeLOn activity is restored to

conditioning value. (E) LA (blue triangles) and BAf (blue squares) weights are

increasing during conditioning. BAe (green squares) remain steady. (F) Only

BAe weights are increasing, with a higher rate as BAe starts winning the

competition against BAf. (G,H) ACh increases with uncertainty, when the

network makes prediction errors, and starts decreasing when the network

correctly performs the task.

modeling study in Vlachos et al. (2011). Dynamics in LA was not
considered in these papers, whereas our experiments suggest a
contrasted course of activity in LA, as compared to BA. This will
be discussed in Section 4.

We tested and report in Figure 4 the effect of ACh deple-
tion in extinction/renewal paradigms. ACh is set to a constant
level of 0.5, i.e., 50% of the baseline level. Fear acquisition is
not impaired, even if learning essentially takes place in LAf
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FIGURE 4 | See caption of Figure 3 for trial description. (A–D) ACh

concentration is fixed to 0.5 for modeling the effect of ACh depletion during

all the process of extinction. (E–H) Similar to Figure 3. The network is tested

in the extinction context with an ACh depletion in the last trial only. The last

trial is showing extinction with ACh depletion instead of renewal as in (A–D).

(A) Fear acquisition is mostly performed by LA increase of activity (blue

triangles) during learning, which compensates the weaker learning in BAf

(blue squares). BAe activity (green squares) remains steady, since BAf

inhibition does not increase. (B) CeLOn activity (blue circles) increases, and

correctly predicts US arrival at the end of the conditioning period. Thus,

conditioning is not impaired by ACh depletion. CeLOff activity (green circles)

is inhibited by CeLOn increase of activity. (C) LA activities remain high as in

non-ACh depleted extinction. BAe activities only increase weakly, which is

not sufficient to lower BAf firing rate, which remains steady. (D) CeLOn

activity does not decrease during extinction, since BAe low increase cannot

inhibit LA firing. Extinction learning with ACh depletion is impaired. (E,F)

Conditioning without ACh depletion, similar to Figure 3. (G,H) Extinction

without ACh depletion, up to trial 21. In trial 22, ACh is depleted by fixing its

level to 0.5, which provokes a decrease in BAe activity. This allows a weak

increase in BAf firing rate. BAe decrease also provokes a decrease in CeLOff

inhibition, thus enabling CeLOn to fire again. Extinction learning is impaired,

yet not suppressed, by ACh depletion.

(Figure 4A). Extinction learning is impaired by ACh depletion:
BAe neurons takes longer to learn and to overcome BAf inhi-
bition, and so CeLOff cell cannot inhibit CeLOn activity (cf.
Figure 4C). To study the effect of ACh depletion not only on
learning, but on the competition between LA and BA, as reported
in Figures 4G,H, we tested the effect of ACh depletion after

extinction training. ACh level is set to 0.5 in the last trial, in
the extinction context. BAe activity decreases, which induces a
weak increase in BAf, and a strong decrease in CeLOff activity,
allowing CeLOn to fire again, thus impairing extinction. Higher
levels of ACh depletion (not shown in figures) impair even more
extinction memory, which is consistent with results showing that
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injections of ACh antagonist scopolamine in the amygdala after
extinction conditioning impair extinction (Prado-Alcalá et al.,
1994).

3.2. The Role of Cholinergic Modulation
The study proposed in Calandreau et al. (2006) has also been
replicated using our model where, after a classical CS-US pairing,
the events are unpaired to mimick a certain level of uncertainty.
Depending on levels of ACh (normal or modified), Calandreau
et al. (2006) investigates if the CS or the context best predicts the
US. In that paper, the unpairing is performed by inserting various
delays between CS and US. In our study, we do not experiment
variability in time (cf. the concluding section for discussion on
implementing PL and other prefrontal structures involved in this
kind of processing). Instead, the unpairing experiment is carried

out by randomly varying the salience of the sensory CS. Its level
of activation is multiplied by a number taken randomly in a uni-
form distribution between 0 and 1. These limits correspond to the
two extreme cases of an absent CS and a paired one.

In the pairing experiment, both CS and CXT are presented in
phase 1 and associated to US in phase 2, during 11 trials. Then,
the network prediction is tested in a trial with only the sensory CS
and a trial with only the context CXT. The procedure is exactly
the same in the unpairing experiment, except that the level of
activation of the sensory CS is randomly varied along the 11 trials.

Figure 5 reports prediction by the network in the pairing
experiment. Pairing under normal conditions is identical to fear
conditioning as described previously (Figures 5A,B). Figure 5C
shows network prediction, i.e., CeLOn firing rate, following con-
ditioning, if only the tone CS (blue bar) or only the context (green

FIGURE 5 | (A–C) Pairing experiment (see text for details). (D–F) Pairing

experiment with increased ACh level. (B,E) CeLOn activity increases,

and correctly predicts US arrival after a few trials in both experiments.

(A) LA (blue triangles) and BAf (blue squares) activities increase during

training. BAe activities (green squares) weakly decrease due to inhibition.

Starting from trial 6, BAf activities are weakly decreasing due to the

reduction of uncertainty, which reduces ACh. (C) CeLOn activity after

learning, when only the tone CS (blue bar) or only the context (green

bar) is presented. Prediction is higher for the tone CS, while

context-based prediction does not differ much from baseline level (firing

rate taken at trial 1, when no CS or context are presented). (D) ACh

increase causes BAf activities to increase faster than LA activities. (F)

After learning, CeLOn activity is higher for context-based prediction, and

tone-based prediction only shows a weak difference from baseline level.

ACh increase causes US to be associated with context instead of CS

in the pairing experiment.
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bar) is presented. Context-based prediction does not differ much
from baseline firing rate, whereas tone-based prediction is higher.
In Figures 5D–F, we report the same experiment with higher
level of ACh, by artificially maintaining it to 3.0, which represents
around twice the usual level in this experiment. As Figure 5E

shows, CeLOn activity is successfully predicting US arrival. It can
be observed in Figure 5D that contrarily to normal pairing where
learning is distributed between LA and BAf, here BAf is mainly
responsible for this prediction. Figure 5F shows that after learn-
ing, contrarily to normal pairing, tone-based prediction does not
differ much from baseline, whereas context-based prediction is
more salient. Our results reproduce (Calandreau et al., 2006)
results on the pairing experiment.

In Figure 6, the network is observed during the unpair-
ing experiment, under normal (A–C) and depleted (D–F) ACh

levels. As seen in Figure 6B, the network correctly performs
conditioning, mostly based on BAf activities, while LA activities
do not increase much during learning (Figure 6A). As a result,
tone CS associative strength does not differ from baseline after
learning, while context-based prediction is high (Figure 6A). The
network mainly learns to associate the context with the US in
the unpairing experiment under normal ACh level. Tested with
depleted ACh level (AChmaintained to 0.5% of the baseline level
during learning), the opposite association is observed. Figure 6E
shows that the network is successfully predicting the US when
the tone CS is sufficiently salient, and not for lower salience. Dur-
ing learning, activities in LA are increasing quicker than in BAf
(Figure 6D). When the tone CS is less salient, both are decreas-
ing. This shows that learning is essentially based on the tone CS.
Indeed, Figure 6E shows that context-based CeLOn prediction

FIGURE 6 | (A–C) Unpairing experiment (cf. text for details). (D–F)

Unpairing experiment with depleted ACh level. (A) LA activity (blue

triangles) weakly increases when CS is high, whereas BAf activity (blue

squares) strongly increases. BAe activity decreases due to BAf inhibition.

(B) CeLOn activity (blue circles) increases due to BAf increase and

predicts US arrival after learning. (C) Tone CS alone does not elicit a

strong fear response after learning (blue bar), while context does (green

bar). (D) With ACh depletion, the network is more influenced by CS

salience. Activities in both LA and BAf increase during training,

comparatively more in LA than in BAf. (E) CeLOn activity increases during

training, and is correctly predicting US at the end of training when the

tone CS is salient. (F) After learning, fear response is strong when CS is

presented alone, but not when the context is presented alone. ACh

depletion causes US to be associated with CS instead of context in the

unpairing experiment. Green squares, BAe neurons activity; Green circles,

CeLOff neurons activity.
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does not really differ from baseline level, contrarily to tone-based
response which is close to one. In short, in both pairing and
unpairing experiments, the network is reproducing (Calandreau
et al., 2006)’s results on choosing between sensory or contextual
cues, depending on CS accuracy and ACh level.

4. Discussion

Pavlovian conditioning is a learning paradigm often considered
in experimental and modeling works because it is easy to observe
and to control and involves well-identified cerebral structures. In
the case of somatomotor associations with aversive US and short
time interval like eyeblink conditioning, the cerebellum has been
identified as the major locus of associative learning (Steinmetz,
2000) and the hippocampus has been shown to provide contex-
tual information (Carretero-Guillén et al., 2013). For stronger US
and longer CS-US interval, like in fear conditioning, the amyg-
dala has been shown to perform CS-US association, with a variety
of neuronal populations as reported above.

The model proposed in this paper, while simple, allowed us
to investigate and identify the precise roles of the main nuclei of
the amygdala, with a particular emphasis on their differentiation
relatively to MTL and mPFC structures. All the results reported
in this paper have been produced by a simple model using point-
neurons and rate activation function, with similar equations and
parameters for every amygdalar populations. This indicates that
properties observed in conditioning protocols emerge from con-
nections and interactions between multiple populations, rather
than from complex representations within a population. Experi-
ments carried out with the model were the opportunity to revisit
and interpret a series of experiments in the literature, related
to fear learning, extinction, fear response and neuromodulation.
These elements can also be gathered in a new interpretation of
pavlovian conditioning within MTL and its main information
flows.

4.1. Complementary Fear Learning in LA and BAf
In the model, neurons in LA and BAf receive external inputs,
respectively from the sensory cortex and the hippocampus and
learn to anticipate fear. The experiments we have driven have
been compared to experiments reported in Herry et al. (2008)
and in modeling works by Vlachos et al. (2011). In contrast to
this latter study, our model is not only focusing on BA and can
be the basis for discussing precisely the respective roles of LA
and BAf in fear learning. A strong idea in this regard is to go
beyond the impact of external inputs on LA and BAf and to inte-
grate internal relations within the amygdala from LA to BAf.
In the pairing experiment, Calandreau et al. (2006) states that
the prediction is based on sensory inputs rather than on contex-
tual ones. One could argue that, because the experiment is using
a quite salient tone, learning the tone is easier. As an alterna-
tive but not contradictory explanation, our model explains this
bias toward sensory rules in the pairing experiment with normal
ACh level because both LA and BAf receive sensory informa-
tion (LA directly from the cortex and BAf indirectly from LA)
whereas only BAf can predict contextual rules. Tone-based pre-
dictions will consequently occur both in LA and BAf and will
overcome contextual learning, except for stronger levels of ACh.

This interpretation is also consistent with experiments carried
out in Herry et al. (2008), involving sensory inputs (simple tones)
and reporting activation of BAf neurons.

Results proposed here have been obtained with non-plastic
connections from LA to BAf. In experiments non-reported here,
identical results were obtained, applying the learning rule on LA-
BAf connections. This suggests that LA-BAf learning is not nec-
essary for the different experiments tested here. One hypothesis
is that this would be necessary for more precise discrimination,
like modulating a specific rule if the strength of the US changes
in specific contexts.

One strong feature of our model is that learning is distributed
between LA and BAf under normal condition, which is consistent
with findings (Anglada-Figueroa andQuirk, 2005) that a lesion of
BA after training impairs fear conditioning (because, we argue, a
part of the memory trace is in BA), whereas a lesion of BA prior
to conditioning does not (because all the memory traces are in
LA). Under this view, our model is predicting that a lesion of BA
after training under ACh depletion should not, or significatively
less, impair fear acquisition.

4.2. BAe Neurons Perform Extinction Learning
In the model, neurons in BAe learn to extinguish fear responses,
based on inputs from IL. Our experiments nicely reproduce the
finding that extinction is not forgetting, reporting activities in LA
during extinction (Repa et al., 2001; Maren, 2005) and immediate
recovery of previous fear response (Herry et al., 2008).

Because our model is mainly a model of the amygdala, we
did not implement how an extinction situation is detected in IL.
Instead, IL simply transmits a signal indicating an extinction con-
text. In a more realistic approach, this signal should be sent when
the recent history contains toomany errors to be compatible with
the estimated uncertainty of the rule. This challenging problem is
the topic of ongoing works.

For the moment, in our model, extinction learning takes
place only in BAe. It could be also considered, in accordance
with results reported in Anglada-Figueroa and Quirk (2005),
that extinction learning could exclusively take place in IL, and
no learning would occur in BAe, only relaying IL activity to
inactivate fear neurons and activate CeLOff. This seems to us
unlikely because as shown in Herry et al. (2008), inactivation of
BA completely prevents extinction. After reactivation, animals
still exhibit high freezing levels, but are able to learn extinction
normally. This implies that no extinction learning occurred in
IL while BA was inactive, and seems more in favor of extinction
learning taking place in BA, driven by IL indicating or not an
extinction context. Moreover, extinction learning is taking more
time than acquisition and fear neurons start to decrease their
activity after the activity of extinction neurons starts to increase
(Herry et al., 2008). Our model reproduces these findings (cf.
Figure 3C) and explains these phenomena by fear neurons still
predictingUS and keeping extinction learning slow in the first tri-
als. Yet this phenomenon would not occur if extinction learning
only takes place in IL. Another explanation, non-contradictory
with the first one, is that animals need first to learn the extinction
context, to differentiate extinction from a stochastic rule, before
starting to learn extinction. Yet, both hypotheses are in favor of
having an extinction learning in BAe.
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Other authors encompass the role of non-amygdalar learn-
ing in contextual extinction. Particularly, Anglada-Figueroa and
Quirk (2005) report that rats with BA lesions show nor-
mal extinction learning. This evidence is nicely reproduced
by Moustafa et al. (2013) in his two-process model about the
involvement of the hippocampus in fear conditioning. This
model incorporates the same regions as in our model, but extinc-
tion is implemented with a direct projection from IL to inter-
calated cells (ITC), which in turn inhibit CeM, with no need
for extinction learning in the amygdala. In a more extensive
series of experiments, Laurent et al. (2008) reports that rats with
BA lesions or BA learning impairment can indeed extinguish a
fear response, but do not show extinction if tested the day after,
while normal rats do. Both views can be reconciled by consid-
ering the involvement of these two pathways at two different
time scales (Pauli et al., 2011). The IL-ITC-CeM pathway would
be responsible for a rapid flexible learning of extinction whereas
the IL-BAe-CeLOff-CeM pathway would perform slow learning
and long-term storage. As discussed in Section 4.3, this is a good
motivation for reconsidering the role of ITC in our model.

4.3. CeLOn Neurons Prepare the Response of the
Central Nucleus
The output of the network is integrated in two different popu-
lations of CeLOn and CeLOff neurons, as described in Ciocchi
et al. (2010) and reported to integrate the contribution of LA and
BA populations in a unique behavioral response. Our model does
not assume a similar role for CeLOn and CeLOff. Only CeLOn
activity is taken as the output of the model, i.e., we consider
that CeLOn activity represents the US prediction of our network.
CeLOff will influence this prediction by inhibiting it, but is not
a direct output of our model. This is consistent with biological
data reported in Ciocchi et al. (2010), showing that whereas both
CeLOn and CeLOff project to medial CeA, CeLOn is responsi-
ble for the spontaneous burst in medial CeA neurons previous to
US arrival, while CeLOff has a more tonic effect. This allows us
to explain why it is reported that fear neurons in LA are still fir-
ing during extinction (Repa et al., 2001; Maren, 2005): our model
proposes that their effect on CeLOn is extinguished by CeLOff
inhibition, sustained by BAe.

CeLOff was chosen as the unique locus of inhibition in the
model for the sake of simplicity. A more realistic implementation
of inhibition of the fear response during extinction would have to
consider the respective roles of CeLOff and ITC in inhibiting the
fear response in CeM, as we intend to do in future works (Amano
et al., 2010; Lee et al., 2013). Another simplification in our model
is the absence of plasticity in CeA, even if studies are showing that
there is actually plasticity, especially in CeL (Pare et al., 2004).
According to our experience, this plasticity should not play a
major role in the extinction/renewal or pairing/unpairing exper-
iments. In contrast, this learning may be important to associate
direct signals from thalamus to CeA, which is not critical for
solving the experiments described here. Such a case is reported
in Yu and Dayan (2005), while detecting unknown uncertainty
(the rule is not valid, not because of stochasticity but because
the rule has changed). In order to find rapidly a new valid rule,
the authors explain that it is more efficient to rely on basic cues

from the thalamus rather than on high level cues from the cor-
tex, possibly elaborated for the previous rule. The authors suggest
that noradrenergic modulation could help biasing the balance
between thalamic and cortical inputs to the amygdala, as it is also
described in Johnson et al. (2011).

Another possible role for plasticity in CeA could be to learn
to weigh multiple afferences to CeL, coming from LA, BA but
also IL, to trigger an adapted response, even in complex situa-
tions requiring precise discrimination or allowing to generalize
behavior (Ciocchi et al., 2010). Here also, this could be the topic
of future works, including the design of more complex situations.

4.4. Impact of Neuromodulation on Learning
From a physiological point of view, ACh has been reported to
impact neuronal processing by enhancing signal to noise ratio
(SNR) in the cortex (Pauli and O’Reilly, 2008), the hippocampus
(Hasselmo, 2006) and the basal nucleus of the amygdala (Unal
et al., 2015). From a functional point of view, ACh has been pro-
posed to signal known uncertainty (stochasticity) (Yu andDayan,
2005).

In ourmodel, the impact of ACh is implemented by increasing
responses in BA populations proportionally to their levels of acti-
vation. On the one hand, this effect actually increases SNR in BA.
On the other hand, it favors contextual hippocampal input in BA
as compared to learning on sensory cues in LA, which is appro-
priate in case of known uncertainty. Indeed, in our study adapted
from Calandreau et al. (2006), whereas the pairing experiments
naturally favor learning on sensory cues in LA, in the unpair-
ing experiments, the stochasticity of the sensory rule provokes
an increase in ACh level and results in a quicker learning in BA
than in LA. As a result, the contextual rule is learnt instead of the
sensory rule.

The main difference between experiments in Calandreau et al.
(2006) and in our model is the region where ACh levels are
modified (respectively in the hippocampus and in the amyg-
dala). Nevertheless, in both cases, ACh depletion is impairing the
same functional pathway concerned with contextual learning and
implicitly favors learning on sensory cues. As a prediction, we
postulate that performing the same experiments as in Calandreau
et al. (2006) with modified ACh levels in BA should deliver sim-
ilar results, thus comforting this interpretation. This prediction
is at some extent supported by McIntyre et al. (2003) reporting a
positive correlation between amygadalar ACh and performance
in a hippocampus dependent task.

Variation of ACh level in BA has a similar impact on the com-
petition between sensory-based fear prediction and contextual
fear extinction. In particular, Schroeder and Packard (2004) show
a facilitating effect of intra-amygdalar injection of an ACh agonist
in contextual extinction. Prado-Alcalá et al. (1994) report rever-
sal of contextual extinction with ACh antagonist injection. Our
model reproduces this reversal with ACh depletion after extinc-
tion learning (Figures 4G,H). These findings and those reported
just above on contextual vs. sensory learning, highlight the cen-
tral role of ACh in modulating the different amygdalar pathways.
In both cases, by enhancing neuronal activity in BA, increased
ACh levels promote alternative solutions to fear response based
on sensory cues.
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4.5. Pavlovian Learning within MTL
This integrated view of the amygdala is also a systemic view of
pavlovian conditioning in the amygdala in interaction with other
cerebral structures. In the aim of learning CS-US associations,
at the lowest level of complexity, features characterizing the CS
and the US can be simply given by the thalamus and the sen-
sory cortex. In this case, and as it has already been proposed by
many models based on the Rescorla-Wagner rule (Rescorla and
Wagner, 1972), LA can extract these features by a competitive
learning and predict US efficiently. It can also target CeA directly
to produce the corresponding pavlovian responses. In the view
emerging from our model, BA is involved as soon as the situa-
tion goes beyond this standard case and makes the decision from
the current evaluation of LA but also from the integration of cues
from other cerebral structures.

On the one hand, this is the case when the CS is more com-
plex than in the standard case. The complexity can be in space:
the CS can integrate contextual information as we have experi-
mented here or it can correspond to the configural combination
of stimuli not present in the cortical representation, as it is for
example discussed in O’Reilly and Rudy (2001); in both cases, the
hippocampus can learn by heart this configuration and activate
BA fear-neurons. In the case of configural representation that our
model could also consider in future work, a subsequent consoli-
dation between the hippocampus and the cortexmight endow the
latter with the needed representation (McClelland et al., 1995);
subsequently and as an ultimate goal of pavlovian learning, LA
could integrate the association in the scheme of a new simple sen-
sory rule involving cues from the cortex, instead of a specific con-
text from the hippocampus. The complexity can also be in time: a
too long CS is extended by a sustained activity in PL, sent to BA as
reported in Pendyam et al. (2013); similarly, a delayed CS as con-
sidered in Calandreau et al. (2006) might also be represented by a

working memory. Extending our model to prefrontal structures
would be necessary to extend pavlovian learning to such temporal
effect.

On the other hand, the case for more complex association also
arises when the CS-US association changes in time, which is not
rare in our stochastic and dynamic world. We have evoked here
the case of contextual extinction where a rule valid at a certain
time becomes suddenly extinguished in another context.We have
argued that IL has all the information and functional character-
istics to build this history in a working memory and to act on
BA accordingly through extinction neurons. The cases where the
expected US doesn’t arrive because the association is more com-
plex than expected have to be distinguished from the cases where
the US doesn’t arrive because the rule is simply stochastic and
doesn’t apply from time to time, just by chance. In this case, there
is no concrete new rule to learn, but it must be considered that
specific rules involving contextual information should be prob-
ably more reliable than general rules based on the presence of
sensory cues. This is implemented in our model by the modu-
latory effect of ACh, as an incitation for preferring contextual
rules in BA instead of general rules in LA. ACh release might also
result in provoking the learning of such contextual rules in the
hippocampus.

In conclusion, this systemic view of the amygdala is also a
dynamic view of our memory system, proposing in accordance
to many other authors and experiments (McClelland et al., 1995;
Holland and Gallagher, 1999; Pauli et al., 2011) that learning in
one structure can subsequently improve the memorization pro-
cess in another structure. An original interpretation of our study
proposes such a role for pavlovian conditioning within the MTL,
with learning in amygdalar nuclei fed by inputs from the cortex
and the hippocampus and enriching subsequently memories in
these structures.
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