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Increased ocular positioning misalignments upon exposure to altered gravity levels

(g-levels) have been strongly correlated with space motion sickness (SMS) severity,

possibly due to underlying otolith asymmetries uncompensated in novel gravitational

environments. We investigated vertical and torsional ocular positioning misalignments

elicited by the 0 and 1.8 g g-levels of parabolic flight and used these data to develop

a computational model to describe how such misalignments might arise. Ocular

misalignments were inferred through two perceptual nulling tasks: Vertical Alignment

Nulling (VAN) and Torsional Alignment Nulling (TAN). All test subjects exhibited significant

differences in ocular misalignments in the novel g-levels, which we postulate to be

the result of healthy individuals with 1 g-tuned central compensatory mechanisms

unadapted to the parabolic flight environment. Furthermore, themagnitude and direction

of ocular misalignments in hypo-g and hyper-g, in comparison to 1 g, were nonlinear

and nonmonotonic. Previous linear models of central compensation do not predict this.

Here we show that a single model of the form a+ bgε, where a, b, and ε are the model

parameters and g is the current g-level, accounts for both the vertical and torsional ocular

misalignment data observed inflight. Furthering our understanding of oculomotor control

is critical for the development of interventions that promote adaptation in spaceflight (e.g.,

countermeasures for novel g-level exposure) and terrestrial (e.g., rehabilitation protocols

for vestibular pathology) environments.

Keywords: oculomotor, otolith, parabolic flight, gravity, model

Introduction

Spaceflight elicits adaptive changes across all physiological systems (White, 1998). In particular,
the altered gravity levels (g-levels) modulate otolith signaling, disrupting multiple sensorimotor
subsystems simultaneously until the central nervous system (CNS) becomes properly calibrated
to the current g-level (Young et al., 1986; Reschke et al., 1994). Inflight, astronauts experience
miscalibrated otolith-ocular reflexes, reduced eye-hand coordination and fine motor control,
spatial disorientation, and perceptual illusions (Reschke et al., 1996; Clément and Reschke, 2008).
Space motion sickness (SMS) remains one of the most significant and unpredictable operational
challenges of spaceflight, affecting over two-thirds of all astronauts (Davis et al., 1988). Upon Earth-
return, crewmembers express clumsiness in their movements, persisting sensation aftereffects,
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standing and walking vertigo, nausea, difficulty concentrating,
and blurred vision (Bacal et al., 2003).

Studying sensorimotor responses in altered gravity and
developing computational models for how the CNS facilitates
adaptation to such environments will allow us to quantify
physiologic commonalities and individual differences. With
the prospect of longer duration missions beyond low-Earth
orbit, such knowledge is vital to maximize crew safety and
mission success. Countermeasures must be developed to enable
astronauts to live in space for prolonged periods of time
during transit and prepare them to re-enter a gravitational
field upon arrival at their destination. This means that
crewmembers will require appropriate technologies to perform
accurate self-assessments and rehabilitations inflight. Therefore,
the two objectives of this work were to (1) evaluate a novel,
portable device for quantifying ocular positioning misalignments
during altered-gravity exposure, and (2) explore through the
development of a computational model how oculomotor
pathways might be organized such that these misalignments
arise.

Increased binocular positioning misalignments upon
exposure to novel gravitational environments have been strongly
linked to SMS susceptibility. For instance, Kornilova and
colleagues reported a strong correlation between SMS and
post-flight ocular counterroll (OCR) asymmetry in Russian
cosmonauts (Kornilova et al., 1983): eleven out of twelve long-
duration crewmembers (missions between 30 and 211 days)
who experienced SMS inflight also exhibited asymmetries in
OCR post-flight. Vogel and Kass measured OCR elicited by
leftward and rightward roll tilts up to 90◦ in four Spacelab-1
crewmembers pre- and post-mission (Vogel and Kass, 1986); the
astronaut most prone to SMS expressed the largest asymmetry
in OCR gain preflight, while the astronaut least susceptible
showed symmetrical OCR gain preflight and quickly returned to
baseline levels post-flight. Diamond and Markham performed
a series of experiments on astronauts in which they correlated
asymmetries in binocular torsion during the altered g-levels
of parabolic flight with SMS experience (Diamond et al., 1990;
Diamond and Markham, 1991, 1992b); astronauts who exhibited
the largest differences in torsional asymmetry between the 0 and
1.8 g phases of parabolic flight were the ones who endured the
most severe SMS during their missions.

The relationship between ocular positioning misalignments
and SMS poses an important question: Can measures of
binocular alignment enable preflight predictions of inflight
motion sickness susceptibility and symptom severity? Such
results could facilitate the development of individually tailored
training protocols and countermeasures. Hence, the first aim
of this study was to validate a novel, hand-held apparatus to
quantify ocular positioning misalignments in the altered g-levels
of parabolic flight1 . Unlike the techniques employed by previous
investigators, our approach does not incorporate direct measures
of eye movements, thereby eliminating delicate, uncomfortable

1Since our experiment did not include astronaut test subjects, we could not

correlate our results with SMS susceptibility, as has been done by previous

investigators. Our intent was simply to verify that our device was sensitive to detect

the ocular misalignments observed by others in novel gravity environments.

equipment and computationally expensive algorithms, which are
non-ideal for spaceflight operations. Instead, we have developed
perceptual misalignment-nulling tasks to infer ocular positioning
misalignments that can be quickly self-administered using
portable equipment (Beaton et al., 2013). Furthermore, our
device fully eliminates binocular visual cues, which are known to
mask ocular positioning misalignments (Burian, 1939; Ogle and
Prangen, 1953; Kertesz and Jones, 1970; Crone and Everhard-
Hard, 1975; Kertesz, 1981; Guyton, 1988; Paterson et al., 2009).
Previous investigators have captured ocular positions during
altered g-level exposure using film cameras in ambient light
(Vogel and Kass, 1986; Diamond et al., 1990; Diamond and
Markham, 1991, 1992b), and hence the binocular visual cues
available to the subjects during testing may have interfered with
their ocular misalignment results. We hypothesized that the
ocular misalignments quantified through our perceptual nulling
tasks would exhibit similar g-level dependencies observed by
previous investigators, but may be more accurate and consistent
due to the absence of binocular visual cues.

One plausible explanation for why increased ocular
misalignments might arise upon exposure to novel g-levels
is due to inherent asymmetries between the left and right
otolith systems. It is conceivable that nature does not (and
cannot) produce precisely identical otoconial maculae on both
sides of the head, and so small anatomical asymmetries may
exist in at least some people (Yegorov and Samarin, 1970; von
Baumgarten and Thümler, 1979). Furthermore, asymmetries
in hair cell counts, sensitivities, or distributions, or in the
neural relationships between primary afferents and their
receptors may also occur (Bracchi et al., 1975; Markham and
Diamond, 1993). During early development on 1 g Earth, central
processes regulate these asymmetries to mitigate functional
vestibular deficits. While it is difficult to measure otoconial mass
asymmetries in vertebrates due to surrounding temporal bone
and loss of otoconia during specimen preparation (Scherer et al.,
2001), such asymmetries have been confirmed in various species
of fish. Additionally, numerous studies have demonstrated
a correlation between increased otoconial mass asymmetries
in fish and pathologic swimming patterns and behavior (e.g.,
lethargy and emesis) during centrifugation, parabolic flight, and
spaceflight (von Baumgarten et al., 1972; Wetzig, 1983; Ijiri,
1995; Scherer et al., 1997; Anken et al., 1998; Hilbig et al., 2002;
Helling et al., 2003).

In humans, asymmetries in oculomotor behavior can be
examined as evidence of anatomical or physiological otolith
asymmetries. Among other roles, the otolith organs control
vertical and torsional eye movements as related to gravito-inertial
accelerations (GIA), and hence underlying otolith asymmetries
may manifest as vertical and torsional binocular positioning
misalignments in novel (uncompensated) gravity environments
when binocular visual cues are eliminated (Uchino et al., 1996;
Isu et al., 2000; Newlands et al., 2003; Goto et al., 2004;
Highstein and Holstein, 2006). Measures of binocular torsion
have been the primary eye movement of choice (Lackner
et al., 1987; Wetzig et al., 1990; Diamond and Markham,
1991, 1992a,b; Cheung et al., 1992; Markham and Diamond,
1992, 1993; Wuyts et al., 2003), possibly because torsion is
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a reflexive, vestigial eye movement that, unlike vertical eye
movements, is not subject to voluntary control (Collewijn et al.,
1988; Misslisch et al., 2001). Nonetheless, we examined both
vertical and torsional ocular positioning misalignments in this
study.

In 1979, von Baumgarten and Thümler proposed a simple
model for vestibular adaptation in altered gravity environments
based on the hypotheses that (1) otolith asymmetries are present
in at least some individuals, and (2) these asymmetries are
centrally compensated through additional neural impulses
stemming from the brainstem reticular formation and/or
cerebellum (von Bechterew, 1909; Yegorov and Samarin,
1970; Schaefer and Meyer, 1974). Under this model, people
with larger left-right asymmetries would require greater
compensatory adjustments following exposure to novel g-levels.
von Baumgarten and Thümler posited that such individuals
might therefore experience functional vestibular deficits that
are more extreme or that persist longer during the adaptation
process. The second aim of this study was to consider our
ocular misalignment results in light of the von Baumgarten
and Thümler central compensation model. While our data
characterize oculomotor behavior, they do not explain how
neurophysiological pathways might be organized to produce
such results. Understanding the underlying neural circuitry
through the development of mathematical models may enable
us to pair changes in specific neurophysiological structures
with changes in behavior, which has important implications
for various interventions, such as rehabilitation prescriptions
for terrestrial pathologies or countermeasures for astronauts.
The von Baumgarten and Thümler model does not, however,
account for all of the ocular misalignment data collected in
altered g-levels to-date. But it does provide a simple framework
from which we developed a more generalized model that better
describes g-level dependent ocular misalignments. We predicted
that our model would be robust to support both the vertical and
torsional ocular misalignments observed during altered g-level
exposure.

Materials and Methods

Test Subjects
Six healthy individuals with no known vestibular, oculomotor,
or neurological deficits volunteered as test subjects. All provided
written, informed consent to a protocol pre-approved by the
Johns Hopkins Medicine and the NASA Johnson Space Center
Institutional Review Boards. Five of the subjects were naïve
to the objectives of this study. Four of the subjects were
naïve to the parabolic-flight environment itself (i.e., had never
previously flown in parabolic flight). None of the subjects took
any anti-motion sickness medications preflight (including the
scopolamine offered by NASA flight surgeons), as these drugs
may inhibit sensorimotor function (Pyykko et al., 1985; Davis
et al., 1993; Shojaku et al., 1993). To ensure that our test subjects
would be able to withstand the provocative nature of the flights
and provide sufficient inflight validation data, we preferentially
included individuals with a high tolerance for terrestrial motion
sickness.

Quantifying Binocular Positioning Misalignments
Binocular positioning misalignments were quantified through
two perceptual nulling tasks: Vertical Alignment Nulling (VAN)
and Torsional Alignment Nulling (TAN). In VAN and TAN,
subjects hold a tablet computer that displays one horizontal
red line and one horizontal blue line while viewing through
color-matched red and blue filters; this provides separate visual
information to each eye. One of these horizontal lines, designated
as the stationary line, remains fixed on the screen, while the other,
the moving line, is repositioned by the subject vertically during
VAN or rotationally during TAN. The subject’s objective is to
adjust the moving line until it appears perfectly in-line with the
stationary line (in other words, null any visually apparent vertical
or rotational offset between the two lines). If there exists a small
range of positions for which the moving line appears aligned with
the stationary line, indicating that the subject can perceptually
fuse a slight physical offset between the two lines, then the subject
is instructed to find the middle of this range. The final amount
by which the lines are separated from one another vertically or
rotated relative to one another provides a perceptual measure
of vertical or torsional ocular misalignment, respectively. For
example, if a subject sets the right line above the left line by
2◦ during VAN, then we infer that this individual has a vertical
misalignment such that the right eye is elevated 2◦ above the left
eye (i.e., the right fovea is elevated 2◦ above the left fovea). If a
subject orients the right line 2◦ clockwise relative to the left line
during TAN, then we infer that this individual has a torsional
misalignment such that the right eye is extorted 2◦ relative to the
left eye. If a subject perfectly aligns the two lines during both VAN
and TAN, then we infer that this individual has perfect vertical
and torsional binocular alignment. By convention, a positive
vertical misalignment indicates that the right eye is depressed
relative to the left eye, and a positive torsional misalignment
indicates that the right eye is extorted relative to the left eye.
During testing, the tablet-to-subject distance is fixed at 0.42m by
a tether extending from the back of the tablet to the subject.

Importantly, all VAN and TAN testing is performed in
complete darkness under a shroud to ensure that extraneous
visual cues do not mask the binocular misalignments (Burian,
1939; Ogle and Prangen, 1953; Kertesz and Jones, 1970;
Crone and Everhard-Hard, 1975; Kertesz, 1981; Guyton, 1988;
Paterson et al., 2009). Active-matrix organic light-emitting diode
(AMOLED) tablet technology allows only the designated pixels
on the tablet (i.e., only the red and blue lines) to be illuminated
so that any binocular visual artifacts, such as the rectangular
tablet screen backlight visible on traditional LCD screens, are not
present. During testing, subjects interact with the tablet through
vibrotactile control buttons, as opposed to visual cues.

Experimental Approach
In parabolic flight, a specially outfitted aircraft flies a parabolic
trajectory that provides alternating levels of 0 and 1.8 g, as
perceived by the passengers inside. Each 0 and 1.8 g phase lasts
approximately 25 and 40 s, respectively, and transitions between
cycles are brief (< 1 s). Further details regarding the aircraft
dynamics and flight controls have been described by Karmali and
Shelhamer (2008). All data for our experiments were collected
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during 1 week of parabolic flights, in which each subject flew a
single flight. Each flight encompassed thirty 0 g parabolas.

Subjects were trained on VAN and TAN several days prior to
their respective flights. Training included practicing the VAN and
TAN tasks first in the light, so that investigators could verify that
test instructions were understood, and then in complete darkness
under the shroud. Approximately 50 trials of VAN and TANwere
completed during this training session. Training was refreshed
the morning of the flight. Baseline 1 g data was collected onboard
the aircraft approximately 1 h prior to takeoff and consisted of 20
trials each of VAN and TAN.

Inflight, VAN and TAN data were collected during four five-
parabola blocks at the beginning and end of flight: the Early TAN
test block occurred during parabolas 1–5, the Early VAN test
block occurred during parabolas 6–10, the Late VAN test block
occurred during parabolas 21–25, and the Late TAN test block
occurred during parabolas 26–30. For each test block, subjects
were instructed to perform as many successive VAN or TAN
trials as possible. Synchronized three-axis accelerometer data was
collected simultaneously so that the VAN and TAN trials could be
separated by g-level during post-flight analysis. During testing,
subjects were loosely strapped to the floor of the aircraft to
enable gentle rising and falling with the g-levels. For the parabolas
between the Early and Late test blocks (parabolas 11–20), subjects
were removed from the shroud and floor straps and allowed
to free-float inside the cabin, thereby enabling full immersion,
and possibly adaptation, to the parabolic flight environment.
During the aircraft’s 1 g turns and any straight-and-level breaks,
subjects rested outside of the shroud. If at any point subjects
began to experience motion sickness symptoms, including hot or
cold sweats, stomach awareness, dizziness, or nausea, testing was
stopped immediately and subjects were removed from the shroud
and instructed to close their eyes and rest.

Modeling Approach
In this paper, we develop a model that describes the increased
ocular misalignments observed in our subjects upon initial
exposure to novel g-levels. Previous models, including the one
proposed by von Baumgarten and Thümler, do not adequately
capture our inflight results; hence a new model is needed.
Our underlying hypothesis is that our observed misalignments
are the result of innate otolith asymmetries that are centrally
compensated in 1 g, but uncompensated in non-1 g until
appropriate neural adjustments are learned for that g-level
through adaptation. Our model is based on the one proposed
by von Baumgarten and Thümler, which we now describe in
brief to define the terms and equations that will be extended
to our model in Sections Incorporating a Nonlinear Gravity
Component into Central Compensation Facilitates the Parabolic
Flight Results and Specifying the Central Compensation Inputs.
Differences between the von Baumgarten and Thümler model
and our model are detailed in Section Incorporating a Nonlinear
Gravity Component into Central Compensation Facilitates the
Parabolic Flight Results.

In their model, von Baumgarten and Thümler posit two
compensating centers, one on the left and one on the right,
and an orientation center that compares the left and right

afferent information to generate an overall central vestibular
percept (von Baumgarten and Thümler, 1979; Diamond and
Markham, 1998; Clarke et al., 1999; Kondrachuk, 2003). This
is depicted in Figure 1A, where g is the current g-level, k
is the otolith asymmetry parameter describing the anatomical
or physiological asymmetry between the left and right otolith
systems (0 < k < 1), LCC and RCC represent the left and
right compensation centers, respectively, and a and c are
the amounts of additive2 neural compensation required for a
balanced perception of orientation (a, c ≥ 0). By convention,
compensation is defined to be positive and stemming solely from
one side; a negative compensation is interpreted as a positive
compensation of the same magnitude from the other side. Under
this model, individuals with larger left-right asymmetries require
greater compensatory adjustments to a and c to facilitate a
balanced orientation center in novel g-levels.

The magnitude and direction of otolith asymmetry is derived
from comparisons of the signals emanating from the left and right
sides. In the balanced 1 g condition, a > 0, c = 0, and the otolith
signal from the left is equivalent to the otolith signal from the
right:

g + 0 = kg + a H⇒ 1 = k+ a ⇐⇒ k = 1− a.

(In the event that the asymmetry parameter k is instead on
the left side, then a = 0, c > 0, and k = 1− c.) We define an
imbalance function I

(

g
)

to quantify the difference in neural
signaling between the left and right sides upon an immediate
change in g-level (i.e., prior to any adaptation):

I(g) = (kg + a)− (g + 0) = a(1− g). (1)

If I(g) = 0, then the left and right sides are balanced (e.g., when
g = 1 at baseline). If I(g) > 0, then the signal on the right is
stronger than the signal on the left, and if I(g) < 0, then the signal
on the left is stronger than the signal on the right. We denote
I(g) > 0 by the symbol x, and I

(

g
)

< 0 by the symbol y.
Graphing Equation (1) reveals how the direction of imbalance is
dictated by g-level: If an individual is suddenly placed in a novel
hypo-g environment, then the direction of imbalance is positive
(i.e., x), whereas if this individual is instead suddenly placed
in a novel hyper-g environment, the direction of imbalance is
negative (i.e., y) (Figure 1B). Under the von Baumgarten and
Thümler model, I(g) is linear andmonotonic for g ≥ 0.

The von Baumgarten and Thümler model also describes
how much additive neural compensation is needed to facilitate
adaptation to a novel g-level, and to which side this compensation
must be added. Immediately upon a change from g = 1 to g = G,
I (G) = a (1− G). Adaptation is achieved when c = 0 is modified
to a new value:

(

kG+ a
)

− (G+ c) = (1− a)G+ a− G− c = 0

H⇒ c = a (1− G) .

If the novel g-level is G = 0 g, for example, then adaptation
is achieved when c = a. If the novel g-level is instead G =

2Note that a simple multiplicative model (e.g., gain change) would not enable

adequate compensation in 0 g, when no signals are from either side.

Frontiers in Systems Neuroscience | www.frontiersin.org 4 June 2015 | Volume 9 | Article 81

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Beaton et al. Nonlinear compensation of binocular misalignments

FIGURE 1 | (A) Generalized version of the von Baumgarten and Thümler

model for central compensation of an otolith asymmetry. g is the current

g-level, k is the otolith asymmetry parameter (0 < k < 1), LCC, and RCC

are the left and right compensation centers, respectively, and a and c are

the amounts of additive neural compensation required for balance

between the left and right sides (a, c ≥ 0). (B) Imbalance as a function of

g-level for the von Baumgarten and Thümler model. The direction of

imbalance experienced upon an initial change in g-level depends on

whether the new g-level is hypo-g or hyper-g. (C) Proposed model for

compensation of an inherent otolith asymmetry. rL and rR are the

preponderance parameters (0 < rL, rR < 1) and L(g) and R(g) facilitate

compensation in novel g-levels. (D) Possible curves for imbalance as a

function of g-level, based on the relationships among model parameters,

for the proposed model when R (g) = a+ bgε. Note that (A) and (C) are

simply model block diagrams and are not meant to represent

neuro-anatomical pathways.

2g, then adaptation is achieved when c = −a. this makes the
LCC compensation negative, which we interpret as a positive
compensation by the RCC of amount a.

Results

Binocular Misalignments Increase in Novel
g-levels
Subjects performed VAN and TAN during the Early and Late
test blocks, completing approximately 15–25 trials during the five
hypo-g phases and 25–40 trials during the five hyper-g phases
of each test block. The mean VAN and TAN results collected
Early and Late are displayed in Figure 2; note that the dashed
lines simply group data within subjects and do not represent
actual (or proposed) g-level responses. Five of the six test subjects

completed both the Early and Late tests without experiencing any
motion sickness symptoms. One subject elected to forgo his Late
VAN test due to feeling excessively warm under the shroud; this
individual did not experience any other symptoms, nor did his
symptoms worsen while he rested outside of the shroud.

A linear random intercept model was fit to estimate the mean
ocular misalignments observed at baseline (1 g) and at each
combination of time (Early and Late) and non-1 g gravity level
(0 and 1.8 g). The random intercept was included to account
for the correlation in observed ocular misalignments within a
subject under the various conditions. As expected, the model
revealed significant g-level dependent differences in 1 g vs. non-
1 g responses (VAN:χ2(1)= 36.7, p<< 0.01; TAN:χ2(1)= 84.4,
p << 0.01). Our primary metric of interest was whether subjects
expressed a change in ocular misalignments in novel gravity
conditions, as this could be representative of an underlying

Frontiers in Systems Neuroscience | www.frontiersin.org 5 June 2015 | Volume 9 | Article 81

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Beaton et al. Nonlinear compensation of binocular misalignments

FIGURE 2 | VAN and TAN parabolic flight results. (A) Early VAN data was

collected during parabolas 6–10. (B) Early TAN data was collected during

parabolas 1–5. (C) Late VAN data was collected during parabolas 26–30. One

subject was not tested during these parabolas. (D) Late TAN data was

collected during parabolas 21–25. Dashed lines simply group data within

subjects and do not represent actual (or proposed) g-level responses. Error

bars are ±1SE.

otolith asymmetry masked by central compensation in 1 g. Note
that a decrease in ocular misalignment (smaller numerical values
on the graphs) in non-1 g compared to 1 g should be interpreted
as a change in the directional orientation of one eye relative to
the other in this new g-level. For example, recall that we infer a
positive TAN value to mean that the right eye is extorted with
respect to the left eye in 1 g. Hence, a smaller positive TAN
value in a novel g-level means that the right eye is now more
intorted than it is in 1 g. Since none of our subjects express
vestibular performance decrements in everyday life, we presume
that any ocular misalignments present in their baseline 1 g
tests are precisely what their individual vestibular systems deem
“balanced” or “nominal;” furthermore, because these baseline
misalignments are too small to elicit functional visual deficits,
there is little incentive for the CNS to adjust these responses (e.g.,
expend more neural “effort” to generate misalignments closer to
0.0 in 1 g). We graph these non-1 g to 1 g differences directly in
Figures 3A,B.

The linear random intercept model also revealed moderately
significant differences Early vs. Late (VAN: χ

2(1) = 6.4, p =

0.04; TAN: χ
2(1) = 7.7, p < 0.01). However, these differences

were on the order of hundredths of a degree for VAN and
tenths of a degree for TAN; such differences are well within
the physiological range for repeated-measures testing of similar

behavioral responses (Tarnutzer et al., 2009, 2012) and are
also an order of magnitude less than the more important
differences observed between 1 g and non-1 g responses. Hence,
the VAN and TAN results were relatively comparable during
Early vs. Late test sessions, despite subjects experiencing a
ten-parabola adaptation period in between. This means that
subjects were consistent in their reporting from the start of
their first 0 g parabola to the end of their thirtieth 0 g parabola
(in terms of both average responses and variability among the
individual trials) and that relatively little adaptation occurred
over the course of the flight. If adaptation had occurred,
we would expect the ocular misalignments to trend toward
the preflight 1 g levels in the hypo-g and hyper-g phases of
flight. However, this was not (statistically) observed for our
subjects.

For the remainder of the paper we focus on the VAN and
TAN results obtained during the Early test sessions, as the Early
condition represents subjects’ initial exposure to 0 and 1.8 g.
Figures 3A,B highlight the statistically significant changes in
ocular misalignments in non-1 g environments, which agree with
the von Baumgarten and Thümler prediction of 1 g-tuned central
compensatory mechanisms that are inappropriate for non-1 g
environments prior to adaptation. Our data do, however, differ
from the von Baumgarten and Thümler predictions of linear,
monotonic changes in ocular misalignments with increasing g
for g ≥ 0 (Figure 1B); while the TAN results from some
subjects do follow the monotonic trend, the TAN results from
other subjects and the VAN results from all subjects do not.
Therefore, a new model, adapted from the von Baumgarten
and Thümler version, has been developed to account for these
new data.

Incorporating a Nonlinear Gravity Component
into Central Compensation Facilitates the
Parabolic Flight Results
Our new model is presented in Figure 1C; note that although
certain anatomical structures are implicit in this block-diagram
representation, a more detailed neurophysiological description
is provided in Figure 4 and Section Gravity-dependent
Ocular Misalignments Addressed through Nonlinear Central
Compensation. The otolith asymmetry parameter k (0 < k < 1)
describes the anatomical or physiological asymmetry between
the left and right otolith systems3. Our model also incorporates
preponderance parameters rL and rR (0 ≤ rL, rR ≤ 1) to describe
the relative ratio of ipsilateral-to-contralateral innervation
between the end organs and central targets; values of 1.0 are
representative of end organs that send 100% of their projections
to the ipsilateral side, while values of 0.0 indicate 100%
projections to the contralateral side4. Fernandez and Goldberg
(1976a) measured rL and rR to be 0.75 in the squirrel monkey

3In healthy individuals, it is presumed that the magnitude of this asymmetry is

relatively small, and hence it is likely that k is very close to 1. However, the model

allows k to vary between 0 and 1, and as such, it can accommodate individuals with

unusually large asymmetries, including those with complete unilateral vestibular

loss.
4While rL and rR are likely to be similar inmagnitude, themodel allows for unequal

magnitudes, as slight differences may be present due to innate asymmetries

between the left and right sides.
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FIGURE 3 | 1 g baseline data subtracted from Early parabolic flight data for (A) VAN and (B) TAN. Dashed lines simply group data within subjects and do not

represent actual (or proposed) g-level responses. (C,D) Solid lines represent model predictions, given b = 4a. Error bars are ±1SE.

utricle; to the best of our knowledge, rL and rR have not yet been
quantified for the saccule, but they are presumed here to exist.

Instead of RCC and LCC, which connote separate
mechanisms for left vs. right compensation, our model
specifies left and right gravity-dependent central compensation
inputs L(g) and R(g) to better align with current models of
central compensation (Büttner-Ennever and Gerrits, 2004;
Faulstich et al., 2006); sources for these inputs are discussed in
Section Gravity-dependent Ocular Misalignments Addressed
through Nonlinear Central Compensation. Upon exposure to
a novel g-level, parameters within L(g) and R(g) are modified
so that adaptation to the new gravitational environment can
be achieved. While the von Baumgarten and Thümler model
treats these functions as constants, gravity-dependent variants
are consistent with the vertical and torsional misalignment data
we observed inflight. Analogous to Figure 1A, we depict k on the
right in Figure 1C, and hence R

(

g
)

> 0 and L
(

g
)

= 0; should k
instead be on the left, all that is needed is to reverse the diagram
and the following computations remain the same.

The amount of imbalance between the left and right sides in
Figure 1C is

I
(

g
)

=
[

rRkg + (1− rL) g + R
(

g
)]

−
[

rLg + (1− rR) kg
]

. (2)

As described in Section Modeling Approach, we assume that
I (1) = 0 for healthy individuals and denote I

(

g
)

> 0 by x and
I
(

g
)

< 0 by y.
The particular form of R(g) will dictate the amount and

direction of imbalance observed in different g-levels. There are a

variety of R(g) functions that reproduce our ocular misalignment
data, and one reasonable form is discussed in the following
section. Because I(1) = 0, the only restriction on R(g) is that it
satisfy

R (1) = 2rL − 2rRk+ k− 1, (3)

which is obtained by setting g = 1 in (2).
Simplifying (2) and using (3), we obtain

I
(

g
)

= R
(

g
)

− gR(1). (4)

This shows that our model has the following important property:
both the amount and direction of imbalance are independent of
the preponderance parameters rL and rR once R(g) is known and
satisfies (3).

Our model also supports the well-known “re-adaptation”
phenomenon, in which re-adaptation to 1 g (following
adaptation to some non-1 g environment) generates imbalance
in the opposite direction (Young et al., 1984; Parker et al.,
1985; Correia, 1998). von Baumgartner and Thümler presume
that adaptation is achieved by the contralateral side supplying
additional neural impulses to the orientation center until balance
in the new gravity environment is attained (von Baumgarten
and Thümler, 1979). Suppose a healthy individual is exposed
to a novel g-level g = G 6= 1 and that this g-level generates
x imbalance; hence, I (G) > 0. In our model, analogous to
the von Baumgarten and Thümler model, adaptation drives a
modification to the left input from L(g) = 0 to a new left input
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FIGURE 4 | Neural compensation for an otolith asymmetry manifest as

a vertical ocular positioning misalignment. Primary afferents synapse in

the VN, which project to III to control contraction of the SR and IR. The

cerebellum compares the left and right eye positions and sends compensatory

signals back to the VN. Commissural connections between the left and right

VN improve the sensitivity of otolith-mediated reflexes and may further aid in

compensation. Direct projections between the end organs and cerebellum

facilitate an immediate transmission of the current GIA. Open circles indicate

excitatory pathways and filled circles indicate inhibitory pathways. LO, left

otolith; RO, right otolith; VN, vestibular nucleus; III, oculomotor nucleus; LE, left

eye; RE, right eye; LE pos, left eye position; RE pos, right eye position.

L∗
(

g
)

> 0. As such, the new amount of imbalance between the
left and right sides is

I∗
(

g
)

=
[

rRkg + (1−rL) g + R
(

g
)]

−
[

rLg+ (1− rR) kg + L∗
(

g
)]

= I
(

g
)

− L∗
(

g
)

.

When adaptation is complete and balance has been restored at
g = G 6= 1, then I∗(G) = 0. If this individual now returns to 1 g,
then

I∗(1) = I (1) − L∗(1) = 0− L∗(1) = − L∗(1) < 0.

So, returning to 1 g following adaptation to some novel g-level
g = G 6= 1 generates imbalance in the direction opposite to that
which was experienced at g-level g = G 6= 1.

We know from the parabolic flight and spaceflight literature
that time is required to adapt to novel gravity environments
(Davis et al., 1988; Baroni et al., 2001; Williams, 2003). In terms
of our model, adaptation occurs through modulation of R

(

g
)

and L
(

g
)

. In other words, R
(

g
)

and L
(

g
)

are really R
(

g,τ
)

and

L
(

g,τ
)

, respectively, where τ represents the time constant(s) of
adaptation. Adaptation is achieved when R

(

g,τ
)

and L
(

g,τ
)

have
been sufficiently modified so that I

(

g,τ
)

= 0. Because our data
does not indicate that significant adaptation occurred over the
course of a single parabolic flight, we do not yet have enough data
to incorporate a time parameter into our model.

Specifying the Central Compensation Inputs
One reasonable set of central compensation inputs, both
mathematically and neurophysiologically, is

R
(

g
)

= a+ bgε

and

L
(

g
)

= c+ dgµ,

where a, b, c, d, ε, and µ are non-negative free parameters
that represent the factors modulated by the CNS to allow for
adaptation to novel g-levels. Based on our data, we propose that
these parameters are unique to each individual and unique to
vertical vs. torsional compensation within a given individual.
Assuming only R(g) provides compensation in 1 g,

a+ bgε > 0

and

c = d = 0 (any µ ≥ 0).

From Equation (4),

I
(

g
)

= a+ bgε − g
(

a+ b
)

. (5)

It should be noted that small changes in a, b, and ε induce small
changes in I(g). Specifically, using partial derivatives applied to
(5), if a is changed by 1a, then I(g) is changed by (1− g)1a.
If b is changed by 1b, then I(g) is changed by (gε−g)1b. If ε is
changed by1ε, then I(g) is changed by bln(g)gε1ε. This indicates
that the model is robust.

Our specific choice of R
(

g
)

and L
(

g
)

yield the imbalance
function I

(

g
)

given in (5). We are interested in two questions
regarding I(g). First, how does our I(g) in (5) relate to the von
Baumgarten and Thümler I(g) in (1)? Second, for what values
of g does I(g) produce x imbalance, y imbalance, or balance?
Both are answered by analyzing the shape of the graph of I(g).
This shape depends on the relationships among a, b, and ε. In our
model, I(0) must exist, which implies that ε ≥ 0. When ε = 0,
R

(

g
)

= a + b, which is mathematically equivalent to the von
Baumgarten and Thümler model because R

(

g
)

is a constant. To
describe the remaining shapes of I(g), we now assume ε > 0, and
the derivatives of I(g) are helpful:

dI

dg
= −a− b+ bεgε−1

and

d2I

dg2
= bε (ε−1) gε−2.
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Note that dI
dg

= 0 when gε−1 = a+b
bε

⇒ g1−ε = bε
a+b

, implying

that I
(

g
)

has at most one local extremum. We consider three
possibilities for ε:

Case 1: 0 < ε < 1
In this case, d2I

dg2
< 0, implying that I

(

g
)

is concave down and

has its maximum at 0 < g =

(

bε
a+b

)
1

1−ε

< 1 because bε < a + b.

This means that x imbalance occurs when 0 < g < 1 and that
y imbalance occurs when g > 1.

Case 2: ε = 1
In this case, I(g) = a(1− g), which is the von Baumgarten

and Thümler model [Figure 1B and Equation (1)]. This means
that x imbalance occurs when 0 < g < 1 and that y imbalance
occurs when g > 1.

Case 3: ε > 1
In this case, d2I

dg2
> 0, implying that I

(

g
)

is concave up and its

minimum occurs at 0 < g = gm =

(

a+b
bε

)
1

ε−1
. The location of gm

determines the I
(

g
)

curve, and there are three possibilities.

a. 0 < gm < 1
This occurs precisely when a+ b < bε ⇔ 1+ a

b
< ε.

Therefore, I
(

g
)

= 0 for two g-values: g = 1 and some g0 <

gm. This means that x imbalance occurs when 0 < g < g0
and g > 1 and that y imbalance occurs when g0 < g < 1.

b. gm = 1
This occurs when a+ b = bε ⇔ 1+ a

b
= ε. In this case,

I
(

g
)

≥ 0 and the only minimum is at g = 1. This means that
x imbalance occurs for all g 6= 1.

c. gm > 1
This occurs exactly when a+ b > bε ⇔ 1+ a

b
> ε. Therefore,

I
(

g
)

= 0 for two g-values: g = 1 and some g0 > gm. This
means that x imbalance occurs when 0 < g < 1 and g > g0
and that y imbalance occurs when 1 < g < g0.

The five possibilities in Cases 1, 2, and 3 are illustrated in
Figure 1D. Note that as ε → 1, the graphs for Cases 1 and 3c
approach the graph for Case 2 (the von Baumgarten and Thümler
model). Similarly, as ε → 1 + a

b
, the graphs for Cases 3a and

3c approach Case 3b, the case where x imbalance occurs for all
g 6= 1.

In summary, what we learn from our analysis of I(g) is that
the direction of imbalance for a given g-level is dictated precisely
by the relationships among the a, b, and ε model parameters.
Furthermore, if we know the values of a, b, and ε, we can derive
exactly which g-levels should generate each of the two directions
of imbalance (x vs. y).

Discussion

VAN and TAN Provide Simple, Rapid Measures of
g-level Dependent Binocular Positioning
Misalignments
The development of a hand-held apparatus for evaluating
ocular misalignments provides a portable technology to assess
oculomotor control in a variety of environments. Our parabolic
flight results demonstrate one important value of such a device:

the apparent independent control of the two eyes cannot be
detected using the simpler and more common monocular tests
(Markham et al., 2000). The rapid assessment, minimal hardware,
and self-administration capabilities make VAN and TAN ideal
for evaluating ocular misalignments in the dynamic parabolic
flight environment. We presume that these tests would be equally
viable in other operational settings, such as remote field testing,
bedside clinical testing, or testing onboard the international space
station, where time, equipment, and personnel are limited.

Ocular misalignments due to underlying otolith asymmetries
are not easily observed in a 1 g environment, as they are likely
masked by central compensation. Therefore, one should not
expect to necessarily measure larger ocular misalignments during
baseline 1 g tests in individuals who might be presumed to have
larger otolith asymmetries. Since otolith signaling drives both
vertical and torsional eye movements, whose pathways innervate
different anatomical structures, we evaluated both vertical and
torsional ocular misalignments in parabolic flight. We found that
all subjects exhibited vertical and torsional g-level dependent
misalignments. Importantly, these results were repeatable early
and late inflight, despite a ten-parabola break in between.
Hence, we believe that our data represent some underlying
neurophysiological mechanism modulated by gravity. Since our
test subjects were non-astronauts and did not experience motion
sickness symptoms inflight, we could not correlate their ocular
misalignments with either terrestrial (including parabolic flight)
or SMS susceptibility, as has been done by previous investigators.

One striking feature of our TAN parabolic flight results was
that a relative intorsion of the right eye in 0 g and extorsion in
1.8 g was observed for all subjects. We investigated this further
by looking for similar trends from previous investigators, but did
not find anything conclusive. For example, Vogel and Kass’ four
crewmembers all showed higher OCR gains during leftward tilts
preflight and during rightward tilts post-flight (Vogel and Kass,
1986). Diamond and colleagues, however, found the opposite
result in seven non-astronaut subjects: larger OCR was observed
during rightward tilts than leftward tilts, and the depressed eye
tortedmore than the elevated eye (Diamond et al., 1979). Lackner
and colleagues claimed that their parabolic flight subjects (non-
astronauts) who did not experience inflight motion sickness
generated larger amounts of OCR during rightward body tilts
than leftward ones, and interpreted this as a greater “efficiency”
of the left otoliths in generating OCR in individuals who are
less prone to motion sickness during exposure to altered g-
levels (Lackner et al., 1987). It is interesting that otolith-ocular
responses across these different studies were mixed; there were,
however, patterns reported within each study. Similarly, we
believe that our finding that subjects tended to generate torsional
misalignments in the same direction also reflects a within-study
pattern, and may be a clue suggesting otolith-ocular responses
vary depending on the exposed stimuli.

Previous parabolic flight experiments have indicated
that some individuals rapidly adapt to the parabolic flight
environment and that these adaptations can be observed within
a single flight (Lackner and Graybiel, 1982; Shelhamer et al.,
2002). Our VAN and TAN results, however, do not indicate that
adaptation of ocular misalignments occurred over the course of a
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single flight. This may be expected since subjects were minimally
exposed to error signals that normally drive adaptation. For
instance, the nature of the VAN and TAN tests is such that no
binocular error signal is ever presented to the brain: the lines are
viewed monocularly, and subjects are tasked with eliminating
any perceived visual misalignments. Because VAN and TAN do
not involve head movements or visual stimuli to drive adaptation
(Nooij et al., 2011; Wood et al., 2011), true adaptation of VAN
and TAN responses will only occur when the CNS realizes,
through other processes, that otolith-mediated reflexes are
miscalibrated. This will then modify how subjects must adjust
the relative positioning of the red and blue lines to perceive
a single continuous line, but this process will be transparent
to the subjects: they will still perceive their completed trials
as single, continuous lines, just as they did in the unadapted
state. Furthermore, subjects remained stationary under their
shrouds and were not exposed to strong visual cues alerting
them to their unique surrounding environment (e.g., people
floating by upside down); even during the dedicated ten-parabola
adaptation period, subjects remained relatively still to minimize
their chances of experiencing motion sickness.

Along these same lines, one might expect subjects with prior
parabolic flight experience to show smaller ocular misalignments
than naïve fliers because previous exposure to the novel g-levels
might be recalled through context-specific adaptation or through
rapid re-adaptation due to motor-learning savings. However, this
was not observed in our two experienced test subjects. This may
have been because several years had passed since their most
recent previous flight. Hence, even if gravity-dependent context
cues had been learned during previous flights, sufficient savings
might not have been retained to warrant faster re-adaptation
than what was experienced by our four naïve subjects. Our two
experienced fliers also happened to be the oldest participants by
several decades, and so it is possible that age-related decrements
in vestibular adaptive capabilities led to adaptive responses that
more closely resemble those of the younger naïve subjects (Paige,
1992).

Gravity-dependent Ocular Misalignments
Addressed through Nonlinear Central
Compensation
The motivation to develop our model was to enhance our
understanding of ocular positioning misalignments driven by
changes in static otolith signaling. As presumed by previous
investigators, we believe that the increased ocular misalignments
observed in 0 and 1.8 g stem from innate asymmetries between
the left and right otolith systems, uncompensated in the parabolic
flight environment. However, it is possible that additional or
alternative mechanisms elicited our results. For example, the
magnitude and direction of misalignments observed in the
different g-levels could have instead arisen from gravity acting
on eyeballs of slightly different masses or on oculomotor muscles
with slightly different pulling strengths. Future experiments
and additional models will need to be developed to more
definitively identify the physiological driving force behind g-level
dependent ocular misalignments. However, our new model is
independent of the precise nature of this force: it simply describes

the relationship between a gravity stimulus input and ocular
misalignment output.

The von Baumgarten and Thümler model predicts a linear,
monotonic change in ocular misalignments for g ≥ 0
(Figure 1B). As this does not describe our inflight VAN and
TAN results, here we propose a simple nonlinear model of the
form a+ bgε that allows for compensation in novel g-levels. We
presume that the numerical values of the model parameters vary
among individuals. It is also likely that the model parameters
vary for vertical vs. torsional control within a given individual,
in accordance with the different neural pathways mediating these
responses. We can infer some potential numerical values for the
model parameters by which our data might have arisen. Note
that because we only have two non-1 g data points for each
subject and each test direction (vertical vs. torsional), we cannot
precisely determine a, b, and ε for each subject or test. However,
if we assume a fixed relationship between two of the three model
parameters, we can uniquely determine all three parameters for a
given test. For uniformity and illustrative purposes only, we chose
the relationship b =4a. (Note thatmany similar relationships that
give comparable results exist.) Then,

I
(

g
)

= a+ 4agε − g (a+ 4a) = a(1+ 4gε − 5g).

Solving for ε yields

ε =
ln

[

1
4

(

I(g)
a + 5g − 1

)]

ln
[

g
] .

Thus, ε is determined from our numerical values of a = I(0)
and I(1.8). Given b = 4a, the numerical values of a, b, and ε

for each subject’s VAN and TAN data are displayed in Table 1.
Our model defines compensation as positive and stemming from
the right side (recall R(g) > 0 and L(g) = 0). Subjects whose a
values are negative simply mean their compensations stem from
the left side; switching the compensation from one side to the
other is represented mathematically by reflecting I(g) over the
g-axis. If we graph I(g) using the data from Table 1, we obtain
Figures 3C,D. Had we had more than two non-1 g data points
for each VAN and TAN test, numerical estimates of a, b, and ε

would have been determined by a least squares fit to the data.
Figure 4 provides a simple anatomical illustration of neural

compensation for an otolith asymmetry that manifests as a
vertical ocular positioning misalignment in a novel g-level.
Primary vestibular afferents synapse in the vestibular nuclei
(VN), which project to the oculomotor nuclei (III) to control
contraction of the superior and inferior rectus muscles (SR and
IR). A similar pathway through III, trochlear nuclei (IV), and
the superior and inferior obliques describes torsional oculomotor
control. Segregation of the vertical and torsional pathways may
be present as early as the level of the end organ; there is evidence
that ocular torsion is primarily utricular-driven and that vertical
positioning is primarily saccular-driven (Suzuki et al., 1969;
Fluur, 1970; Fluur and Mellstrom, 1970a,b; Uchino et al., 1996;
Isu et al., 2000; Goto et al., 2004).

Otolith-ocular pathways are enhanced through cerebellar
circuitry and commissural connections. Direct projections from
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TABLE 1 | Sample numerical values of model free parameters given b = 4a.

Test Subject a = I(0) b = 4a I(1.8) ε

VAN 1 0.028 0.113 0.108 1.841

2 −0.200 −0.799 −0.189 1.369

3 0.037 0.148 0.070 1.538

4 0.223 0.891 −0.006 1.173

5 0.344 1.375 0.241 1.322

6 0.380 1.520 0.366 1.372

TAN 1 −0.400 −1.602 0.105 1.123

2 −0.097 −0.388 0.316 0.290

3 −0.476 −1.906 0.013 1.173

4 0.289 1.157 1.362 1.966

5 −0.610 −2.438 −0.169 1.237

6 −1.189 −4.756 0.253 1.133

the otoliths to the ipsilateral cerebellar nodulus and uvula are
well established (Precht and Llinas, 1969; Korte and Mugnaini,
1979; Carleton and Carpenter, 1984; Kevetter and Perachio, 1986;
Barmack et al., 1993; Purcell and Perachio, 2001); as many as 70%
of primary vestibular afferents are estimated to synapse in the
cerebellum (Goldberg et al., 2012b). This feature might enable
the current g-level to be a direct parameter in our model’s central
compensation input functions L(g) and R(g). The cerebellum
determines ocular misalignment through visual disparity cues
and proprioceptive feedback from the eye muscles (Fuchs and
Kornhuber, 1969; Baker et al., 1972; Donaldson and Hawthorne,
1979; Zee et al., 1981), in conjunction with information from
primary and secondary vestibular afferents. This misalignment
information is fed back to the VN through direct, bilateral
inhibitory projections of cerebellar Purkinje cells (Batton et al.,
1977; Noda et al., 1990). Inhibitory commissural connections
between the ipsilateral and contralateral VN amplify asymmetries
between the left and right sides, which has been suggested
to improve the sensitivity and resolution of otolith-mediated
processes (Uchino et al., 1999; Karmali, 2007).

Our R(g) parameters a, b, and ε represent additive,
multiplicative (gain control), and exponential transformations,
respectively, and are routinely observed in single neurons and
within larger neural networks in the brainstem and cerebellum
(Fernandez and Goldberg, 1976a; Chadderton et al., 2004; Silver,
2010; Hildebrandt et al., 2011). These parameters might be
computed and adapted in the flocculus and paraflocculus, which
have been linked to the generation and plasticity of compensatory
eye movements (Marr, 1969; Albus, 1971; Faulstich et al.,
2006; Goldberg et al., 2012a), and further refined in the VN
through interneurons and crossed commissural connections
(Miles and Lisberger, 1981; Büttner-Ennever and Gerrits, 2004).
Furthermore, it is possible that the nonlinear amplifications of
the GIA are performed by the primary afferents themselves,
especially for g-levels near zero and substantially greater than
one, as evidenced by the sigmoidal force-response functions
observed in squirrel monkey primary afferent recordings
(Fernandez and Goldberg, 1976b); as such, ε may be sent into the
cerebellum directly.

Limitations and Future Work
There are several limitations in our current study that naturally
lead to future experiments. One limitation is that our assumption
of innate otolith asymmetries stems from a perceptual measure
of ocular positioning misalignments. Since we cannot explicitly
record vestibular afferent activity in humans, we could instead
perform a series of tests, including VAN and TAN, to substantiate
our otolith asymmetry hypothesis. For example, recording the
eye movements directly would provide a measure of the pure
motor output in response to altered gravity. Incorporating
cervical and ocular vestibular-evoked myogenic potentials may
enable us to pair utricular- vs. saccular-driven oculomotor
control. Furthermore, additional non-1 g VAN and TAN data
are needed to verify our model. With only our two non-
1 g data points, there are multiple possible parameter values.
Hence this work would benefit from future parabolic flight
experiments that test, for example, in Lunar and Martian g-
levels. Thirdly, previous investigators have found an interesting
relationship between the magnitude of ocular misalignments
in novel g-levels and motion sickness (both parabolic flight
motion sickness and SMS) (Kornilova et al., 1983; Vogel
and Kass, 1986; Lackner et al., 1987; Diamond et al., 1990;
Diamond and Markham, 1991, 1992b). Since none of our
non-astronaut subjects experienced adverse symptoms inflight,
we could not compare their ocular misalignments to motion
sickness susceptibility. Future experiments that incorporate
either astronauts or non-astronauts who are more susceptible to
terrestrial motion sickness might facilitate similar correlations to
be made.

Finally, one important aspect not detailed in our model, nor
in the von Baumgarten and Thümler one, is the time-dependent
nature of these g-level dependent compensations. We know
from spaceflight literature that astronauts adapt sensorimotor
responses over various timescales to optimize performance in the
novel g-levels (Michel et al., 1976; von Baumgarten, 1986; Baroni
et al., 2001; Williams et al., 2009). Furthermore, parabolic flight
research has demonstrated that repeated exposure to alternating
g-levels also leads to adaptive responses over time (Graybiel
and Lackner, 1983; Oman et al., 1996; Karmali, 2007). However,
because no systematic adaptive responses were captured in
our VAN and TAN parabolic flight data, it was not possible
to incorporate timing information into our model. Future
experiments that capture ocular misalignments over longer
periods of time (e.g., across multiple, consecutive parabolic
flights) would enable this incorporation.
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