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Connections of the juxtaventromedial
region of the lateral hypothalamic
area in the male rat
Joel D. Hahn* and Larry W. Swanson

Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

Evolutionary conservation of the hypothalamus attests to its critical role in the control

of fundamental behaviors. However, our knowledge of hypothalamic connections is

incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the

results of neuronal pathway-tracing experiments to investigate connections of the LHA

juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv)

zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit

(CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v.

Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint

outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST

anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH)

nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif,

BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and

medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd

HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the

LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included

posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received

a dense input from the LHAjvd alone. Our analyses indicate the existence of about

500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral

cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected

regions have a prominent role in reproductive behavior. These findings contrast with

those from our previous pathway-tracing studies of other LHA medial and perifornical

tier regions, with different connectional behavioral relations. The emerging picture is of a

highly differentiated LHA with extensive and far-reaching connections that point to a role

as a central coordinator of behavioral control.

Keywords: lateral hypothalamic area, fundamental behavior, cognitive systems, motor systems, hypothalamus

Introduction

About a century of research on the hypothalamic neuronal network has established its critical role
in the control of fundamental behaviors and their supporting homeostatic processes (for historical
reviews see Le Gros Clark, 1938; Fulton et al., 1940; Harris, 1955; Nauta and Haymaker, 1969).
The early research established a broad functional role for the hypothalamus, and indicated further
that different hypothalamic regions could control different functions (or different aspects of the
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same function). However, despite the profound behavioral and
physiological effects of experimental hypothalamic electrolytic
lesion and electrical stimulation, nothing definitive was said
about the organization of the underlying neuronal connections—
although much was hinted at in pioneering neuroanatomical
studies using a variety of now classic histological staining
techniques (Gurdjian, 1927; Krieg, 1932; Ramon y Cajal, 1995).
The major limitation on the acquisition of connection data was
an absence of techniques for determining neuronal connections
(such as anterograde and retrograde pathway-tracing) and
neuronal chemoarchitecture (such as immunohistochemistry—
IHC). Prior to the emergence and (beginning in the 1970s)
application of these methods to neuroanatomical studies, the
available and prevailing techniques were axon degeneration
methods and a variety of histological staining techniques (for
further perspective and reviews see Haymaker et al., 1969;
Morgane and Panksepp, 1979; Swanson, 1987, 1999; Zaborszky
et al., 2006).

Initial non-lesion anterograde neuronal pathway-tracing
studies employed the autoradiographic method (tritiated amino
acids) which, despite problems with interpretability (Swanson,
1981), was applied extensively to investigate central connections,
including those of the LHA (Saper et al., 1979; Veening
et al., 1982). In parallel with advances in pathway-tracing
methods, advances in neuropharmacology led to the availability
of receptor-targeted drugs which could replace electrical
stimulation methods to identify central sites of functional
significance—for example, the determination of central sites from
which drinking could be elicited by central injections of either
angiotensin II, or the cholinergic agonist carbachol (Swanson and
Sharpe, 1973; Swanson et al., 1973; Sharpe and Swanson, 1974).

As neuropharmacological methods enabled more selective
targeting than electrical stimulation, so the introduction of
non-isotopic retrograde and anterograde neuronal pathway-
tracers provided more effective tools than lesion/degeneration
methods with which to determine the organization of central
neuronal connections. Prominent among the latter is the
lectin Phaseolus vulgaris leucoagglutinin (PHAL), which was
introduced as an anterograde neuronal tracer in the 1980s
(Gerfen and Sawchenko, 1984), and enabled for the first
time (with detection by IHC) the qualitative determination
of the microscopic morphology and topographic organization
of connections between stereotaxically targeted gray matter
regions. Similarly, now routinely used retrograde neuronal
tracers introduced in the same period include the B subunit
of cholera toxin (CTB) (Stoeckel et al., 1977; Dumas et al.,
1979; Trojanowski et al., 1981; Luppi et al., 1987, 1990), and
hydroxystilbamidine (trade name Fluoro-Gold; FG) (Schmued
and Fallon, 1986).

In the past decade, a second revolution in methods for
system-level connection analysis has occurred, comparable
in impact to that which occurred in the 1970s (Swanson,
2007). The application of molecular genetics methods (such
as opto- and pharmacogenetic, and viral pathway-tracing
approaches) to investigating hypothalamic structure-function
relations is beginning to provide long-sought clarity about
the organization of this critical neuronal network. Recent

investigations that exemplify the application of these methods
include the elucidation of hypothalamic networks for feeding
behavior (Betley et al., 2013), and aggression (Lin et al., 2011)—
for reviews of the approaches see (Zaborszky et al., 2006; Fenno
et al., 2011; Farrell and Roth, 2013; Sternson, 2013). Nevertheless,
now classic pathway-tracing techniques, using tracers such as
PHAL and CTB, remain useful tools in the continuing quest to
determine the basic plan of the hypothalamic neuronal network,
and by extension the nervous system (Swanson, 2000, 2007;
Zingg et al., 2014). Furthermore, analysis and interpretation
of the massive amount of connectional data generated by the
application of these techniques is increasingly being aided by
computational neuroinformatics approaches (Swanson and Bota,
2010; Brown and Swanson, 2013; Bota et al., 2014).

In two previous studies on the connections of the LHA, we
employed a CTB + PHAL co-injection strategy to investigate
the macroconnections of LHA regions medially and dorsally
adjacent to the column of the fornix: The LHA juxtadorsomedial
and juxtaparaventricular regions (LHAjd, and LHAjp), and the
LHA suprafornical region (LHAs). Impetus for these studies was
generated by a novel provisional cytoarchitectural parcellation
schema for the LHA (Swanson, 2004), and they served as starting
point formore focused structure-functional analysis of individual
components. An earlier PHAL study focused on an LHA region
ventral to the fornix-LHA subfornical (LHAsf) (Goto et al.,
2005).

A notable finding was the sheer number of gray matter
regions connecting to the delineated LHA regions (up to several
hundred, far exceeding the first-order connectivity of any other
brain region studied similarly to date). In addition, distinct
topographic differences were found. Relating the prominent
connections of the LHAsf anterior part (LHAsfa), LHAjp, LHAjd,
and LHAs to the existing literature, possible behavioral functions
were suggested to which these connections may contribute. In
very broad terms these hypothesized functions were primarily
ingestive behavior (for the LHAs), defensive behavior for LHAjp
and LHAjd (Hahn and Swanson, 2010, 2012), and defensive
or foraging behavior for the LHAsf (Goto et al., 2005). Two
recent functional studies have provided data consistent with
these hypotheses: LHAjd neurons are indicated to play a role in
the expression of conditioned defensive responses (Faturi et al.,
2014), and LHAs neurons in the activation of feeding in response
to activation of agouti-related peptide (AGRP)-expressing axons
in the LHAs (Betley et al., 2013).

In the present study we focus on the LHA region
ventromedial to the fornix (and adjacent to the hypothalamic
ventromedial nucleus—VMH), that is divided into two zones:
The LHA juxtaventromedial region, dorsal- (LHAjvd) and
ventral (LHAjvd) zones. The parcellation of these dorsoventrally
contiguous zones, based on the Nissl cytoarchitecture, was
described previously (Swanson, 2004). Briefly, their rostral to
caudal extent is approximately the same as the VMH (which
also provides a medial boundary), and they extend laterally to
the LHAsf. The LHAjvd is bounded dorsally by the LHAjd and
LHAjp; the LHAjvv is bounded ventrally by the tuberal nucleus.
In addition to their cytoarchitectural parcellation, the tract of the
post-commissural fornix provides a readily identifiable fiducial
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marker that corresponds approximately to the dorsolateral
boundary of the LHAjvd.

Methods

The methods follow those described previously (Hahn and
Swanson, 2010, 2012), and are provided here abridged.
Experiments were performed according to the NIH Guidelines
for the Care and Use of Laboratory Animals, and all protocols
were approved by the University of Southern California
Institutional Animal Care and Use Committee. Adult male
Sprague–Dawley rats (290–360 g; Harlan) under anesthesia
(1ml/kg body weight of 50mg/ml ketamine and 10mg/ml
xylazine, intramuscular) received single, iontophoretic injections
of a mixture of 2.5% P. vulgaris leucoagglutinin (PHAL; Vector
Labs) and 0.25% cholera toxin B subunit (CTB; List Labs)
targeted stereotaxically to the LHAjv region (Swanson, 2004).
From 12 to 20 days later, the rats were deeply anesthetized with
sodium pentobarbital (40mg/kg body weight, intraperitoneal)
and perfused with ice-cold 0.9% saline followed by 4%
paraformaldehyde (pH 9.5). Brains were removed and post-
fixed overnight at 4◦C in the same fixative containing 12%
sucrose, and then frozen rapidly in dry-ice cooled hexane.
Serial 25 or 30µm thick transverse-plane frozen sections (4 or
5 series) were obtained with the use of a sliding microtome.
One series was processed for immunohistochemical (IHC)
detection of PHAL, another for detection of CTB, and an
intervening series was stained with cresyl violet (Nissl stain)
to reveal cytoarchitecture (Simmons and Swanson, 1993). For
IHC detection of tracers, the sections were incubated in primary
antibodies directed against either CTB (1:10,000; goat, List
BioLabs) or PHAL (1:3000; rabbit, Dako) (3 nights, refrigerated).
This was followed by a biotinylated secondary antibody (1:1000;
donkey anti-rabbit or goat, Vector Labs) (90min) and then
an avidin-biotin-horseradish peroxidase reagent (1:1000; ABC
reagent, Vector Labs) (2 h). The sections were then recycled
to the secondary antibody (overnight, refrigerated), and the
following day placed in freshly prepared ABC reagent (90min).
Visualization of labeling was accomplished with the use of 3,3′-
Diaminobenzidine (DAB, 0.05%) in the presence of hydrogen
peroxide (0.005%), with the addition of ammonium nickel
(II) sulfate (0.1%) to enhance visualization of CTB. Injection
sites (PHAL–containing perikarya, and CTB deposits) were
identified along with anterogradely (PHAL) labeled axons, and
retrogradely (CTB) labeled perikarya; these were analyzed and
plotted (Illustrator CS5/6, Adobe) onto a digital reference series
of drawings of the rat brain as described previously (Swanson,
2004; Hahn and Swanson, 2010). Adjacent series of Nissl–stained
sections were used for reference. Digital photomicrographs
[Microscope: Zeiss AxioImager (Carl Zeiss); Cameras: Orca ER
(Hamamatsu), or Retiga 2000R (Q Imaging)] were acquired
singly or using stitching software (Volocity, Perkin Elmer) and
then composed (Photoshop CS5/6, Adobe).

Results

From a series of PHAL+CTB coinjection experiments targeted
to the LHA (n = 93), the spatial extent of nine injection

sites resulting from coinjections that included the LHAjvv
and/or LHAjvd (LHAjvd/v) is shown in Figure 1. The most
comprehensive analysis was performed on two representative
datasets, resulting from experiments with injection sites that
were the most restricted to (and inclusive of) the LHAjvv
(experiment LHA #2) or the LHAjvd (experiment LHA #77)
(Figures 1, 2).

The pattern of LHAjvv and LHAjvd first-order connections
was similar (Figure 3)—a similarity accentuated by comparison

FIGURE 1 | LHAjv region injection site maps. The extent of injection sites

for nine CTB + PHAL coinjections are represented. These included the LHAjvd

or LHAjvd, and neighboring regions. Data were plotted with the aid of a

drawing tube and with reference to adjacent Nissl-stained sections. Numbers

in the upper right/lower left corresponding (respectively) to distance caudal

Bregma/atlas levels (Swanson, 2004). This figure is also available as a

separate vector graphics file (Figure S1).
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FIGURE 2 | LHAjvd and LHAjvv representative injection sites.

Immunohistochemically detected CTB (brightfield) and PHAL (darkfield)

coinjection sites centered in the LHAjvd (A,A2) and LHAjvv (B,B2) at the

levels shown. Adjacent Nissl-stained sections are also shown (LHAjvd: A1;

LHAjvv: B1). NB. Apparent further extent of CTB injection site shown in “A”

compared to “B” is an artifact resulting from partial dispersion of

nickel-enhanced DAB reaction product during the time between reaction and

section mounting, attributable to weaker fixation—the darker center area of

the injection site in “A” is representative of its essential extent at this level (see

Figure 1). Scale bars = 250µM.

to the connections of other medial- and perifornical tier LHA
regions with which they differed markedly (Goto et al., 2005;
Hahn and Swanson, 2010, 2012). However, our analyses also
revealed several marked differences, apparent as differences
in both the topography (qualitative differences) and relative
abundance (quantitative differences) of LHAjvd/v connections.
The rostral reach of LHAjvd/v first-order connections was
similar, with the outputs of both extending rostrally to about
the rostral limit of the infralimbic area (ILA, Figures 4D,E),
and sources of input extending slightly farther rostral, to
rostral levels of the prelimbic area (PL, Figures 4A,B). In
contrast, connections of the LHAjvd were found to extend
farther caudally (albeit sparsely) than those of the LHAjvv,
to at least as far caudal as the nucleus of the solitary
tract (NTS, Figure 4CCC); the caudal-most connections of
the LHAjvv were in the pontine central gray (PCG, Figures
4SS–UU).

Morphological features of labeled axons included
substantial branching and distinct terminal arbors of varying
density. In addition, labeled axons typically had numerous
varicosities—sites of potential synaptic contact (Wouterlood
and Groenewegen, 1985; Thomson et al., 1996). Approximately
95% of anterograde and retrograde labeling was ipsilateral

to injection sites. Contralateral PHAL and CTB labeling
generally mirrored the pattern of ipsilateral labeling in several
regions, but its abundance varied, and in several regions
where ipsilateral labeling was abundant it was essentially (or
entirely) absent: It was present in the hypothalamus, thalamus,
midbrain, and dorsal parts of the hindbrain; it was absent
from the hippocampal formation, and essentially absent
from the amygdalar region, and the lateral half of the rostral
midbrain. The results of other injection sites illustrated in
Figure 1 are considered below, in the Comparative Analysis
Section.

LHAjvd and LHAjvv Output Connections
LHAjvd/v Outputs to the Cerebral Cortex
A conspicuous difference was apparent with respect to LHAjvd/v
outputs to the cerebral cortex, in that these connections,
which target several parts of the cerebral cortex, arise almost
exclusively from the LHAjvv. They include inputs to several
components of the amygdalar region associated with the cerebral
cortex, and foremost among these (in the cortical subplate)
are inputs to basomedial- (BMA, posterior part, very dense),
and posterior (PA) amygdalar nuclei (Figures 4X–FF, 5A).
In the cortical plate, olfactory-related amygdalar components
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FIGURE 3 | Summary of major LHAjv region connections. General

organization of representative principal connections (moderate or higher in

magnitude) of the LHAjvd (experiment LHA #2) and LHAjvv (experiment LHA

#77) plotted onto a truncated flatmap representation of the central nervous

system (see Swanson, 2004). Axonal outputs are represented by black lines;

sites of retrograde labeling (inputs) by red discs. The relative magnitude of

each connection is indicated by line thickness/disc diameter. Red text is

used to indicate sites of LHAjvd/v input for instances where different

subdivisions of the same region have different input and output connections.

This figure is also available as a separate vector graphics file (Figure S3).

receive a light to moderate input from the LHAjvv, namely
the piriform-amygdalar transition area (PAA, Figures 4X–BB),
and the posterior part of the cortical amygdalar area (COAp,

mostly its lateral zone, Figures 4X–CC). Two other parts of the
cerebral cortex also receive a light input from the LHAjvv: The
hippocampal formation (HPF, primarily the subiculum and field
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FIGURE 4 | Connection maps of the LHAjvd and LHAjvv.

Representative neuronal connections (inputs and outputs) of the LHAjvd

(experiment LHA #2) and LHAjvv (experiment LHA #77) mapped to reference

atlas levels (Swanson, 2004). PHAL labeled axons and CTB labeled cell

bodies were visualized immunohistochemically and mapped with reference

to adjacent Nissl-stained sections. Colored lines represent axonal output

connections (PHAL); colored dots represent individual retrogradely labeled

(Continued)
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FIGURE 4 | Continued

cell bodies (CTB); blue = LHAjvd, red = LHAjvv. Dots are

semi-transparent to facilitate visualization of superimposed cell bodies.

NB. During sectioning of brain tissue blocks from experiment LHA #77, a

small portion of tissue was lost at the block faces, corresponding to the

dorsal half of atlas levels 35 and 36. Numbers in lower left correspond to

atlas levels (Swanson, 2004). This figure is also available as a separate

vector graphics file (Figure S4).

FIGURE 5 | LHAjvv connections with the cortical parts of the

amygdalar region. Photomicrographs of PHAL/anterograde (A, and zoomed

inset; darkfield) and CTB/retrograde (C,D and zoomed inset in C; brightfield)

labeling in cortical parts of the amygdalar region. Adjacent sections are shown

in (A,C). Adjacent Nissl-stained sections are also shown (B,E). Scale bars =

250µM (A–C), 200µM (D,E).

CA1, Figures 4CC–II), and the prefrontal cortex (a very light
input to prelimbic- and infralimbic areas, Figures 4D–G). Where
present, input from the LHAjvd to the cerebral cortex includes
regions targeted by the LHAjvv (such as ILA, and COAp), but it
is of comparatively little amount.

LHAjvd/v Outputs to the Cerebral Nuclei
Beginning with cerebral nuclei of the pallidum, the substantia
innominata (SI) receives a substantial input from the LHAjvd/v
(Figures 4K–X). This input is present mostly at rostral SI levels,
and in the medial half; axons of passage were also observed,
intermingled with axon terminals in the SI, especially at caudal
levels. More impressive than the SI input is a major input to
certain regions of the bed nucleus of the stria terminalis (BST);
most striking are inputs to the BSTam (Figures 4L–Q, 6) and
BSTif (Figures 4R,S, 7A,B); the LHAjvd also provides a light
input to rostral levels of the BSTpr (Figures 4P,Q).

Continuing rostral from the BST into the striatum, a major
LHAjvd/v axonal input reaches the lateral septal nucleus (LS),
the vast majority of which targets the rostral part (LSr). Within
the LSr, each of its three zones (medial, ventrolateral and
dorsolateral) receives an input from both LHAjvd and LHAjvv,
although the densest input is to the dorsolateral zone (LSr.dl),
and especially from the LHAjvv to the ventral domain of its
medial region (LSr.dl.m.v) (Figures 4M, 7). The overall extent of
input to the LS from the LHAjvd/v is somewhat greater from the
LHAjvv.

While most of the LHAjvd/v output to the striatum is to
the LS, additional striatal nuclei are also targeted, including
(sparingly) the nucleus accumbens (Figures 4G–K), and several
striatal components of the amygdalar region, especially the
medial part of the central amygdalar nucleus (Figures 4S,T).
It is also worth noting that axons were clearly labeled in the
stria terminalis, suggesting at least one route whereby axons
originating in the LHAjvd/v reach striatal amygdalar nuclei.

LHAjvd/v Outputs to the Cerebrospinal Trunk
The LHAjvd and LHAjvv both send a major output to the
ventromedial hypothalamic nucleus (VMH); this forms amassive
terminal field in the VMH that extends across the entire nucleus
(Figures 4V–Z, 8), including a dense bilateral input to the
VMHa (Figure 4V). In contrast, the dorsomedial hypothalamic
nucleus (DMH) receives very little input from the LHAjvd, and
a relatively sparse input from the LHAjvv (Figures 4X–AA).
LHAjvd/v outputs to other LHA regions are comparable (slightly
greater from the LHAjvd); they are extensive, but of generally
low abundance, with the most prominent being restricted to the
LHA anterior group and LHA medial tier regions. Nevertheless,
the LHAjp and LHAjd both receive a moderate input from
the LHAjvd/v (Figures 4S–Z); also of note is a bidirectional
connection between the LHAjvd and LHAjvv (Figures 4T–X).

Tracing rostrally from the LHAjvd/v, the next hypothalamic
site to receive substantial input is the anterior hypothalamic
nucleus (AHN); this input is mostly restricted to the anterior
and central parts of the AHN (Figures 4S–Q). At similar levels,
a sparse (mostly LHAjvv) input to the parvicellular division
of the PVH is noteworthy (Figures 4S–V). Additional rostral
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FIGURE 6 | LHAjv region connections with the bed nucleus of the stria

terminalis (BST). (A,B) Darkfield photomicrographs of PHAL/anterograde

labeling in the BST anterior division from the LHAjvd (A,A1) and LHAjvv

(B,B1). Red boxed areas highlight inputs to the BST anteromedial area.

(C,D) Darkfield and (E,F) brightfield photomicrographs of PHAL/anterograde-

(C,D) and CTB/retrograde (E,F) labeling from the LHAjvd (C,E,C1,E1) and

LHAjvv (D,F,D1,F1) in the BST posterior division. Red boxed areas in (C–F)

correspond to (C1–F1), and highlight LHAjv region connections with the BST

interfascicular nucleus; adjacent sections are shown in (C,E) and (D,F);

adjacent Nissl-stained sections are also shown (G,H). Scale bars = 250µM.

hypothalamic sites receiving a major input from both LHAjvv
and LHAjvd include the lateral- (LPO) and (especially) medial
(MPO) preoptic areas (Figures 4K–Q). At the caudal end of the

hypothalamus, the posterior hypothalamic nucleus (PH) receives
a substantial input from the LHAjvv, in comparison to a rather
sparser input from the LHAjvd (Figures 4AA,BB) (despite the
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FIGURE 7 | LHAjvv outputs to the rostral lateral septal nucleus (LSr).

(A) Darkfield photomicrograph of PHAL/anterograde labeling in the LSr from

the LHAjvv. Zoomed inset highlights input to the LSr.dl.m.v. (B) Adjacent

Nissl-stained section. Scale bars = 250µM.

presence of substantial LHAjvd-originating axons of passage in
the PH).

The LHAjvd and LHAjvv both send a moderate to abundant
output to thalamic nuclei within the midline group of the dorsal
thalamus, specifically to thalamic paraventricular- (PVT; entire
length, and somewhat bilateral, Figures 4R–CC) and paratenial
(PT; rostral levels, Figures 4R,S) nuclei, and less so to the
nucleus reuniens (RE; mostly from the LHAjvv to RE ventral
half, and especially anterior part, Figures 4S–Z). In addition, the
LHAjvd/v sends an output to the subparafascicular nucleus of
the thalamus (SPF), in particular from the LHAjvd to the medial
division of the SPF parvicellular part (SPFpm, Figures 4DD,FF).

Caudal to the hypothalamus, the major LHAjvd and LHAjvv
output targets are the periaqueductal gray (PAG) and the
midbrain reticular nucleus (MRN). In addition, the LHAjvd
provides a moderate input to the superior colliculus (SC).
Reviewing these connections in more detail, the PAGvl receives
an extremely dense and extensive input (mostly restricted to
its dorsal half), a more moderate input is received by the
PAGd; the PAGm and PAGrm also receive a light to moderate
input (Figures 4DD–RR, 9). Furthermore, the precommissural
and commissural PAG both receive a moderate input from the
LHAjvd, but little input from the LHAjvv (Figures 4DD–II).
Input to the MRN (reaching there via the PAG) is directed to
its magnocellular part, and is especially dense from the LHAjvd
(Figures 4JJ–LL). Themoderate input to the SC from the LHAjvd
targets mostly its deep gray layer, but also includes lightly SC
intermediate layers (Figures 4FF–PP).

At caudal levels of the PAG, an output from the LHAjvd
(moderate) and LHAjvv (light) to the cuneiform nucleus was
apparent (Figures 4NN–PP), as was a lighter LHAjvd/v output
to the lateral parabrachial nucleus. Caudal to the PAG, input
from the LHAjvd/v was relatively light and arose primarily from
the LHAjvd; regions receiving input included the pontine central
gray (PCG), lateral dorsal tegmental- (LDT) and Barrington’s
(B) nuclei, locus ceruleus (LC), pontine- (PRN, caudal part) and
parvicellular reticular nuclei (PARN), and the nucleus of the
solitary tract (NTS, commissural part, Figures 4BBB,CCC).

LHAjvd and LHAjvv Input Connections
LHAjvd/v Inputs from the Cerebral Cortex
Cerebral cortical retrograde labeling from the LHAjvd/v was
abundant; however, it was more abundant for the LHAjvd than
for the LHAjvv (in contrast to cerebral cortical input connections
from the LHAjvd/v, which arose almost exclusively from the
LHAjvv). The sources of this cortical input were within areas
and regions of the sensory-motor- and polymodal association
cortices. With respect to the former, a moderate amount of
retrograde labeling was found in cortical amygdalar- (COA,
especially posterior part, lateral zone, Figures 4Z–DD) and
infralimbic (ILA, Figures 4D–G) areas, and to a lesser degree
in the tenia tecta (TT, dorsal part), postpiriform transition
area (TR), and the nucleus of the lateral olfactory tract
(NLOT).

Areas of the polymodal association cortex providing input to
the LHAjvd/v include the prelimbic- (PL, moderate abundance,
Figures 4A–D) and perirhinal (PERI, low abundance) areas, and
the hippocampal formation (HPF, high abundance). Within the
HPF, a low to moderate amount of retrograde labeling from the
LHAjvd (but not the LHAjvv) was found in the entorhinal area,
and abundant retrograde labeling (principally from the LHAjvd)
was present in the subiculum and field CA1 (Figures 4DD–MM).
Cortical subplate retrograde labeling from the LHAjvd/v was
copious yet circumscribed, and was localized primarily in
basal- and posterior (PA) amygdalar nuclei; more specifically,
the basolateral- (BLA, posterior part) and adjacent basomedial
[BMA, posterior (mostly) and anterior parts] amygdalar nuclei
(Figures 4Z–EE, 5).

LHAjvd/v Inputs from the Cerebral Nuclei
Retrograde labeling from the LHAjvd/v was present in several
cerebral nuclei. Starting with striatal nuclei, numerous neurons
were retrogradely labeled in the rostral part of the lateral septal
nucleus (LSr), and in the medial amygdalar nucleus (MEA).
Within the LSr, the highest density of retrogradely labeled
neurons was present in the LSr ventrolateral zone, followed
by the LSr dorsolateral- and medial zones (Figures 4G–O); a
little retrograde labeling was also present in the LS caudal part.
Retrograde labeling in the MEA was numerous, included each
of its parts, and was mostly more abundant from the LHAjvd
(Figures 4S–Z, 10); relatively little retrograde labeling from the
LHAjvd/v was present in the CEA as well. A low to moderate
abundance of retrogradely labeled neurons (moderate from the
LHAjvv) was also present in a dorsomedial region of the nucleus
accumbens (Figures 4H–K).

Among pallidal nuclei, themost numerous retrograde labeling
from the LHAjvd/v was in the following nuclei of the bed nucleus
of the stria terminalis: Anteromedial- (BSTam), principal-
(BSTpr), and interfascicular (BSTif) nucleus (Figures 4L–S, 6).
In fact, the BST as a whole (but especially the BSTam, -pr, and
-if) had the highest abundance of retrograde labeling obtained
for an individual region in this analysis. In relation to this, it is
noteworthy that while analysis of anterograde labeling revealed
the BSTam and BSTif both receive a robust input from the
LHAjvd/v, the BSTpr receives comparatively little. Retrogradely
labeled neurons in other BST nuclei were rarely present.
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FIGURE 8 | LHAjv region connections with the ventromedial

hypothalamic nucleus (VMH). (A,D) Darkfield photomicrographs of

PHAL/anterograde labeling from the LHAjvd (A,A1) and LHAjvv (D,D1)

in the VMH. Red boxed areas in (A,D) correspond to (A1) and (D1)

and highlight LHAjv region inputs to the VMH. (C,F) Brightfield

photomicrographs of CTB/retrograde labeling from the LHAjvd (C) and

LHAjvv (F) in the VMH. Red boxed areas in (C,F) correspond to

(C1,F1) and highlight LHAjv region inputs to the VMH. Adjacent

sections are shown in (A,C) and (D,F). Adjacent Nissl-stained sections

are also shown (B,E). Scale bars = 250µM.

LHAjvd/v Inputs from the Cerebrospinal Trunk
The cerebrospinal trunk was extensively retrogradely labeled
from the LHAjvd/v, with the vast majority of retrogradely labeled
neurons present in the motor subsystem. Only six regions
of the sensory and behavioral state subsystems (three from
each) were retrogradely labeled (moderately at most) from the
LHAjvd/v; this compares to retrograde labeling at a moderate
or higher level in 22 regions of the motor subsystem from
the LHAjvd/v. Nevertheless, of the three prominent sensory
subsystem input sites, two were retrogradely labeled more
numerously from the LHAjvd, and these were in the thalamus:
The subparafascicular- (parvicellular part, especially lateral
division) and paraventricular thalamic nuclei. The other (and
most) notable site of sensory subsystem retrograde labeling from
the LHAjvd/v was the parabrachial nucleus, especially its lateral
division (Figures 4QQ–TT). Notable sources of behavioral state
system input to the LHAjvd/v were the subparventricular zone,

LHAd, and the pedunculopontine nucleus (the last mostly
retrogradely labeled from LHAjvv).

Motor subsystem retrograde labeling from the LHAjvd/v
was very abundant. Most of this input originated in the
hypothalamus, and came from hypothalamic medial zone
nuclei, the hypothalamic periventricular region, and the
reticular formation (including from several other LHA regions).
Additional retrograde labeling was present in the central gray
(substantial), and in the neuroendocrine motor zone (up to
moderate). The pattern of motor subsystem retrograde labeling
from the LHAjvd and LHAjvv was essentially similar.

Medial hypothalamic zone nuclei retrogradely labeled
abundantly from LHAjvd/v were the AHN (mostly central part,
Figures 4R–W) and VMH (all parts, but especially ventrolateral,
Figures 4V–Z, 8). Substantial retrograde labeling was also found
in the MPN (lateral and medial parts, Figures 4O–S), PMv
(Figures 4BB,CC), and the posterior hypothalamic nucleus

Frontiers in Systems Neuroscience | www.frontiersin.org 28 May 2015 | Volume 9 | Article 66

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hahn and Swanson LHA juxtaventromedial region connections

FIGURE 9 | LHAjv region outputs to the midbrain. (A,C) Darkfield

photomicrographs of PHAL/anterograde labeling in the midbrain from the

LHAjvd (A,A1,A2) and LHAjvv (C,C1). Red boxed areas in (A,C) correspond

to (A1,A2) and (C2), and delineate inputs to the PAGvl (A1,C1) and MRNm

(A2). Adjacent Nissl-stained sections are also shown (B,D). Scale bars =

250µM.

FIGURE 10 | LHAjvv inputs from the medial amygdalar nucleus (MEA).

(A) Photomicrograph of CTB/retrograde labeling in the MEA from the LHAjvd.

An adjacent Nissl-stained section is also shown (B). Scale bars = 200µM.

(PH, Figures 4AA–FF); additional retrograde labeling (up to
moderate) was present in all divisions of the PAG (most notably
the PAGvl) (Figures 4II–QQ).

Several hypothalamic periventricular region nuclei
provide LHAjvd/v input. Numerous retrogradely labeled
neurons were found in the medial preoptic area (MPO,
Figures 4M–R); a relatively low density (yet cumulatively
substantial amount) of retrograde labeling was also present in
internuclear areas. In addition, moderate retrograde labeling
was present in the median preoptic- (MEPO, Figures 4M–Q),
anteroventral periventricular- (AVPV, Figures 4N,O), and
dorsomedial hypothalamic (DMH, all parts, but mostly anterior,
Figures 4X–AA) nuclei; a less than moderate level of retrograde
labeling was found in the anterior hypothalamic area (AHA),

and in the anterodorsal/ventral- (ADP/AVP) and periventricular
hypothalamic (PV, posterior part) nuclei.

A substantial portion of the reticular formation retrograde
labeling from the LHAjvd/v was located in nearby regions of the
hypothalamic lateral zone; notably in the LPO (Figures 4K–Q),
and in several motor-related LHA regions, including (especially)
the LHAav, LHAjp, and LHAjd (Figures 4S–Z). A low to
moderate abundance of retrograde labeling was also present in
the LHAad, LHAai, LHAsfp, retrochiasmatic area (RCH), and
tuberal nucleus (TU). In addition, a moderate abundance of
neurons were retrogradely labeled in LHAjvv from the LHAjvd,
and vice versa (corroborating the anterograde labeling). Beyond
the hypothalamic zone, two retrogradely labeled midbrain nuclei
are noteworthy: (1) The midbrain reticular nucleus (MRN,
magnocellular part, labeling mostly restricted to a lateral region
at rostral levels, Figures 4GG–JJ), which was retrogradely labeled
substantially from the LHAjvd (in comparison to substantially
fewer MRN neurons retrogradely labeled from the LHAjvv); (2)
the cuneiform nucleus, in which a low abundance of retrograde
labeling was found from the LHAjvd/v (slightly greater from the
LHAjvd) (Figures 4OO–QQ).

Finally, the neuroendocrine motor system was retrogradely
labeled to a moderate level of abundance from the LHAjvd/v;
the sources of this input were the supraoptic (SO)- hypothalamic
paraventricular (PVH)- and arcuate (ARH) nuclei. A substantial
cluster of neurons was retrogradely labeled in the SO from
the LHAjvv (Figures 4R–T); ARH retrograde labeling from the
LHAjvd/v was of low to moderate abundance (Figures 4V–AA);
PVH retrograde labeling from the LHAjvd/v was also of

Frontiers in Systems Neuroscience | www.frontiersin.org 29 May 2015 | Volume 9 | Article 66

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hahn and Swanson LHA juxtaventromedial region connections

low to moderate abundance and was present mostly in the
PVH anterior- (PVHap, Figures 4R–T) and medial parvicellular
(PVHmpd, Figures 4U–W) parts.

Comparative Analysis
Previous studies have investigated the output and/or input
connections of every LHAjv-contiguous region in the rat: LHAjd
(Hahn and Swanson, 2012), AHN (Risold et al., 1994), VMH
(Canteras et al., 1994; Shimogawa et al., 2014), TU (Canteras
et al., 1994; Toth et al., 2010), and LHAsf (Goto et al., 2005).
It was therefore possible to compare the present data with
the previously published work, to which the reader is also
referred. In addition to comparing the principal datasets, we also
compared data obtained from experiments with injection sites
that included the LHAjvd or LHAjvv, but were less restricted to
them (that is, including one or more LHAjv-contiguous region)
(Figure 1). Although a detailed comparative analysis of these
data was not within the purview of this study, a general review
confirmed the existence of distinct differences and similarities
between the previously reported connections of the LHAjv-
contiguous regions and the LHAjv region; it also confirmed
that (without exception) the pattern of labeling obtained from
tracer injections that included the LHAjvd/v and one or more
LHAjvd/v-contiguous regions, was a combination of the labeling
(the indicated connections) resulting from the most restricted
LHAjvd/v injections, plus additional connections described
previously for the LHAjv-contiguous regions. In addition, the
present results are in agreement with a previous preliminary
analysis of LHAjv region output connections based on data
obtained from a single PHAL experiment (Goto et al., 2005); they
are also in general agreement with a recent analysis of inputs to
a delineated hypothalamic “aggression” area, which overlaps the
LHAjv region (Toth et al., 2010).

A potential source of variability in tract-tracing experiments
stems from visual approximation of the effective spread of tracer
molecules from an injection site. In the present study, restriction
of the principal LHAjvd/v injection sites (experiments LHA #2
and #77) to the LHAjv region is supported by data from a
PHAL + CTB study of the connections of the nucleus incertus
(NI)—a distinct pontine cell group (Goto et al., 2001). The output
connections of the NI include a dense terminal input to the
LHAjv-contiguous LHAsf; this input specifically delineates the
LHAsfa at a rostrocaudal level corresponding to the center of
the injection sites for experiments LHA #2 and #77 (compare
our Figure 1 to their Figures 8B, 10I) (Goto et al., 2001). The NI
to LHAsfa input arises principally from a relatively cell-diffuse
lateral differentiation of the NI, referred to as its diffuse part
(NId); a less substantial input arises from a cell-compact medial
part (NIc). The previous study (Goto et al., 2001) indicated a
virtual absence of input to the LHAjv region from the NId (see
their Figures 8B,C), and a very light and diffuse input from
the NIc (see their Figures 7D,E). Consistent with this data, and
consistent with no appreciable spread of CTB into the LHAsf
for experiments LHA #2 and #77, it is salient to note we found
no retrograde labeling (from experiments LHA #2 and #77) in
the NId, and only a few retrogradely labeled neurons in the
NIc (Figures 4TT–VV). Similarly, the amount of anterograde

labeling we found in the NI from the LHAjv was miniscule,
consistent with a general absence of retrograde labeling in the
LHAjvd/v following NI CTB injections, even though the latter
did result in retrograde labeling of neurons in LHAjv-adjacent
regions (Goto et al., 2001).

Discussion

A readily grasped description of the hypothalamus divides it
into three longitudinal zones, bilateral to the third ventricle.
In this schema, the lateral-most zone includes all LHA regions,
whereas progressively narrower medial and periventricular
zones contain several well defined nuclei (Swanson, 1987).
Accumulated experimental evidence supports the existence of
segregated networks within the hypothalamic medial zone that
are critical for the control of different types of fundamental
behavior (Risold et al., 1997; Swanson, 2000). Collectively, the
medial hypothalamic zone nuclei within these networks form the
rostral segment of a behavior control column, the caudal segment
of which is formed by regions centered in the ventromedial
midbrain (Swanson, 2000) (see their Figure 10).

In two previous sister papers, using the methods applied in
the present study on the LHAjvd and LHAjvv, we described
the connections of the LHAjd (Hahn and Swanson, 2012) and
LHAjp (Hahn and Swanson, 2010)—the two other regions of
the LHA medial tier (Swanson, 2004); the connections of the
LHA perifornical tier regions (LHAs and LHAsf) have been
investigated similarly: LHAs (Hahn and Swanson, 2010), and
LHAsf (outputs only) (Goto et al., 2005). The connections
of these LHA regions with, and in relation to, the behavior
control column suggested different LHA regions have primary
involvement with different behaviors: LHAs with ingestive
behavior (Hahn and Swanson, 2010), LHAsfa with defensive or
exploratory/foraging behavior (Goto et al., 2005), LHAjp and
LHAjd with defensive behavior (Hahn and Swanson, 2010, 2012).
The connections of the LHAjvd and LHAjvv follow this general
pattern and, as we discuss here, extend it to include reproductive
and also aggressive behaviors.

In our previous paper we showed the LHAjd has robust
connections with three highly interconnected hypothalamic
medial zone nuclei (and subdivisions) (AHN, VMHdm, PMd)
involved in defensive (“fight”-or-“flight”) behavior control
(Canteras et al., 1997; Risold et al., 1997; Canteras, 2002). By
comparison, in the present study we found the LHAjv region
has substantially less direct connection with the PMd, but robust
connections with the AHN and VMHdm. Moreover, both dorsal
and ventral LHAjv zones have considerable connectivity with
the PMv, VMHvl, and MPN. The latter three medial zone
nuclei/subdivisions, which are also highly interconnected, are
prominently sexually dimorphic and central to the control of
reproductive behavior (Canteras et al., 1997; Risold et al., 1997;
Canteras, 2002).

Retrograde labeling from the LHAjv region (up to moderate
for the LHAjvd) in the AVPV continues this theme—the AVPV is
another prominently sexually dimorphic nucleus which in female
rats has a critical role in reproductive function (Wiegand and
Terasawa, 1982). A more direct link to reproductive function is
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suggested by the moderate retrograde (and light anterograde)
labeling within regions adjacent to the AVPV that contain
a preponderance of gonadotropin-releasing hormone (GnRH)
perikarya (Baker et al., 1975; Witkin et al., 1982; Merchenthaler
et al., 1984; Wray and Hoffman, 1986; Silverman et al., 1987).
The finding of LHAjvd/v connections with the AVPV and GnRH
cell body region in the male rat accords with previous retrograde
(Hahn and Coen, 2006) and anterograde (Gu and Simerly,
1997) tracing studies in the female rat. In addition, GnRH-
immunopositive axons have been reported in the vicinity of the
LHAjvd/v (Merchenthaler et al., 1984).

An association of LHAjvd/v connections with reproductive
and defensive behaviors extends beyond the hypothalamus, as
evidenced by substantial LHAjvd/v retrograde labeling in the
BSTpr and all parts of the MEA. In the rat the MEA and BSTpr
are both major recipient sites for olfactory information, notably
defensive (or aggressive) and reproductive behavior-relevant
pheromonal information relayed from the accessory olfactory
bulb (AOB) (Scalia andWinans, 1975; Risold et al., 1997; Simerly,
2002; Mohedano-Moriano et al., 2007). Furthermore, the present
data indicate a substantial input to the LHAjvd/v from cerebral
cortical components of the amygdalar region (BLAp, BMAp,
COApl, COApm, PA) that also receive olfactory input from the
main and/or accessory olfactory bulbs (Swanson and Petrovich,
1998; Dong et al., 2001a; Petrovich et al., 2001; Pro-Sistiaga et al.,
2007). In addition, feedbackmodulation of this input is suggested
by a striking LHAjvv (but not the LHAjvd) input to the BMAp
and PA, and a moderate input to the COA.

Olfactory sensory processing in relation to agonistic and
reproductive behaviors is prominent for a macrosmatic animal
like the rat (Barnett, 1963); nevertheless, reviewing the amygdalar
region components connected to the LHAjvd/v it is pertinent
to note also associations with non-olfactory sensory processing,
and additional behavioral control. For example, conveyance
of auditory and visual information to the BMAp and BLAp
(and thence to the LHAjvd/v) may be inferred from a massive
input to the BMAp (and substantial input to the BLA) from
the lateral amygdalar nucleus (LA) (Pitkanen et al., 1995)1,
which is a major recipient of thalamic and cerebral cortical
inputs involved in visual and auditory processing (McDonald,
1998)1. Likewise, there are inputs to the LA, BLA, and BMA
from thalamic and cerebral cortical regions centrally involved in
the processing of somatosensory, viscerosensory, and gustatory
sensory information (McDonald, 1998)1. Therefore, polymodal
information may be relayed to the LHAjvd/v from several striatal
and cortical parts of the amygdalar regions.

In addition to having potential relevance for agonistic and
reproductive behaviors, conveyance of polymodal information
from the amygdalar region to the LHAjvd/v may also be relevant
to ingestive behavior. This possibility is illustrated by a series of
recent experiments that employed a behavioral model in which
feeding is potentiated by an auditory stimulus previously paired
with feeding (Holland et al., 2002). In this model, excitotoxic

1In the cited article a nomenclature different to that used here is employed, such

that approximate correspondence may be drawn between BMA and “accessory

basal nucleus (AB)”; BLAa/p and “basal nucleus, magnocellular/parvocellular

divisions (Bmg/pc).”

(NMDA) lesion of the BLA is reported to abolish increased
feeding to the conditioned stimulus (CS) (Holland et al., 2002)2.
In addition, a more recent study using the same behavioral model
found a significant increase in CS-associated immediate early
gene (IEG) expression in basal amygdalar nuclei retrogradely
labeled from the LHA (Petrovich et al., 2005). In the latter study,
Fluoro-Gold (FG) injections were targeted to the ventral half
of the LHA, but were not restricted to particular LHA regions;
nevertheless, partial inclusion of the LHAjv region is suggested
by a pattern of amygdalar FG labeling similar to the present data
(compare their Figure 4A with our Figures 4AA,BB) (Petrovich
et al., 2005). Two related and more recent reports examining IEG
expression in this model indicated significant involvement of all
basal amygdalar regions (Cole et al., 2013), and also the LHAjv
region (plus several other LHA regions) (Cole et al., 2015).

More direct LHAjv region links to ingestive behavior (and
metabolism) are indicated by several other LHAjv region
connections. One in particular stands out, and is indicated by
moderate LHAjvd/v retrograde labeling in the hypothalamic
arcuate nucleus (Figures 4V–AA) (Atasoy et al., 2012; Keen-
Rhinehart et al., 2013; Sohn et al., 2013). For a consideration
of this and other of LHAjv region connections in relation to
one particular mode of ingestive behavior, namely drinking, see
(Swanson, 2000), and note regions identified in their Figure 11
that are shown here to have connections with the LHAjv region
(Table 1 and Figure 3).

Distinct brain regions with demonstrated involvement in
the processing of polymodal information relevant to ingestive,
agonistic, and reproductive behaviors are therefore linked by
their common connection to the LHAjvd/v. This assertion
prompts reiteration of a few related conceptual points that serve
as a sort of leitmotif to this discussion. Firstly, experimental
evidence associating a given brain region with one type of
behavior is not evidence of its preclusion from other behaviors;
secondly, ultimately this is because all behaviors result from
patterned sequential activation of the motor system, which is
evidenced by the fact that different behaviors may involve similar
motor patterns. For example, the motor pattern necessary for
locomotion may be engaged during ingestive, reproductive or
agonistic goal-directed behaviors: Approaching a food source
(ingestion), a mate (reproduction), or approaching/avoiding a
prey/threat (aggression or defense).

Given that behavior generally serves to support survival
in a dynamic environment (external and internal), this favors
motor patterns that are attuned to environmental context, either
through innate or learned mechanisms. In this regard substantial
LHAjvd/v connections with the hippocampal formation (HPF;
specifically the ventral part of hippocampal field CA1 and the
subiculum) are noteworthy. The HPF has a role in episodic
memory and spatial navigation (O’Keefe and Nadel, 1978; Squire,
1992; Morris, 2006; Buzsaki and Moser, 2013), with potential
relevance to multiple behaviors. For example, and with respect
to the current data, this is evidenced by indicated involvement
of ventral field CA1 in ingestive (Kanoski et al., 2011; Hsu et al.,

2In the cited article it is noted that NMDA lesions also partially included adjacent

amygdalar regions.
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TABLE 1 | Connections of the LHAjv region.

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

CELL GROUP OR REGION

1. CEREBRUM

1.1. CEREBRAL CORTEX

1.1.1. Cortical Plate

Sensory-motor cortex

Somatomotor areas

Visceral sensory-motor areas

infralimbic area (ILA) ++ + ++ +++

Olfactory areas tenia tecta

Dorsal part (TTd) − + ++ ++

Postpiriform transition area (TR) − − + ++

Piriform-amygdala transition area (PAA) ++ − − −

Nucleus of the lateral olfactory tract (NLOT) − − + ++

Cortical amygdalar area

Anterior part (COAa) − − ++ ++

Posterior part

Lateral zone (COApl) +++ + +++ ++++

Medial zone (COApm) ++ + ++ ++

Polymodal association cortex

Prelimbic area (PL) + − ++ +++

Orbital area

Ventral part (ORBv) − − + +

Agranular insular area

Dorsal part (Ald) − − + +

Posterior part (Alp) − − + +

Ectorhinal area (ECT) − − + +

Perirhinal area (PERI) + − ++ +

Hippocampal formation

Retrohippocampal region

Entorhinal area

Lateral part (ENTl) + − − +

Medial part, dorsal zone (ENTm) − − − ++

Medial part, ventral zone (ENTmv) − − − +++

Subiculum

Pyramidal layer (SUB-sp) ++ − +++ +++++

Hippocampal region

Ammon’s horn

Field CA1

Stratum radiatum (CA1sr) + − − −

Pyramidal layer

Deep (CA1spd) + − ++++ +++++

Superficial (CA1sps) − − + ++

Stratum oriens (CA1so) ++ − − −

1.1.2. Cortical Subplate

Claustrum (CLA) − − + +

Endopiriform nucleus

Dorsal part (EPd) + − − −

(Continued)

Frontiers in Systems Neuroscience | www.frontiersin.org 32 May 2015 | Volume 9 | Article 66

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hahn and Swanson LHA juxtaventromedial region connections

TABLE 1 | Continued

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

Lateral amygdalar nucleus (LA) + + + +

Basolateral amygdalar nucleus

Anterior part (BLAa) − − + −

Posterior part (BLAp) + + +++ ++++

Basomedial amygdalar nucleus

Anterior part (BMAa) − − +++ ++

Posterior part (BMAp) +++++ + +++ ++++

Posterior amygdalar nucleus (PA) ++++ + +++ ++++

1.2. CEREBRAL NUCLEI

1.2.1. Striatum

Nucleus accumbens (ACB) + + +++ +

Olfactory tubercle (OT) − − + −

Lateral septal complex

Lateral septal nucleus

Caudal (caudodorsal) part

Dorsal zone

Rostral region (LSc.d.r) + + − +

Lateral region (LSc.d.l) − − + −

Ventral region (LSc.d.v) − − + −

Ventral zone

Medial region

Dorsal domain (LSc.v.m.d) − − + −

Ventral domain (LSc.v.m.v) − − + +

Intermediate region (LSc.v.i) + − + +

Lateral region

Dorsal domain (LSc.v.l.d) + − ++ ++

Ventral domain (LSc.v.l.v) + − + ++

Rostral (rostroventral) part

Medial zone (LSr.m) + − + ++

Dorsal region (LSr.m.d) − − ++ ++

Ventral region

Rostral domain (LSr.m.v.r) + ++ +++ ++

Caudal domain (LSr.m.v.c) +++ ++ ++ +

Ventrolateral zone

Dorsal region

Medial domain (LSr.vl.d.m) +++ + ++++ +++

Lateral domain (LSr.vl.d.l) + +++ ++++ +++

Ventral region (LSr.vl.v) + + ++ −

Dorsolateral zone

Medial region

Dorsal domain (LSr.dl.m.d) +++ ++ +++ ++

Ventral domain (LSr.dl.m.v) ++++ ++++ +++ ++

Lateral region

Dorsal domain (LSr.dl.l.d) +++ +++ +++ +++

Ventral domain (LSr.dl.l.v) − + ++ ++

Ventral part (LSv) + ++ ++ +++

Septofimbrial nucleus (SF) + + + −

(Continued)
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TABLE 1 | Continued

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

Anterior amygdalar area (AAA) + − + +

Central amygdalar nucleus

Medial part (CEAm) ++ + + ++

Capsular part (CEAc) + − + −

Medial amygdalar nucleus

Anterodorsal part (MEAad) − + ++++ ++++

Anteroventral part (MEAav) − − ++ ++++

Posterodorsal part

Sublayer a (MEApd-a) − − +++ +++

Sublayer b (MEApd-b) + − ++ ++

Sublayer c (MEApd-c) − + + ++

Posteroventral part (MEApv) − − +++ ++++

Intercalated amygdalar nuclei (IA) + − − +

1.2.2. Pallidum

Substantia innominata (SI) ++++ ++++ +++ +++

Medial septal complex

Medial septal nucleus (MS) +++ + ++ ++

Diagonal band nucleus (NDB) + + + +++

Bed nuclei of the stria terminalis

Anterior division

Anterolateral area (BSTal) + + + +

Anteromedial area (BSTam) ++++ +++++ ++++ +++++

Rhomboid nucleus (BSTrh) + − − +

Dorsomedial nucleus (BSTdm) + + + −

Fusiform nucleus (BSTfu) − − +

Ventral nucleus (BSTv) ++ + + ++

Magnocellular nucleus (BSTmg) − − + +

Posterior division

Principal nucleus (BSTpr) + +++ ++++ +++++

Interfascicular nucleus (BSTif) ++++ +++++ +++++ +++++

Transverse nucleus (BSTtr) + + + ++

2. CEREBELLUM − − − −

3. CEREBROSPINAL TRUNK

3.1. SENSORY SYSTEM

3.1.1. Thalamus

Sensory-motor cortex related

Ventral group of the dorsal thalamus

Subparafascicular nucleus thalamus

Parvicellular part

Medial division (SPFpm) + +++ − +

Lateral division (SPFpl) + + + ++

Polymodal association cortex related

Lateral group of the dorsal thalamus

Medial group of the dorsal thalamus

Mediodorsal nucleus thalamus

Medial part (MDm) + + − −

Intermediodorsal nucleus thalamus (IMD) − + − +

(Continued)

Frontiers in Systems Neuroscience | www.frontiersin.org 34 May 2015 | Volume 9 | Article 66

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Hahn and Swanson LHA juxtaventromedial region connections

TABLE 1 | Continued

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

Midline group of the dorsal thalamus

Paraventricular nucleus thalamus (PVT) +++ ++++ + ++

Paratenial nucleus (PT) +++ +++ − +

Nucleus reuniens

Rostral division

Anterior part (REa) +++ + − −

Ventral part (REv) + − − −

Lateral part (REl) ++ − − −

Median part (REm) − − − +

Caudal division

Caudal part (REcp) + + − −

Intralaminar group of the dorsal thalamus

Central medial nucleus thalamus (CM) − + − −

3.1.2. Visual − − − −

3.1.3. Somatosensory − − − −

3.1.4. Auditory − − − −

Nucleus of the lateral lemniscus

Dorsal part (NLLd) − + − +

Ventral part (NLLv) − − + +

3.1.5. Gustatory − − − −

3.1.6. Visceral − − − −

Nucleus of the solitary tract

Commissural part (NTSco) − + − −

Medial part, caudal zone (NTSm) − − − +

Parabrachial nucleus

Lateral division

Central lateral part (PBlc) + − + +

Dorsal lateral part (PBld) − − + +

External lateral part (PBle) − − − +

Superior lateral part (PBls) − − ++ +

Ventral part (PBlv) − − + +

Kölliker-Fuse subnucleus − − − +

Medial division

Medial medial part (PBmm) − + − −

3.1.7. Humerosensory

Subfornical organ (SFO) − − − +

3.2. BEHAVIORAL STATE SYSTEM

Suprachiasmatic nucleus (SCH) − − − +

Subparaventricular zone (SBPV) ++ + ++ +++

Hypothalamic lateral zone, state related

Lateral hypothalamic area, Dorsal region (LHAd) − + ++ ++

Tuberomammillary nucleus, ventral part (TMv) − − − +

Supramammillary nucleus

Medial part (SUMm) + − − +

Lateral part (SUMl) + − + +

Pedunculopontine nucleus (PPN) − + ++ +

Pontine reticular nucleus, rostral part (PRNr) − + −

Raphé nuclei

(Continued)
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TABLE 1 | Continued

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

Superior central nucleus raphé, medial part (CSm) − − − +

Dorsal nucleus raphé (DR) + + − +

Laterodorsal tegmental nucleus (LDT) − + + +

Locus ceruleus (LC) − + − −

3.3. MOTOR SYSTEM

3.3.1. Behavior Control Column

Medial preoptic nucleus

Lateral part (MPNl) + + +++ +++

Medial part (MPNm) − − +++ +++

Central part (MPNc) − − − +

Anterior hypothalamic nucleus

Anterior part (AHNa) +++ +++ ++ ++

Central part (AHNc) +++ +++ +++++ ++++

Posterior part (AHNp) − + ++ +

Paraventricular nucleus hypothal., descending division

Dorsal parvicellular part (PVHdp) − − − +

Lateral parvicellular part (PVHlp) − − + +

Ventromedial hypothalamic nucleus

Anterior part (VMHa) ++ ++ ++ +

Dorsomedial part (VMHdm) ++++ +++++ +++ ++++

Central part (VMHc) +++ +++ +++ +++

Ventrolateral part (VMHvl) +++ ++++ +++++ +++++

Ventral premammillary nucleus (PMv) − − ++ +++

Dorsal premammillary nucleus (PMd) ++ − − +

Medial mammillary nucleus, median part (MMme) − − − +

Ventral tegmental area (VTA) − − + +

Midbrain reticular nucleus, retrorubral area (RR) − + − −

Midbrain reticular nucleus, parvicellular part (MRNp) − ++ − −

3.3.2. Superior Colliculus, motor related

Intermediate gray layer

sublayer b (SCig-b) − + − −

sublayer c (SCig-c) − + − +

Deep gray layer (SCdg) − +++ − −

3.3.3. Postcerebellar and Precerebellar Nuclei − − − −

3.3.4. Vestibulomotor regions − − − −

3.3.5. Central Gray

Epithalamus

Lateral habenula (LH) + − − +

Posterior hypothalamic nucleus (PH) ++++ ++ ++++ ++++

Periaqueductal gray

Precommissural nucleus (PRC) + +++ − +

Commissural nucleus (COM) ++ +++ + +

Rostromedial division (PAGrm) +++ ++ + ++

Medial division (PAGm) + ++ − +

Dorsal division (PAGd) ++++ ++++ + ++

Dorsolateral division (PAGdl) + + + +

Ventrolateral division (PAGvl) +++++ +++++ ++ +++

(Continued)
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TABLE 1 | Continued

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

Pontine central gray, general

Pontine central gray (PCG) + ++ + +

Lateral tegmental nucleus (LTN) − − + −

Barrington’s nucleus (B) − + − −

3.3.6. Hypothalamic Periventricular Region

Median preoptic nucleus (MEPO) − + +++ +++

Anteroventral periventricular nucleus (AVPV) − − ++ +++

Preoptic periventricular nucleus (PVpo) − − + +

Anterodorsal preoptic nucleus (ADP) − − ++ ++

Anteroventral preoptic nucleus (AVP) + + ++ ++

Parastrial nucleus (PS) − − + +

Medial preoptic area (MPO) ++++ +++++ +++++ +++++

Anterior hypothalamic area (AHA) ++ ++ +++ ++

Dorsomedial hypothalamic nucleus

anterior part (DMHa) ++ + +++ +++

posterior part (DMHp) + − + ++

ventral part (DMHv) ++ − ++ ++

Periventricular hypothal. nuc., posterior part (PVp) − − ++ ++

Internuclear area, hypothal. periventricular region (I) +++ +++ ++++ ++++

3.3.7 Reticular Formation

Hypothalamic lateral zone, motor related

Lateral preoptic area (LPO) +++ +++ ++++ +++

Lateral hypothalamic area, motor related (LHAmo)

Juxtaparaventricular region (LHAjp) +++ +++ +++ +++

Juxtadorsomedial region (LHAjd) ++ +++ +++ +++

Juxtaventromedial region

Dorsal zone (LHAjvd) ++ SITE +++ SITE

Ventral zone (LHAjvv) SITE ++ SITE ++++

anterior region

Dorsal zone (LHAad) ++ +++ ++ +

Intermediate zone (LHAai) + + ++ ++

Ventral zone (LHAav) ++ ++ ++++ +++

Retrochiasmatic area (RCH) ++ ++ ++ ++

Tuberal nucleus (TU)

Subventromedial part (TUsv) − − ++ ++

Intermediate part (TUi) + − + ++

Suprafornical region (LHAs) + + + +

Subfornical region

Anterior zone (LHAsfa) − + + +

Posterior zone (LHAsfp) − − + ++

Premammillary zone (LHAsfpm) − − + −

Magnocellular nucleus (LHAm) − − − +

Parvicellular region (LHApc) − − − +

Ventral region

Medial zone (LHAvm) − − + +

Lateral zone (LHAvl) − − − −

Posterior region (LHAp) + + + +

(Continued)
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TABLE 1 | Continued

Extrinsic connections of the LHAjv region Outputs Inputs

(PHAL) (CTB)

LHAjvv LHAjvd LHAjvv LHAjvd

(LHA#2) (LHA#77) (LHA#2) (LHA#77)

Preparasubthalamic nucleus (PST) − − − +

Zona incerta, general

Zona incerta (ZI) + ++ + +

Pretectal region

Anterior pretectal nucleus (APN) − + − −

Midbrain reticular nuc., magnocellular part, general

Midbrain reticular nucleus, magnocellular part (MRNm) +++ +++++ ++ ++++

Cuneiform nucleus (CUN) ++ +++ + ++

Pontine reticular nucleus, caudal part (PRNc) − + − −

Gigantocellular reticular nucleus (GRN) − ++ − −

Magnocellular reticular nucleus (MARN) − + − −

Parvicellular reticular nucleus (PARN) − + − −

3.3.8. Motoneuron Groups

Neuroendocrine motor zone

Magnocellular

Supraoptic nucleus, general

Supraoptic nucleus, proper (SO) − − +++ +

Paraventricular nuc. hypothal., magnocellular division

Posterior magnocellular part

Medial zone (PVHpmm) − − + −

Parvicellular

Paraventricular nuc. Hypothal., parvicellular division

Anterior parvicellular part (PVHap) ++ + ++ ++

Medial parvicellular part, dorsal zone (PVHmpd) ++ + + ++

Medial parvicellular part, dorsal zone, lateral wing (PVHmpdl) − − + −

Periventricular part (PVHpv) + − + +

Periventricular hypothalamic nucleus, anterior part (PVa) − − − +

Periventricular hypothal. nuc., intermediate part (PVi) − − + +

Arcuate hypothalamic nucleus (ARH) − + ++ ++

Connections of the LHAjvd and LHAjvv determined from analysis of CTB+ PHAL coinjection experiments. Data from two representative experiments are shown from injections that were

centered within the LHAjvd (experiment LHA #77) or LHAjvv (experiment LHA #2). The relative magnitude of output connections (PHAL) is represented by the following semi-quantitative

grading schema: − = absence of labeling; + = very low; ++ = low; +++ = moderate; ++++ = high; +++++ = very high. The relative magnitude of input connections (CTB)

is represented by the following grading schema: − = absence of labeling; + = 2–8; ++ = 9–22; + + + = 23–44; + + ++ = 45–79; + + + + + ≥ 80. Regions that contained

only PHAL-labeled axons with the appearance of axons of passage (that is, presumptive non-synapse forming), or regions that contained only a single CTB-labeled neuron, or single

PHAL-labeled axon terminal, are not included in the table (for these details see Figure 4). The brain region hierarchy follows Swanson (2004).

2014; Cole et al., 2015) and defensive (Kjelstrup et al., 2002;
Pentkowski et al., 2006; Markham et al., 2010; Wang et al., 2013)
behaviors; hippocampal involvement in reproductive behaviors
is also suggested (Weiland et al., 1997; Woolley et al., 1997;
Pawluski and Galea, 2006).

Complexity and diversity of hippocampal function is reflected
in its underlying neural connections (intrinsic and extrinsic),
which have an intricate topography (Groenewegen et al., 1987;
Risold and Swanson, 1996;Witter, 2006; Cenquizca and Swanson,
2007). Especially relevant to the present data are hippocampal
output connections to the lateral septal nucleus (LS) (Swanson
and Cowan, 1976, 1977; Risold and Swanson, 1997b; Cenquizca
and Swanson, 2007). The LS rostral part (LSr) has robust
LHAjvd/v connections (present data); furthermore, a continuity
of topographic organization exists such that discrete regions

of the LS receiving from discrete hippocampal regions connect
with discrete regions of the hypothalamus (Risold and Swanson,
1996, 1997b); this is also reflected in regional differences of LS
chemoarchitecture (Risold and Swanson, 1997a). The present
data extend the continuity of topographical relations to include
direct hippocampal connections with the LHAjvd/v—as was also
reported in our previously described connections of the LHAjd,
LHAjp and LHAs (Hahn and Swanson, 2010, 2012).

Adding another layer of structural organization are recent
genetic data indicating that distinct gene expression domains
are superimposed on hippocampal connectional topography
(Thompson et al., 2008; Dong et al., 2009; Fanselow and
Dong, 2010). A model for how these domains relate to
existing knowledge of structural and functional hippocampal
organization was provided recently (Strange et al., 2014). In
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general terms the LHAjvd/v connections with the LSr and
ventral field CA1/subiculum are consistent with their putative
involvement in social behaviors—for example, social defensive
behavior (Faturi et al., 2014); however, a deeper understanding
will evidently require experimental investigations that take full
account of the new genetic data.

Returning to a more focused consideration of LHAjvd/d
connections in relation to specific behaviors, of additional note
is the moderate bidirectional LHAjvd/v connection with the
parvicellular part of the thalamic subparafascicular nucleus
(SPFp). This connection was predominantly with the LHAjvd,
and primarily an output from the LHAjvd to the SPFp medial
division (SPFpm), although it also involved the SPFp lateral
division. The SPFpm is indicated to play a role in sexual
behavior, as demonstrated (for example) by elevated SPFpm
Fos expression in female rats following intromission, and in
male rats following ejaculation (Coolen et al., 1996, 1998)—a
suggested interpretation is that the SPFp may play a role in post-
copulation inhibition of sexual behavior (sexual satiety) (Veening
and Coolen, 2014). Other brain regions showing a pronounced
increase in Fos expression in rats following ejaculation include
the MPN, BSTpr, and MEApd (Veening and Coolen, 1998).
Given that these nuclei were substantially retrogradely labeled
from the LHAjvd/v, it reinforces potential (and perhaps primary)
involvement of the LHAjv region in reproductive behavior
control.

In relation to this, it is relevant to review the generally
light LHAjvd/v connection with the nucleus accumbens (ACB);
this was essentially restricted to the caudal half of the ACB,
mostly dorsomedial (ACBdm), and included a low to moderate
amount of retrograde labeling from the LHAjvv. A current view
of the ACBdm indicates rostral and caudal structure/function
differences associated respectively with behavioral expressions
of “liking/pleasure” (rostral) and “disliking/displeasure” (caudal)
(Richard et al., 2013; Ho and Berridge, 2014). Moreover,
a recent study reported a post-ejaculatory change in the
electrophysiological profile of medial ACB neurons, consistent
with their involvement in behavioral inhibition, although a
rostral-caudal distinction was not drawn (Matsumoto et al.,
2012). More generally, the need for careful correlation of ACB
functional and structural data is emphasized by fine-grained
topographic differences highlighted in recent reappraisals of
ACB connections (Thompson and Swanson, 2010; Zahm et al.,
2013).

Gene expression data and more recent optogenetic studies
indicate a role for the LHAjvd/v in the broad control of social
behaviors. Notably, androgen and/or estrogen receptors are
highly expressed in each of the aforementioned reproductive-
behavior related sites that connect with the LHAjvd/v (Simerly
et al., 1990; Shughrue et al., 1997). Furthermore, it was shown
recently that a member of the LIM/homeobox (Lhx) gene
family (Lhx6) is expressed robustly in LHAjvd/v-connected
AOB recipient sites, and in nuclei of the hypothalamic medial
zone reproductive behavior related network (Choi et al., 2005);
whereas other members of the Lhx gene family are expressed
in regions of the LHAjvd/v-connected medial hypothalamic
zone defensive behavior related network (Choi et al., 2005).

More recently, optogenetic manipulation of estrogen receptor 1-
expressing neurons in the VMHvl of male mice identified these
neurons as an integrative locus for attack and mounting behavior
(Lee et al., 2014). Together, these data support a putative role for
the LHAjvd/v in the control of defensive/aggressive (agonistic),
and especially reproductive behaviors.

With respect to the robust connections of the LHAjvd/v with
the VMH, the dendritic morphology of the latter’s neurons
raises a salient point. In an elegant study, Eugene Millhouse
described the morphology of VMH neurons labeled with the
rapid Golgi method (Millhouse, 1973). The dendrites of VMH
neurons were found to extend well beyond the boundary of the
VMH, particularly ventrolateral (through the tuberal nucleus, to
reach the pial surface), and also lateral (into the LHAjv region,
extending to about the fornix) (Millhouse, 1973). A corollary of
this topography is that synaptic input to the LHAjvd/v may be
either to LHAjvd/v neurons, to the dendrites of VMH neurons,
or to both. Moreover, this consideration applies elsewhere, not
least elsewhere in the LHA, as is finely illustrated in other
studies by Millhouse (1969, 1973, 1979) that show dendrites of
LHA neurons (including those in the LHAjv region) extending
beyond the boundaries of their parent regions (as defined by the
current LHA parcellation). In addition, the spatial arrangement
of VMH dendrites reported by Millhouse (1973) is supported in
the current study by the presence of at least a few PHAL-labeled
neuronal cell bodies in the VMH and LHAjv region neighbors
following LHAjvd/v-targeted injections, even when the injection
site was restricted to the LHAjvd/v (Figure 1).

These considerations draw attention to a previous PHAL
study of the VMH, not only because of the possible inclusion
of the neighboring LHA, but also because of several similarities
in the outputs of the VMHvl and the LHAjv region (e.g., to the
BSTpr, MPO, and parts of the CEA, MRN, and SPFp) (Canteras
et al., 1994). Moreover, in addition to the discussed association
with reproductive behaviors, it is noteworthy that the VMHvl and
LHAjv regions constitute a substantial portion of a hypothalamic
region whose stimulation is associated with aggressive behavioral
responses (Hrabovszky et al., 2005), giving additional weight to
a possible role for the LHAjv region in control of the aggressive
component of agonistic behavior.

The foundational relation of neuronal architecture to function
is given further emphasis by another LHAjv region hypothalamic
connection, as it relates to axon morphology. As noted earlier,
axon varicosities can be sites of synaptic terminals of passage
(boutons en passant) (Wouterlood and Groenewegen, 1985;
Thomson et al., 1996). Apropos of this point, and deserving of
extended discussion, is a cluster of retrograde labeling in the
supraoptic nucleus (SO) from the LHAjvv (but not the LHAjvd)
(Figures 4R–V); incidentally, an injection site restricted mostly
to the tuberal nucleus (our experiment LHA #67, Figure 1) also
resulted in substantial SO retrograde labeling (not shown)—these
results are consistent with a recent CTB retrograde tracing study
in the rat (Toth et al., 2010).

Almost (if not) all SO neurons in the rat are neuroendocrine
and express either vasopressin (VAS) or oxytocin (OXY)
(Swanson, 1986; Markakis and Swanson, 1997). Axon collaterals
of SO neurons with numerous varicosities are reported to exist
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(Mason et al., 1984), butmost are oriented dorsal and dorsolateral
to the SO and do not extend far from it (rarely reaching
more than a few hundred microns beyond the nucleus) (Mason
et al., 1984). Nevertheless, longer non-branching axons of SO
neurons en route to the posterior pituitary are also reported to
possess numerous varicosities, giving them a beaded appearance
(Bargmann and Scharrer, 1951; Randle et al., 1986). Beaded VAS-
expressing axons coursing along the same pathway (including
through the LHAjvv and tuberal nucleus) have also been reported
(DeVries et al., 1985). It is of additional note that neurosecretory
axons within the posterior pituitary are beaded too (Bargmann
and Scharrer, 1951), and form synaptic terminals of passage
(Tweedle et al., 1989). Taken together, these data are consistent
with magnocellular neuroendocrine axon varicosities as sites of
potential synaptic contact, and support the existence of a little-
investigated non-neuroendocrine connection of the supraoptic
nucleus.

Of related note are two previous retrograde-tracing studies
which indicate that a lateral region of the retrochiasmatic area
(just dorsal to the optic tract) has bidirectional SO connections
(Thellier et al., 1994a,b); in addition, in one of these studies
(Thellier et al., 1994a), following separate injections of four
different retrograde tracers into the SO, tracer-labeled neurons
were not reported in the LHA region corresponding to the
LHAjvv, consistent with the present PHAL data (in that we
found no evidence of LHAjvv (or LHAjvd) input to the SO).
It is not known at this time whether the neurons we found
retrogradely labeled in the SO from the LHAjvv expressed VAS
or OXY. However, existing knowledge of the relative distribution
VAS- and OXY-expressing SO neurons indicates in general terms
that dorsomedial and ventrolateral SO neurons appear to mostly
express VAS at rostral and caudal levels respectively (vice versa
for OXY), with more intermingling at mid levels (Hou-Yu et al.,
1986). On this basis, it’s possible that both OXY and VAS
expressing neurons were retrogradely labeled from the LHAjvv
(Figures 4R–V).

Additional perspective is provided by recalling that
neuroendocrine neurons projecting to the posterior pituitary
are present in (in addition to the PVH and SO) several sites
not thought of as classically neuroendocrine, including the
BST, MPO, LPO, ZI, and LHA regions lateral to the fornix
(Kelly and Swanson, 1980). This highlights the potential for
non-neuroendocrine signaling of otherwise neuroendocrine
neurons. In the present study this possibility is supported not
only by SO retrograde labeling from the LHAjvv, but also by
retrograde labeling from the LHAjvd/v in several divisions
of the PVH (Figures 4R–W); we also found PVH retrograde
labeling in our previous analysis of LHAs, LHAjp, and LHAjd
connections (Hahn and Swanson, 2010, 2012). Exemplifying
further the potential contribution to behavioral control of
dual neuroendocrine/non-neuroendocrine signaling is a recent
study reporting retrograde labeling of VAS-expressing neurons
in the PVH and SO following injections of the retrograde
tracer Fluoro-Gold into dorsal HPF fields CA1-3 (Zhang and
Hernandez, 2013).

To round out this section of the discussion, it is fitting to
consider the possible functional role of putative SO input to

LHAjvv neurons. An interesting possibility is raised by studies
indicating a significant increase in the release of OXY (but not
VAS) from SO neurons in subordinate male rats encountering
dominant aggressive conspecifics (Wotjak et al., 1996;
Engelmann et al., 1999). This finding is made more intriguing
by OXY microdialysis data obtained in one of the studies, which
revealed a significant encounter-associated increase in OXY in
the subordinates in a hypothalamic region just medial to the SO
and dorsal to the optic tract (Engelmann et al., 1999)—a region
adjacent to the LHAjvv, and within the path of OXY axons en
route to the posterior pituitary (Armstrong, 1995); moreover,
the increase in OXY release in this region was up to ∼320%
over basal levels (about double the maximum increase measured
from within the SO) and, strikingly, was not associated with an
increase in plasma levels of OXY (Engelmann et al., 1999). In the
same model, a significant increase in VAS but not OXY release in
the PVH was measured (also dissociated from neuroendocrine
release) (Wotjak et al., 1996). Neurons we found retrogradely
labeled in the PVH from the LHAjvv included some within the
magnocellular PVH divisions in which OXY and VAS neurons
predominate (Figures 4U,V) (Simmons and Swanson, 2009).

Combining these data elucidates a novel potential
coordinating link between defensive and reproductive
behaviors consisting of VAS/OXY PVH/SO neurons activated
in association with defensive behavioral responses, and their
downstream connection to the LHAjvv, which is well placed
via its connections to influence reproductive behavior. This
possibility is enhanced by evidence in the rat of a direct input
from the AOB to a region immediately lateral to the SO in which
a high density of SO-neuron dendrites are present (Smithson
et al., 1992); in the same study no AOB input to PVH was found
(Smithson et al., 1992).

In this context and in relation to the earlier discussion of
LHAjv region connections with sites activated in response to
sexual behavior (notably ejaculation), established links between
OXY release and male sexual behavior are noteworthy. Thus,
it is suggested that central actions of OXY may include post-
ejaculatory inhibition of sexual behavior (Stoneham et al., 1985).
Consistent with this suggestion, OXY-expressing SO neurons
show elevated post-ejaculatory levels of Fos, correlated to the
rapidity of ejaculation (Pattij et al., 2005); also consistent with this
suggestion is increased excitation of OXY-expressing SO neurons
in male rats by electrical stimulation of the penile nerve (Honda
et al., 1999). However, a dichotomous note is struck by a positive
association of neuroendocrine OXY release and sexual behavior
(Stoneham et al., 1985), and a putative role for OXY-expressing
PVH neurons in penile erection (Veronneau-Longueville et al.,
1999).

Shifting focus to discussion of other LHAjvd/v connections in
relation to their putative involvement in control of fundamental
behaviors, several LHAjvd/v-midbrain connections are worth
noting. Foremost is a dense and extensive (mostly LHAjvd) input
to the PAGvl (predominantly to its dorsal half), and a substantial
input to the PAGd. A current structure/function model of the
neuronal network underlying defensive behavioral responses
to stimuli indicative of a threat (that is, “fear” responses)
co-relates specific PAG regions with behavioral responses to
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particular threat stimuli (Gross and Canteras, 2012; Canteras
and Graeff, 2014). In this model, which is based largely on
experimental data from male rats, the PAGd and dorsal half of
the PAGvl are indicated to play a role in mediating defensive
responses to interoceptive and social threat stimuli (for example
and respectively, visceral pain and an aggressive conspecific);
whereas the PAGvl (but not the PAGd) and PAGdl are indicated
(respectively) to mediate defensive responses to non-visceral
pain (for example footshock; PAGvl), and existential threats (for
example a predator; PAGdl) (Gross and Canteras, 2012; Canteras
and Graeff, 2014).

Such a PAG division of function in relation to defensive
behavior could be seen from a Darwinian perspective to align
with an indicated role for the LHAjvd/v in control of reproductive
behavior, as follows: If activation of LHAjvd/v to PAGvl and
PAGd connections increases the threshold for activation of
defensive behavioral responses to non-life threatening painful,
interoceptive, or social stimuli (which require activation of the
PAGvl and/or PAGd) concurrently with activation of other
LHAjvd/v connections that promote reproductive behavior,
conceivably this could increase the probability of reproduction;
whereas, when LHAjvd/v connections involved in promoting
reproductive behavior are not active, a concurrent reduction
in the threshold for activation of the same defensive responses
could benefit survival. Furthermore, inhibition of defensive
responses to the existential threat of a predator would have
less obvious benefit, whether or not an animal was engaging in
reproductive behavior, which is consistent with a very sparse
LHAjvd/v to PAGdl connection. Similar hypotheses might also
be developed in relation to indicated LHAjvd/v involvement
in aggressive behavior (Hrabovszky et al., 2005; Toth et al.,
2010).

Also in the midbrain, the LHAjv region (mostly LHAjvd)
targets extensively the magnocellular part of the midbrain
reticular nucleus (MRNm), and the deep gray layer of the
superior colliculus (SCdg); fairly extensive LHAjvd connections
with the cuneiform nucleus were also apparent, as was a
circumscribed LHAjvd/v connection with the nucleus of the
lateral lemniscus (NLL). The LHAjvd/v-MRNm connection is
very heterogeneous in terms of its distribution and directionality.
At rostral MRNm levels, retrograde labeling from the LHAjvd/v
was present in a far lateral MRNm region, ventral to the
SPFpl, and intermingled with sparsely distributed of PHAL-
labeled axons (Figures 4GG–II). At a mid-rostrocaudal MRNm
level, a very dense LHAjvd input to a more central region
of the MRNm was evident (Figure 4JJ), surrounded by a
less dense but more extensive input that extended caudally
(Figures 4KK–MM).

In a previous paper, we discussed the MRNm in relation to
its light connections with the LHAjd, which are distinct from
and less substantial than MRMm-LHAjvd/v connections (Hahn
and Swanson, 2012). As a component of the reticular formation
within the motor system, the MRN shares the same classification
as the entire hypothalamic lateral zone. This close association
is reflected in the diversity of indicated MRN structure and
function, and also by a general lack of understanding and absence
of consensus regarding both (Rye et al., 1987, 1988; Steininger

et al., 1992; Inglis andWinn, 1995; Jhou et al., 2009; Kita and Kita,
2011). The present data underscore the need for investigation of
subregional MRN differences.

For the LHAjvd connections with the SCdg, CUN and
NLL, somewhat more elaborated associations to control of
fundamental behaviors can be drawn. The SC has an established
role in orienting movements (notably of the eye and head)
to various stimuli (Dean et al., 1989); these include visual
stimuli conveyed directly to superficial layers of the SC from
retinal ganglion cells (Simon and O’Leary, 1992; Hattar et al.,
2006; Morin and Studholme, 2014), and indirectly from visual
areas of the cerebral cortex (Kasper et al., 1994); deeper
SC layers receive and integrate sensory information from
multiple sensory modalities, including visual, auditory, and
somatosensory (Meredith and Stein, 1986; Stein et al., 2009).

A recent SC retrograde tracing study in rats suggested the
existence of a medial and lateral SC division that the authors
correlated respectively to behaviors associated with avoidance
(such as defensive avoidance of a predator) and approach
(such as aggressive approach of a prey, or social approach)
(Comoli et al., 2012); these differences were also correlated
to somatosensory and visual sensory inputs, such that input
from the upper visual field was correlated to avoidance/medial
SC, and input from the lower visual field, and somatosensory
input from vibrissae, to approach/lateral SC (Comoli et al.,
2012). However, the connections of the specific SCdg region that
we have identified here as an LHAjvd-recipient site, were not
investigated (Comoli et al., 2012). For comparison, a recent study
in macaques reported defensive avoidance behaviors evoked in
response to microinjection of the GABAA receptor antagonist
bicuculline methiodide at medial and lateral intermediate- and
deep layer SC sites (DesJardin et al., 2013). Additional cross-
species comparative analysis of topographic differences in SC
circuitry may help to elucidate further its functions in relation
to behavior.

Several studies indicate a role for the cuneiform nucleus in
relation to defensive behavioral responses. For example, rats
that engage in defensive “freezing” when placed in a context
previously paired with a painful footshock show markedly
elevated levels of cuneiform nucleus c-Fos expression compared
to controls (Carrive et al., 1997). Similarly, a significant increase
in cuneiform nucleus c-Fos expression is seen in rats exhibiting
defensive behavior in response to predator-associated odor
exposure (Dielenberg et al., 2001). With respect to the earlier
discussion concerning the PAG, it is relevant to note a major
cuneiform nucleus to PAG connection, with the rostral part
targeting primarily the PAGdl, and the caudal part primarily
the PAGd and dorsal half PAGvl (Netzer et al., 2011)—our data
indicate the LHAjv region (primarily LHAjvd) sends an output to
all levels of cuneiform nucleus.

The cuneiform nucleus to PAG connection is also indicated
to play an essential role in the physiological changes associated
with acute defensive responses, which include increased heart
rate and blood pressure, related to inhibition of the baroreceptor
reflex. For example, rostral cuneiform nucleus microinjection of
the GABAA receptor antagonist bicuculline methiodide results
in elevated blood pressure and heart rate, baroreceptor reflex
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inhibition, and elevated c-Fos in the PAGdl (Netzer et al.,
2011); whereas, blockade of GABAA receptors in cuneiform
nucleus combined with activation of GABAA receptors in the
PAGdl prevents the baroreceptor reflex inhibition, and the
cardiovascular changes (Netzer et al., 2011). Another central
component of the circuitry involved in these responses is
the DMH. Thus, pharmacological DMH disinhibition with
bicuculline generates cardiovascular effects comparable to those
associated with similar disinhibition of the cuneiform nucleus
(McDowall et al., 2006; Netzer et al., 2011). It is noteworthy that
these effects are also produced by bicuculline disinhibition of a
region corresponding to the LHAs (McDowall et al., 2006). In
addition, and as noted for the cuneiform nucleus, DMH c-Fos
expression in rats is significantly elevated following predator-
associated odor exposure that also generates defensive behavioral
responses (Dielenberg et al., 2001).

Previous investigation of DMH outputs with discrete PHAL
injections elucidated a very light connection to the cuneiform
nucleus (Thompson et al., 1996); in the same study, the presence
of numerous DMH-originating axons were noted within the
LHA, including in the LHAjv region, but their input to the LHAjv
region was considered to be sparse (Thompson et al., 1996); in
contrast, the presence of extensive DMH retrograde labeling from
the LHAjv region in the present study is indicative of a rather
substantial DMH to LHAjv connection. Nevertheless, a dense
DMH to perifornical region connection described previously
(Thompson et al., 1996) does concur with our previous finding
of substantial DMH retrograde labeling from the LHAs (Hahn
and Swanson, 2010).

In the earlier discussion of LHAjv-PAG connections, we
mentioned a recent model that ascribes different roles to different
PAG divisions in relation to different threat stimuli (Gross and
Canteras, 2012; Canteras and Graeff, 2014). In the most recent
iteration (Canteras and Graeff, 2014), the DMH is included
in this model as a mediator of interoceptive threats. This
is supported by converging lines of experimental evidence.
For example, pronounced DMH c-Fos expression occurs in
rats exposed briefly to an environment containing hypercarbic
gas (20% CO2, 21%O2, 59% N2) (Johnson et al., 2011). In
addition, rats receiving an innocuous infusion of sodium lactate
after receiving DMH injection of a GABA synthesis inhibitor
(l-allylglycine) show elevated heart rate and blood pressure
(Shekhar et al., 1996; Johnson et al., 2008), and also reduced
social interaction (Johnson et al., 2008); and reduced exploratory
behavior (Shekhar et al., 1996).

Comparisons have been drawn between the effects of DMH
disinhibition paired with sodium lactate infusion in rats, and the
tendency of sodium lactate infusion to precipitate comparable
physiological changes in humans predisposed to panic attacks
(Cowley and Arana, 1990). It is noteworthy that pharmacological
inhibition of DMHGABAergic signaling in rats without infusion
of sodium lactate also reduces social interaction (Johnson et al.,
2008) and exploratory behavior (Shekhar, 1993), and increases
heart rate and blood pressure (Shekhar, 1993; Keim and Shekhar,
1996; Shekhar et al., 1996); furthermore, DMH injection of
bicuculline also increases plasma levels of ACTH, corticosterone
and noradrenalin; whereas DMH injection of the GABAA agonist

muscimol has opposite physiological and behavioral effects
(Shekhar, 1993; Shekhar et al., 1993).

The DMH forms a highly interconnected network with
five additional hypothalamic nuclei located at preoptic levels
of the hypothalamus [AVPV, median preoptic (MEPO)-,
anterodorsal/ventral preoptic (ADP/AVP)-, and parastrial (PS)
nuclei] (Thompson and Swanson, 2004) (see their Figures 2,
12). It is suggested these six nuclei may constitute a central
neural substrate for the generation of visceromotor patterns.
Aside from their striking interconnectedness, this is critically
supported by their uniquely differentiated output connections to
visceromotor-related cell groups: These include neuroendocrine
neurons within the hypothalamic neuroendocrine motor
zone, and preautonomic PVH neurons (Thompson and
Swanson, 2004) (see their Figure 11). Collectively, inputs
to these “visceromotor” nuclei are prominent from the
rostral hypothalamic behavior control column, and from
extrahypothalamic regions notable for their involvement in the
processing of interoceptive (viscerosensory and humerosensory)
information (Thompson and Swanson, 2004) (see their Figure
15). Interestingly, all six nuclei also provide an input to the
LHAjvd/v (most notably the DMH, AVPV and MEPO) but only
one receives appreciable LHAjvd/v input: The DMH (Table 1).
An additional and more direct influence of interoceptive
information on the LHAjv region is evidenced by sparse
retrograde labeling from the LHAjvd in the NTS (viscerosensory,
Figures 4AAA,BBB) and the SFO (humerosensory, Figure 4R),
and moderate retrograde labeling from the LHAjvd/v in the
lateral division of the parabrachial nucleus (viscerosensory,
Figures 4QQ–TT) (see also Table 1).

These considerations lead to the recognition that the
LHAjvd/v appears well placed to integrate polymodal
interoceptive information (via its input connections from
the DMH and the other “visceromotor” nuclei), and to convey
this information (via its output connections) not only to the
behavior control column, but also to midbrain regions associated
with behavioral initiation (PAG, cuneiform nucleus). Given the
prevailing association of LHAjvd connections with reproductive
behavior in the discussion so far, and the earlier-developed
hypothesis suggesting circumstances in which defensive behavior
might be suppressed for the sake of reproductive behavior; the
presentation here of a route whereby elevated viscerosensory
threats (homeostatic challenges) could inhibit the LHAjvd/v
presents an interesting opposite possibility (which might apply
also in regard to the earlier discussed LHAjv inputs associated
with ingestive behavior). Furthermore, it was noted earlier
that LHAs and DMH disinhibition with bicuculline appears to
generate similar cardiovascular and behavioral effects (McDowall
et al., 2006; Netzer et al., 2011). This association was recently
noted and incorporated into a model for detection and response
to interoceptive and social threat stimuli (Canteras and Graeff,
2014) (see their Figure 1); possible LHAjd involvement (which
receives DMH input) (Thompson and Swanson, 1998; Hahn and
Swanson, 2012) was also suggested. The present data argue for
inclusion of the LHAjv region in this model.

The final LHAjvd/v-midbrain connection to be discussed here
is the aforementioned connection with the NLL; this is mostly
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with the LHAjvd and includes an output to the NLL dorsal part
(NLLd, Figures 4NN–PP) and an input from the NLL ventral
part (NLLv), mostly from a cluster of neurons located dorsally
in the NLLv (Figures 4MM–QQ). In light of the discussion so
far, this connection, despite its relative lightness, is especially
interesting. The NLL is central to auditory processing, receiving
major input from the cochlear nucleus and sending a major
output to the inferior colliculus (Gonzalez-Hernandez et al.,

TABLE 2 | Connectivity comparison of selected LHA regions.

Number of connected regions

Outputs Inputs Total

LHAjp 123 114 237

LHAjd 154 165 319

LHAs 128 130 258

LHAjvd 104 155 259

LHAjvv 104 137 241

ACBdmt 2 5 7

The number of regional extrinsic input and output connections of selected LHA regions is

shown. The data was obtained in the current study, and from previously published works

(Hahn and Swanson, 2010, 2012); it is representative of the connections of the selected

LHA regions as determined from the following experiments: LHAjp (Exp. #22), LHAjd (Exp.

#34), LHAs (Exp. 11), LHAjvd (Exp. #77), and LHAjvv (Exp. #2). For comparison (and

contrast) the number of connected regions of the ACBdm dorsal tip (ACBdmt) is also

shown (Thompson and Swanson, 2010).

1996; Cant and Benson, 2003; Pollak et al., 2003). A role for
the NLL in reflex acoustic startle is indicated, but the precise
NLL region contributing to this reflex is a matter of debate
(Davis et al., 1982; Lee et al., 1996). Furthermore, a link to social
behavior is indicated by the presence of androgen receptors in
the rat NLLv (Simerly et al., 1990). It therefore seems relevant to
consider further investigation into the role of the NLL in relation
to auditory processing associated with social behaviors, and in
relation to the specific topography and neurochemistry of NLL
connections.

The extrinsic connections of the LHAjv region are remarkably
numerous. In terms of the number of LHAjv-connected gray
matter regions, the only comparable examples of this level of
connectivity are for the LHAjp, LHAjd, and LHAs (Table 2).
Notwithstanding the discussion so far, this exceptional level of
connectivity cautions against prediction of functional roles—
a caution reinforced by the existence as well of extensive
LHA intrinsic connections (Figure 11). In addition, although
we have highlighted in this discussion some of the more
evident functional associations of the LHAjv region network,
a comprehensive model will require synthesis of the available
knowledge on each of the several hundred identified LHAjvd/v
connections—a non-trivial task. Toward this goal, a high-
level perspective is provided by picturing the ratio of LHAjv
region connections within the framework of a foundational four
subsystem structure-function network model of the nervous
system (Swanson, 2000). Placing the present data into this
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network model makes it apparent that the vast majority of
LHAjvd and LHAjvv connections are with the motor and
cognitive subsystems (Figure 12), as we also found for the
LHAjp, LHAjd, and LHAs (Hahn and Swanson, 2010, 2012). The
findings represented in Figure 12 also highlight another general
characteristic of LHAjv region connectivity, namely abundant
bidirectionality, which is also reflected at the level of individual
gray matter regions (Table 1, Figures 3, 4).

Behavioral expression involves the entire nervous system,
but it ultimately depends on input from the motor subsystem,
which in turn receives input from sensory, cognitive, and
behavioral state subsystems (Swanson, 2000). Given that the
vast majority of LHAjvd/v connections are with the cognitive
and motor subsystems (Figure 12), it follows that LHAjvd/v
neurons may play a direct integrating role for information
relating to both. Moreover, the extensive bidirectionality of
the connections suggests an immediate feedback mechanism.
An additional perspective, which also speaks to underlying
organizing principles, may be gained by viewing LHAjvd/v
connections in the context of an already alluded to structural
model for cerebral hemisphere control of motivated behavior
(Swanson, 2000).

In relation to the present discussion, the crux of this
model is threefold: Firstly, hypothalamic medial zone nuclei
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the discs, and more approximately by arrow line thickness. Note the

preponderance of connections with the cognitive and motor systems, and also

the bidirectional nature of connections with all subsystems. This figure is also

available as a separate vector graphics file (Figure S12).

form a control column for fundamental goal-oriented behaviors
(ingestive, defensive, and reproductive); secondly, the cerebral
hemisphere supplies a tripartite descending input to the control
column from the cerebral cortex, striatum, and pallidum; thirdly,
control column nuclei output to lower levels of the motor
subsystem and also (primarily via the thalamus) to the cerebral
cortex (Swanson, 2000). In terms of its connections, the LHAjv
region conforms to this general model (Table 1, Figure 3). In
addition, suggested or indicated functional differentiations for
the LHAjvd/v and other medial- and perifornical tier LHA
regions (Goto et al., 2005; Hahn and Swanson, 2010, 2012;
Betley et al., 2013; Faturi et al., 2014) are congruent with similar
functional differentiations for the hypothalamic medial zone
behavior control column nuclei (Canteras et al., 1997; Risold
et al., 1997; Swanson, 2000; Canteras, 2002). Collectively, these
comparisons place the LHA firmly within an existing structure-
function model, and point to an indicated role as a coordinator
of the behavior control column, and by extension a control-
coordinator of fundamental behaviors.

An integrative “high level” behavior coordinating role for
the LHAjv region is suggested further by its major bidirectional
connections with the BSTif and BSTam (Figure 3). Thorough
analysis of the output connections of both indicate they play a
controlling or coordinating role in a wide variety of fundamental
processes, including (for the BSTif) the control of social
behavior (Dong and Swanson, 2004b), and (for the BSTam) the
coordination of motor output (neuroendocrine, autonomic, and
somatic) relating to energy homeostasis (Dong and Swanson,
2006a). In fact, the outputs of the BST as a whole are practically
as diverse as those of the LHA (Dong et al., 2001b; Dong
and Swanson, 2003, 2004a,b, 2006a,b,c). To this list might also
be added the DMH that is similarly diverse in terms of its
inputs, outputs, and implicated functional roles (see earlier
discussion) (Thompson et al., 1996; Thompson and Swanson,
1998, 2003). Future retrograde tracing studies of the BST, using
the same reference atlas and approach we have applied to the
LHA would enable (in combination with existing and present
connectivity data) a comprehensive network comparison of the
BST and LHA—two similarly diverse and highly differentiated
regions.

In addition to knowledge of connections, functional modeling
of neuronal networks clearly also requires knowledge of the
underlying neurochemistry—in particular the neurotransmitters
and their receptors. While it is clear that GABA is the
predominant neurotransmitter for extrinsic output connections
of the cerebral nuclei (BST included), and glutamate (GLU) for
the cerebral cortex (Swanson, 2000), the picture for the LHA
is (perhaps unsurprisingly) more complex (Ziegler et al., 2002;
Meister, 2007). The challenging complexity is exemplified by
the largely LHA-expressed neuropeptides melanin-concentrating
hormone (MCH) and hypocretin/orexin (H/O), which are
present in intermingled populations of LHA neurons that extend
over several LHA regions, including the LHAjvd/v (Swanson
et al., 2005; Hahn, 2010). Similarly, neuronal expression of GABA
and glutamate is indicated in intermingled populations of LHA
neurons within the LHAjv region (although GABA appears to
predominate) (Hrabovszky et al., 2005) (see their Figures 2H,I).
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Furthermore, MCH and H/O neurons both appear to
coexpress either GABA or GLU, but not uniformly: Most (but not
all) MCH neurons are indicated to co-release GABA (Elias et al.,
2001; Del Cid-Pellitero and Jones, 2012; Jego et al., 2013), but not
GLU (Del Cid-Pellitero and Jones, 2012); whereas H/O neurons
are indicated to co-release GLU but not GABA (Henny et al.,
2010). In addition, a subpopulation of GABAergic (glutamic acid
decarboxylase 65-expressing) LHA neurons appear to coexpress
neither MCH nor H/O (Karnani et al., 2013). The picture
is further complicated by coexpression of neuropeptides. For
instance, most (but not all) MCH neurons appear to coexpress
cocaine/amphetamine-regulated transcript (CART) (Broberger,
1999; Elias et al., 2001; Cvetkovic et al., 2004), andmost (if not all)
coexpress the satiety-related neuropeptide nesfatin-1 (Fort et al.,
2008); whereas H/O neurons coexpress neither neuropeptide
(Elias et al., 2001; Foo et al., 2008; Fort et al., 2008).

Moreover, the neuropeptide gene expression landscape of the
LHA is highly pliable. For example, dehydration in rats (brought
about by hypertonic saline) results in the neuronal expression of
corticotropin-releasing hormone (CRH) in several LHA regions
that do not express CRH in euhydrated rats (Kelly and Watts,
1996, 1998; Kay-Nishiyama and Watts, 1999); these include
LHA regions in which MCH and H/O are expressed (Swanson
et al., 2005; Hahn, 2010), but there is very little co-expression of
CRHwith either neuropeptide (Watts and Sanchez-Watts, 2007).
However, under the same conditions there is a high level of LHA
co-expression of CRH and neurotensin (Watts and Sanchez-
Watts, 2007). Moreover, most of the dehydration-associated LHA
CRH expression occurs in a restricted dorsomedial subregion
of the LHAd, with no appreciable CRH expression in the
LHAjv region (Watts and Sanchez-Watts, 2007) (see their Figure
2); nevertheless, at least some neurons in this region of the
LHAd send an input to the LHAjv region (Figures 4W,X), and
overall the LHAd provides a moderate input to the LHAjvd/v
(Table 1; compare also our Figure 11 with Figure 2 in Watts
and Sanchez-Watts (2007) for review of other dehydration
associated CRH-expressing LHA regions in relation to intra-LHA
connections).

Concluding Remarks

For a defined gray matter region, the level of LHAjv
region extrinsic connectivity is unprecedented. Nevertheless,
the connections of the LHAjvd and LHAjvv evidently have a
distinct organization (Figure 3). From a systems perspective,
they are dominated by bidirectional connections with the motor
and cognitive subsystems (Figure 12). At a finer level, they
receive substantial input from the cerebral cortex, and cerebral
nuclei, as well as providing to both a lesser input (but more

substantial for the LHAjvv). They also both have substantial
bidirectional connections with medial hypothalamic behavior
control column nuclei, and also receive input from hypothalamic
nuclei associated with neuroendocrine and visceromotor control.
Furthermore, both the LHAjvd and LHAjvv have substantial
connections withmidbrain regions associated withmotor pattern
initiation. In essence, the LHAjv region interfaces multiple

neural networks necessary for control of voluntary and innate
behavior.

With regard to specific behaviors, involvement of LHAjv
region connections in control of reproductive behaviors is
strongly suggested, but this appears to be integrated with
subsidiary involvement in agonistic (defensive/aggressive) and
ingestive behaviors. The extent of this involvement appears
to be very broad, encompassing somatic, autonomic, and
endocrine components of behavior. Similar considerations were
raised in our previous investigations of LHAjp, LHAjd, and
LHAs connections (Hahn and Swanson, 2010, 2012). These
considerations lead us to hypothesize the LHAjv region may
constitute part of an LHA hub for controlling the coordination
of fundamental behaviors. Integral to this model, in addition
to LHA extrinsic connections, are intra-LHA connections
(Figure 11). In relation to this, a relevant comparison is with
cerebral cortical hubs identified in a very recent informatics
analysis of the cerebral cortical association connectome (Bota
et al., 2015).

Clearly there is much that remains to be discovered about
the structure, organization, and function of LHA neuron
populations, and about how the dynamic interplay of these
neuron populations within the nervous system as a whole
contributes to coordination and control of the rich diversity of
behaviors that enable animals to survive and reproduce within
their changing and often challenging environments. Rather than
attempting an exhaustive and all-inclusive treatment of the
several hundred LHAjv region connections identified in this
study, we have endeavored to provide a representative overview.
Consequently, we realize there may be certain LHAjvd/v
connections described in the Results that are of particular interest
to individual readers that we have discussed only in passing,
or not at all. Nevertheless, the above discussion encompasses a
range of perspectives.We hope it sparks associations wemay have
missed or not addressed, and by the connections we have drawn,
illuminates paths to further fruitful research and understanding
of the LHA, the brain, and the nervous system.
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AAA, anterior amygdalar area; ab, angular bundle; ACAd,
anterior cingulate area, dorsal part; ACAv, anterior cingulate
area, ventral part; ACB, nucleus accumbens; aco, anterior
commissure, olfactory limb; act, anterior commissure,
temporal limb; AD, anterodorsal nucleus, thalamus; ADP,
anterodorsal preoptic nucleus; AHA, anterior hypothalamic
area; AHNa, anterior hypothalamic nucleus, anterior part;
AHNc, anterior hypothalamic nucleus, central part; AHNd,
anterior hypothalamic nucleus, dorsal part; AHNp, anterior
hypothalamic nucleus, posterior part; Alp, agranular insular
area, posterior part; alv, alveus; Alv, agranular insular area;
ventral part; amc, amygdalar capsule; AMd, anteromedial
nucleus, thalamus, dorsal part; AMv, anteromedial nucleus,
thalamus, ventral part; APN, anterior pretectal nucleus; AQ,
cerebral aqueduct; AQc, cerebral aqueduct, collicular recess;
ARH, arcuate hypothalamic nucleus; AT, anterior tegmental
nucleus; AV, anteroventral nucleus, thalamus; AVP, anteroventral
preoptic nucleus; AVPV, anteroventral periventricular nucleus;
B, Barrington’s nucleus; BA, bed nucleus accessory olfactory
tract; BAC, bed nucleus anterior commissure; bic, brachium of
the inferior colliculus; BLAa, basolateral amygdalar nucleus,
anterior part; BLAp, basolateral amygdalar nucleus, posterior

part; BMAa, basomedial amygdalar nucleus, anterior part;

BMAp, basomedial amygdalar nucleus, posterior part; BSM,
bed nucleus stria medullaris; BSTal, bed nuclei stria terminalis,

anterior division, anterolateral area; BSTam, bed nuclei stria
terminalis, anterior division, anteromedial area; BSTd, bed nuclei

stria terminalis, posterior division, dorsal nucleus; BSTdm, bed
nuclei stria terminalis, anterior division, dorsomedial nucleus;
BSTfu, bed nuclei stria terminalis, anterior division, fusiform
nucleus; BSTif, bed nuclei stria terminalis, posterior division,
interfascicular nucleus; BSTju, bed nuclei stria terminalis,
anterior division, juxtacapsular nucleus; BSTmg, bed nuclei stria
terminalis, anterior division, magnocellular nucleus; BSTov, bed
nuclei stria terminalis, anterior division, oval nucleus; BSTpr,
bed nuclei stria terminalis, posterior division, principal nucleus;
BSTrh, bed nuclei stria terminalis, anterior division, rhomboid
nucleus; BSTse, bed nuclei stria terminalis, posterior division,
strial extension; BSTtr, bed nuclei stria terminalis, posterior
division, transverse nucleus; BSTv, bed nuclei stria terminalis,
anterior division, ventral nucleus; CA1, field CA1, Ammon’s
horn; CA1slm, field CA1, lacunosum-moleculare; CA1so, field
CA1, stratum oriens; CA1sr, field CA1, stratum radiatum;
CA1spd, field CA1, pyramidal layer, deep; CA1sps, field CA1,
pyramidal layer, superficial; CA2so, field CA2, stratum oriens;
CA2sp, field CA2, pyramidal layer; CA3so, field CA3, stratum
oriens; CA3sp, field CA3, pyramidal layer; cc, corpus callosum;
ccg, corpus callosum, genu; ccr, corpus callosum, rostrum;
CEAc, central amygdalar nucleus, capsular part; CEAl, central
amygdalar nucleus, lateral part; CEAm, central amygdalar
nucleus, medial part; cic, inferior colliculus commissure;
CL, central lateral nucleus, thalamus; CLA, claustrum; CLI,
caudal linear nucleus, raphe; CM, central medial nucleus,
thalamus; COAa, cortical amygdalar area, anterior part; COApl,
cortical amygdalar area, posterior part, lateral zone; COApm,

cortical amygdalar area, posterior part, medial zone; COM,
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cpd, cerebral peduncle; CSl, superior central nucleus raphé,
lateral part; CSm, superior central nucleus raphé, medial part;
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Dorsal motor nucleus of the vagus nerve; DR, dorsal nucleus,
raphe; dscp, superior cerebellar peduncle decussation; DTN,
dorsal tegmental nucleus; ec, external capsule; ECT, ectorhinal
area; em, external medullary lamina, thalamus; ENTl, entorhinal
area, lateral part; ENTm, entorhinal area, medial part, dorsal
zone; ENTmv, entorhinal area, medial part, ventral zone; EPd,
endopiriform nucleus, dorsal part; EPv, endopiriform nucleus,
ventral part; EW, Edinger-Westphal nucleus; fa, corpus callosum,
anterior forceps; FF, fields of Forel; fi, fimbria; fr, fasciculus
retroflexus; FS, striatal fundus; fx, columns of the fornix; fxpr,
precommissural fornix; GPe, globus pallidus, external segment;
GPi, globus pallidus, internal segment; GRN, gigantocellular
reticular nucleus; I, internuclear area, hypothalamic
periventricular region; IA, amygdalar nuclei (intercalated); IAD,
interanterodorsal nucleus, thalamus; IAM, interanteromedial
nucleus, thalamus; ICd, inferior colliculus, dorsal nucleus; Ice,
inferior colliculus, external nucleus; IF, interfascicular nucleus,
raphe; III, oculomotor nucleus; ILA, infralimbic area; IMD,
intermediodorsal nucleus, thalamus; INC, interstitial nucleus of
Cajal; int, internal capsule; IPNa, interpeduncular nucleus, apical
subnucleus; IPNc, interpeduncular nucleus, central subnucleus;
IPNd, interpeduncular nucleus, dorsomedial subnucleus;
IPNi, interpeduncular nucleus, intermediate subnucleus, IPNld,
interpeduncular nucleus, lateral subnucleus, dorsal part; IPNli,
interpeduncular nucleus, lateral subnucleus, intermediate part;
IPNlr, interpeduncular nucleus, lateral subnucleus, rostral part;
IPNr, interpeduncular nucleus, rostral subnucleus; isl, islands of
Calleja (olfactory tubercle); IVn, trochlear nerve; KF, Kölliker-
Fuse subnucleus (of parabrachial nucleus); LA, lateral amygdalar
nucleus; LC, locus ceruleus; LDT, laterodorsal tegmental
nucleus; LGvm, lateral geniculate complex, ventral part, medial
zone; LH, lateral habenula; LHAad, lateral hypothalamic area,
anterior region, dorsal zone; LHAai, lateral hypothalamic
area, anterior region, intermediate zone; LHAav, lateral
hypothalamic area, anterior region, ventral zone; LHAd, lateral
hypothalamic area, dorsal region; LHAjd, lateral hypothalamic
area, juxtadorsomedial region; LHAjp, lateral hypothalamic area,
juxtaparaventricular region; LHAjvd, lateral hypothalamic area,
juxtaventromedial region, dorsal zone; LHAjvv, lateral
hypothalamic area, juxtaventromedial region, ventral zone;
LHAm, lateral hypothalamic area, magnocellular nucleus;
LHAp, lateral hypothalamic area, posterior region; LHApc,
lateral hypothalamic area, parvicellular region; LHAs, lateral
hypothalamic area, suprafornical region; LHAsfa, lateral
hypothalamic area, subfornical region, anterior zone; LHAsfp,
lateral hypothalamic area, subfornical region, posterior zone;
LHAsfpm, lateral hypothalamic area, subfornical region,
premammillary zone; LHAvl, lateral hypothalamic area, ventral
region, lateral zone; LHAvm, lateral hypothalamic area, ventral
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region, medial zone; ll, lateral lemniscus; LPO, lateral preoptic
area; LSc, lateral septal nucleus, caudal part; LSc.d, lateral
septal nucleus, caudal part, dorsal zone; LSc.d.d, lateral septal
nucleus, caudal part, dorsal zone, dorsal region; LSc.d.l, lateral
septal nucleus, caudal part, dorsal zone, lateral region; LSc.d.r,
lateral septal nucleus, caudal part, dorsal zone, rostral region;
LSc.d.v, lateral septal nucleus, caudal part, dorsal zone, ventral
region; LSc.v.i, lateral septal nucleus, caudal part, ventral zone,
intermediate region; LSc.v.l, lateral septal nucleus, caudal part,
ventral zone, lateral region; LSc.v.l.d, lateral septal nucleus,
caudal part, ventral zone, lateral region, dorsal domain; LSc.v.l.v,
lateral septal nucleus, caudal part, ventral zone, lateral region,
ventral domain; LSc.v.m.d, lateral septal nucleus, caudal part,
ventral zone, medial region, dorsal domain; LSc.v.m.v, lateral
septal nucleus, caudal part, ventral zone, medial region, ventral
domain; LSr, lateral septal nucleus, rostral part; LSr.dl.l.d, lateral
septal nucleus, rostral part, dorsolateral zone, lateral region,
dorsal domain; LSr.dl.l.v, lateral septal nucleus, rostral part,
dorsolateral zone, lateral region, ventral domain; LSr.dl.m.d,
lateral septal nucleus, rostral part, dorsolateral zone, medial
region, dorsal domain; LSr.dl.m.v, lateral septal nucleus, rostral
part, dorsolateral zone, medial region, ventral domain; LSr.m,
lateral septal nucleus, rostral part, medial zone; LSr.m.d, lateral
septal nucleus, rostral part, medial zone, dorsal region; LSr.m.v.c,
lateral septal nucleus, rostral part, medial zone, ventral region,
caudal domain; LSr.m.v.r, lateral septal nucleus, rostral part,
medial zone, ventral region, rostral domain; LSr.vl.d.l, lateral
septal nucleus, rostral part, ventrolateral zone, dorsal region,
lateral domain; LSr.vl.d.m, lateral septal nucleus, rostral part,
ventrolateral zone, dorsal region, medial domain; LSr.vl.v, lateral
septal nucleus, rostral part, ventrolateral zone, ventral region;
LSv, lateral septal nucleus, ventral part; LTN, lateral tegmental
nucleus; MA, magnocellular nucleus; MARN, magnocellular
reticular nucleus; mct, medial corticohypothalamic tract; MDc,
mediodorsal nucleus, thalamus, central part; MDl, mediodorsal
nucleus, thalamus, lateral part; MDm, mediodorsal nucleus,
thalamus, medial part; MDRNd, medullary reticular nucleus,
dorsal part; MDRNv, medullary reticular nucleus, ventral part;
ME, median eminence; MEex, median eminence, external
lamina; MEAad, medial amygdalar nucleus, anterodorsal
part; MEAav, medial amygdalar nucleus, anteroventral part;
MEApd.a-c, medial amygdalar nucleus, posterodorsal part,
sublayer a–c; MEApv, medial amygdalar nucleus, posteroventral
part;MEPO,median preoptic nucleus;MEV,midbrain trigeminal
nucleus; MGd, medial geniculate complex, dorsal part; MGm,
medial geniculate complex, medial part; MGv, medial geniculate
complex, ventral part; MH, medial habenula; ml, medial
lemniscus; mlf, medial longitudinal fascicle; MM, medial
mammillary nucleus, body; MMme, medial mammillary
nucleus, median part; MPNc, medial preoptic nucleus, central
part; MPNl, medial preoptic nucleus, lateral part; MPNm,
medial preoptic nucleus, medial part; MPO, medial preoptic
area; MPT, medial pretectal area; MRNm, midbrain reticular
nucleus, magnocellular part; MRNp, midbrain reticular nucleus,
parvicellular part; MS, medial septal nucleus; MT, medial
terminal nucleus, accessory optic tract; mtV, midbrain tract of
the trigeminal nerve; mtt, mammillothalamic tract; NB, nucleus

of the brachium, inferior colliculus; NC, nucleus circularis;
ND, nucleus of Darkschewitsch; NDB, diagonal band nucleus;
NIc, nucleus incertus, compact part; NId, nucleus incertus,
diffuse part; NLOT, nucleus of the lateral olfactory tract; NLLd,
nucleus of the lateral lemniscus, dorsal part; NLLv, nucleus of
the lateral lemniscus, ventral part; NPC, nucleus of the posterior
commissure; NTSco, nucleus of the solitary tract, commissural
part; NTSl, nucleus of the solitary tract, lateral part; NTSm,
nucleus of the solitary tract, medial part; och, optic chiasm; opt,
optic tract; ORBm, orbital area, medial part; ORBv, orbital area,
ventral part; OT, olfactory tubercle; PA, posterior amygdalar
nucleus; PAA, piriform-amygdala transition area; PAGd,
periaqueductal gray, dorsal division; PAGdl, periaqueductal
gray, dorsolateral division; PAGm, periaqueductal gray, medial
division; PAGrl, periaqueductal gray, rostrolateral division;
PAGrm, periaqueductal gray, rostromedial division; PAGvl,
periaqueductal gray, ventrolateral division; PAR, parasubiculum;
PARN, parvicellular reticular nucleus; PBlc, parabrachial
nucleus, central lateral part; PBld, parabrachial nucleus, dorsal
lateral part; PBle, parabrachial nucleus, external lateral part; PBls,
parabrachial nucleus, superior lateral part; PBlv, parabrachial
nucleus, ventral lateral part; PBmm, parabrachial nucleus,
medial medial part; PBmv, parabrachial nucleus, ventral
medial part; pc, posterior commissure; PCG, pontine central
gray; PD, posterodorsal preoptic nucleus; PERI, perirhinal
area; PF, parafascicular nucleus; PGRNl, paragigantocellular
reticular nucleus, lateral part; PH, posterior hypothalamic
nucleus; PIR, piriform area; PL, prelimbic area; pm, principal;
ammillary tract; PMd, dorsal premammillary nucleus; PMv,
ventral premammillary nucleus; PO, posterior complex
thalamus; POL, posterior limiting nucleus, thalamus; PP,
peripeduncular nucleus; PPN, pedunculopontine nucleus;
PPYd, parapyramidal nucleus, deep part; PR, perireuniens
nucleus; PRC, periaqueductal gray, precommissural nucleus;
PRE, presubiculum; PRNc, pontine reticular nucleus, caudal
part; PRNr, pontine reticular nucleus, rostral part; PS,
parastrial nucleus; PSCH, suprachiasmatic preoptic nucleus;
PST, preparasubthalamic nucleus; PSTN, parasubthalamic
nucleus; PSV, principal sensory nucleus of the trigeminal; PT,
paratenial nucleus; PVa, periventricular hypothalamic nucleus,
anterior part; PVHam, paraventricular nucleus hypothalamus,
magnocellular division, anterior magnocellular part; PVHap,
paraventricular nucleus hypothalamus, anterior parvicellular
part; PVHdp, paraventricular nucleus hypothalamus, dorsal
parvicellular part; PVHf, paraventricular nucleus hypothalamus,
forniceal part; PVHlp, paraventricular nucleus hypothalamus,
lateral parvicellular part; PVHmpd, paraventricular nucleus
hypothalamus, medial parvicellular part, dorsal zone; PVHmpdl,
paraventricular nucleus hypothalamus, medial parvicellular
part, dorsal zone, lateral wing; PVHpml, paraventricular
nucleus hypothalamus, posterior magnocellular part, lateral
zone; PVHpmm, paraventricular nucleus hypothalamus,
posterior magnocellular part, medial zone; PVHpv,
paraventricular nucleus hypothalamus, periventricular part;
PVi, periventricular nucleus hypothalamus, intermediate part;
PVp, periventricular nucleus hypothalamus, posterior part;
PVpo, preoptic periventricular nucleus; PVT, paraventricular
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nucleus, thalamus; py, pyramidal tract; RCH, retrochiasmatic
area; Rea, nucleus reuniens, rostral division, anterior part; REcd,
nucleus reuniens, caudal division, dorsal part; REcm, nucleus
reuniens, caudal division, median part; REcp, nucleus reuniens,
caudal division, posterior part; Red, nucleus reuniens, rostral
division, dorsal part; REl, nucleus reuniens, rostral division,
lateral part; Rem, nucleus reuniens, rostral division, median
part; Rev, nucleus reuniens, rostral division, ventral part; RH,
rhomboid nucleus; RL, rostral linear nucleus, raphe; RN, red
nucleus; RR, midbrain reticular nucleus, retrorubral area;
RT, reticular nucleus, thalamus; rust, rubrospinal tract; SAG,
nucleus sagulum; SBPV, subparaventricular zone; SCdg, superior
colliculus, deep gray layer; SCdw, superior colliculus, deep
white layer; SCH, suprachiasmatic nucleus; SCig.a–c, superior
colliculus, intermediate gray layer, sublayer a–c; SCiw, superior
colliculus, intermediate white layer; scp, superior cerebellar
peduncle; sctv, ventral spinocerebellar tract; SF, septofimbrial
nucleus; SFO, subfornical organ; SGN, suprageniculate nucleus,
thalamus; SH, septohippocampal nucleus; SI, substantia
innominate; SLC, subceruleus nucleus; SLD, sublaterodorsal
nucleus; sm, stria medullaris; smd, supramammillary
decussation; SMT, submedial nucleus, thalamus; SNr, substantia
nigra, reticular part; SNc, substantia nigra, compact part;
SO, supraoptic nucleus, proper; SOr, supraoptic nucleus,
retrochiasmatic part; SPFm, subparafascicular nucleus thalamus,
magnocellular part; SPFpl, subparafascicular nucleus thalamus,
parvicellular part, lateral division; SPFpm, subparafascicular

nucleus thalamus, parvicellular part, medial division; st,
stria terminalis; STN, subthalamic nucleus; SUB, subiculum;
SUB-m, subiculum, molecular layer; SUB–sp, subiculum,
pyramidal layer; SUMl, supramammillary nucleus, lateral
part; SUMm, supramammillary nucleus, medial part; sup,
supraoptic commissures; SUT, supratrigeminal nucleus; TMd,
tuberomammillary nucleus, dorsal part; TMv, tuberomammillary
nucleus, ventral part; tp, thalamic peduncles; TR, postpiriform
transition area; TRN, tegmental reticular nucleus; TRS,
triangular nucleus septum; tsp, tectospinal pathway; TTd,
tenia tecta, dorsal part; TUi, tuberal nucleus, intermediate
part; TUl, tuberal nucleus, lateral part; TUsv, tuberal nucleus,
subventromedial part; TUte, tuberal nucleus, terete subnucleus;
V3h, third ventricle, hypothalamic part; V3m, third ventricle,
mammillary recess; V3p, third ventricle, preoptic recess; V3t,
third ventricle, thalamic part; V4, fourth ventricle proper; VIIn,
facial nerve; VL, lateral ventricle; VLP, ventrolateral preoptic
nucleus; vlt, ventrolateral hypothalamic tract; VM, ventral medial
nucleus, thalamus; VMHa, ventromedial nucleus hypothalamus,
anterior part; VMHc, ventromedial nucleus hypothalamus,
central part; VMHdm, ventromedial nucleus hypothalamus,
dorsomedial part; VMHvl, ventromedial nucleus hypothalamus,
ventrolateral part; VPMpc, ventral posteromedial nucleus
thalamus, parvicellular part; VTA, ventral tegmental area; vtd,
ventral tegmental decussation; VTN, ventral tegmental nucleus;
XII, hypoglossal nucleus; ZI, zona incerta; ZIda, zona incerta,
dopaminergic group; zl, zona limitans.
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