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It is often assumed that information in visual working memory (vWM) is maintained via

persistent activity. However, recent evidence indicates that information in vWM could

be maintained in an effectively “activity-silent” neural state. Silent vWM is consistent

with recent cognitive and neural models, but poses an important experimental problem:

how can we study these silent states using conventional measures of brain activity?

We propose a novel approach that is analogous to echolocation: using a high-contrast

visual stimulus, it may be possible to drive brain activity during vWM maintenance and

measure the vWM-dependent impulse response. We recorded electroencephalography

(EEG) while participants performed a vWM task in which a randomly oriented grating

was remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the

maintenance period in half of the trials. The electrophysiological response from posterior

channels was used to decode the orientations of the gratings. While orientations could

be decoded during and shortly after stimulus presentation, decoding accuracy dropped

back close to baseline in the delay. However, the visual evoked response from the

task-irrelevant stimulus resulted in a clear re-emergence in decodability. This result

provides important proof-of-concept for a promising and relatively simple approach to

decode “activity-silent” vWM content using non-invasive EEG.

Keywords: EEG, multivariate pattern analysis, dynamic coding, hidden state, visual working memory

Introduction

Visual Working memory (vWM) is essential for high-level cognition. By keeping task-relevant
information in mind, vWM provides a functional basis for complex behaviors based on time-
extended goals and contextual contingencies. Some of the most influential models of vWM are
built on the intuitive notion that maintenance is directly related to the persistence of stationary
activity states, representing specific content in vWM from the moment of encoding until that
content is needed for behavior (Goldman-Rakic, 1995; Curtis and D’Esposito, 2003). Persistent
activity models have obvious appeal—vWM effectively preserves a freeze-frame snapshot of past
experience until it is no longer required. However, there are gaps in the argument for persistent
activity models of vWM.

Accumulating evidence suggests that vWM is not always accompanied by persistent delay
activity (Sreenivasan et al., 2014). For example, a recent study in non-human primates showed
that content-specific delay activity can be effectively abolished during dual task interference, even
though vWM-guided behavior is relatively spared (Watanabe and Funahashi, 2014). Robust delay
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activity returned when attention was refocused on the vWM-
task. Similarly, human studies using non-invasive brain imaging
suggest that activity patterns during maintenance delays
correspond only to attended items (Lewis-Peacock et al., 2011).
Unattended items do not seem to have a corresponding activity
state, even though such unattended items are still maintained
in vWM (Olivers et al., 2011; Larocque et al., 2014). As in the
non-human primate study, the activity state of unattended items
becomes apparent once attention is directed to them (Lewis-
Peacock et al., 2011; Lewis-Peacock and Postle, 2012).

These results suggest that delay activity is not strictly necessary
for maintenance in vWM. Dissociating vWM-performance
from persistent delay activity implies that some form of
“activity-silent” neural state contributes to maintenance in
vWM (Stokes, 2015). For example, a synaptic model of vWM
proposes that information is encoded in item-specific patterns of
functional connectivity (Mongillo et al., 2008; Sugase-Miyamoto
et al., 2008). Essentially, activity patterns during encoding
drive content-specific changes in short-term synaptic plasticity
(Zucker and Regehr, 2002). Although the temporary synaptic
trace is effectively “activity silent,” this hidden neural state
can be read out from the network during processing of a
memory probe. Mongillo et al. (2008) focused on known
mechanisms of short-term synaptic plasticity; however, other
neurophysiological factors could also pattern hidden states for
vWM-guided behavior (Buonomano and Maass, 2009). The key
principle is that activity-dependent changes in the hidden neural
state could be important for maintaining information in vWM.

One reason that persistent-activity models of vWM have
been so pervasive in the past is that it is much easier to
find confirmatory evidence with conventional measures, such
as elevated delay-period firing (Fuster and Alexander, 1971)
or pattern decoding during the delay period (Harrison and
Tong, 2009). Disconfirmatory evidence is essentially a null effect.
Therefore, to evaluate the possible contributions of hidden states
to vWM maintenance, it is necessary to develop measures that
are capable of revealing them. Previously, we found that a
neutral task-irrelevant stimulus presented during a vWM delay
period generated vWM-specific patterns of activity in monkey
prefrontal cortex (PFC; Stokes et al., 2013).We suggested that this
context-dependent response pattern could reflect differences in
hidden state. For illustration, consider echolocation (e.g., sonar),
where a simple impulse (e.g., “ping”) is used to probe hidden
contours of unseen structure. Analogously, the impulse response
to neural perturbation should co-depend on the pattern of input
activity and the hidden state of the network. If the input pattern
is held constant, we can attribute differences in the output to
underlying changes in hidden state.

In the current study, we develop this idea further using
a task-irrelevant visual stimulus (or “impulse stimulus”) to
drive a vWM-specific impulse response function that could be
measured non-invasively using EEG. Participants performed a
two-alternative vWM discrimination task that requires precise
maintenance of the orientation of a memory item during a delay
interval (Bays and Husain, 2008). Critically, on a subset of trials
we presented a fixed high-contrast impulse stimulus designed
to drive neural activity in the visual system. We predicted that

the evoked response should differentiate the memory condition
(i.e., the remembered orientation), even in the absence of vWM-
discriminative delay activity.

To anticipate the results, multivariate decoding at posterior
electrodes accurately discriminated the orientation of the
memory item during stimulus encoding. Consistent with
previous evidence for dynamic coding in neural populations
(Meyers et al., 2008; Stokes et al., 2013) and scalp-level patterns
(Cichy et al., 2011), the discriminative patterns were dynamic
during stimulus processing. After the initial dynamic trajectory,
discrimination decayed to near-baseline levels during the delay
period. Importantly, the impulse stimulus reactivated vWM-
specific activity patterns, consistent with the hypothesis that
vWM content could be stored in an “activity-silent” neural
format. Interestingly, although the impulse response pattern
differentiated the vWM-stimulus, the discriminative pattern
did not match the patterns during memory encoding. This
experiment provides a novel proof-of-concept of a potentially
powerful method for inferring hidden neural states.

Methods

Participants
Twenty-four healthy adults (12 female, mean age 22.2 years,
range 18–38 years) were included in the experiment and analyses.
During recruitment, four additional participants were excluded
from all analyses due to excessive eye-movements and eye-blinks
(more than 20% of trials were contaminated). All participants
received a monetary compensation of £10/h and gave written
informed consent. The study was approved by the Central
University Research Ethics Committee of the University of
Oxford.

Apparatus and Stimuli
The experimental stimuli were generated and controlled with
the freely available MATLAB extension Psychophysics Toolbox
(Brainard, 1997) and presented at a 100Hz refresh rate and a
resolution of 1680×1050 on a 22′′ Samsung SyncMaster 2233RZ.
A USB keyboard was used for response input. The viewing
distance was set at 64 cm.

A gray background (RGB = [150 150 150]) was maintained
throughout the experiment. Memory items were circular sine-
wave gratings presented at a 20% contrast. The memory probes
were circular, 100% contrast gratings underlying a square-form
function. The radius and spatial frequency was fixed for both
types of stimuli (2.88◦, and 0.62 cycles per degrees), and the
phase was randomized. The memory items’ orientations were
uniformly distributed, and angle difference between memory
item and probe within each trial was uniformly distributed
across 20 angle differences (±4◦, ±5◦, ±7◦, ±9◦, ±12◦, ±15◦,
±20◦, ±26◦, ±34◦, ±45◦). The impulse item was a high-
contrast, black-and-white round “bull’s-eye” in the same size and
spatial frequency as the memory items and probes. All stimuli
were presented centrally. Accuracy feedback was given with
high (880Hz) and low (220Hz) tones for correct and incorrect
responses, respectively.
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Procedure
Participants were seated in a comfortable chair and the keyboard
was placed either on their lap or on a table in front of
the participants. The participants’ task was to memorize the
orientation of the presented low-contrast grating and to press
the “m” key with the right index finger if the probe was rotated
clockwise and the “c” key with the left index finger if the
probe was rotated counter-clockwise relative to the previously
presented memory item. They were instructed to respond as
quickly and as accurately as possible.

Each trial began with the presentation of a fixation cross,
which stayed on the screen until probe presentation. After
1000ms thememory itemwas presented for 200ms. In half of the
trials (i.e., “long” trials), the following delay period was 2600ms,
after which the probe was presented for 200ms. In the delay
period at either 1170 (“early-impulse” trials) or 1230ms (“late-
impulse” trials) after the memory item, the impulse stimulus
was presented for 200ms (Figure 1A), which the participants
were instructed to ignore. The temporal jitter was introduced
to allow us to test whether any effect on stimulus decoding
was specifically time-locked to the impulse. In the other half of
trials (“short” trials), the response probe was presented 1200ms
after memory item (Figure 1B). These short trials were included
to ensure that participants would pay attention throughout the
delay period of the long trials. After probe offset, the screen
remained blank until response-input. A feedback tone was then
played for 100ms and the next trial automatically began after
500ms. Every 24 trials a performance summary screen, with the
average accuracy and median reaction of all trials thus far, was
shown. Participants could use this moment to take short breaks.
The trial conditions were randomized across the entire session
and participants completed 1600 trials in total (400 early-impulse

trials, 400 late-impulse trials, and 800 short trials) over a time
period of approximately 165min (including breaks).

Behavioral Analysis
Memory performance was analyzed with the freely available
MATLAB extension MemToolbox (Suchow et al., 2013). The
standard mixture model of visual working memory (Zhang and
Luck, 2008) was fit separately for each participant (N = 24) and
trial-length condition. The model assumes that the distribution
of response errors has two distinct causes: (1) Pure guesses,
which result in a uniform distribution of errors across all angle
differences in the forced-choice paradigm. (2) Variability in the
precision of the remembered item, which, even though the
item is memorized, can result in errors at particularly small
angle differences between memory item and probe. Although the
main purpose of this analysis was simply to confirm that our
participants could reliably memorize the low-contrast memory
item in this experiment, for completeness we also performed
paired-samples t-tests on guess rate and memory variability
between trial-length conditions.

EEG Acquisition
The EEG was recorded using NeuroScan SynAmps RT amplifier
and Scan 4.5 software (Compumedics NeuroScan, Charlotte,
NC) from 61 Ag/AgCl sintered surface electrodes (EasyCap,
Herrsching, Germany) laid out according the to the extended
international 10–20 system (Sharbrough et al., 1991) at 1000Hz
sampling rate. The anterior midline frontal electrode (AFz) was
reserved as the ground. Electrooculography (EOG) was recorded
from electrodes placed below and above the right eye and from
electrodes placed to the left of the left eye and to the right of the
right eye. Impedances were kept below 5 k�. Data were filtered

FIGURE 1 | Trial structure. Participants memorized the orientation of a low contrast sine-wave grating. (A) In half of the trials a neutral impulse stimulus was shown

after the initial delay. The onset of the impulse was jittered by ±30ms. The force-choice discrimination memory probe was presented after a second delay period. (B)

In the other half of the trials, determined randomly, the probe was presented instead of the impulse after the first delay.
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online using a 200Hz low-pass filter and the electrodes were
referenced to the right mastoid.

EEG Preprocessing
Offline, the signal was re-referenced to the average of both
mastoids, down-sampled to 250Hz with 16-bit precision and
band pass filtered (0.1Hz high-pass and 40Hz low-pass) using
EEGLAB (Delorme and Makeig, 2004). Because we were only
interested in posterior electrodes for this study, re-referencing
to global average could unnecessarily introduce additional
noise from frontal channels. Nevertheless, for completeness, we
confirmed that the results are qualitatively similar using both
reference schemes. The data were then epoched from −200
to 1400ms relative to the onset of the memory item for the
short, no-impulse trials, and from −200 to 2800ms for the
long, impulse trials. Both long and short epochs were then
baseline-corrected using the 200ms prior to memory item onset.
Subsequent artifact detection and trial rejection was performed
via visual inspection and focused exclusively on the EOG
channels and the 17 posterior channels of interest included in the
analyses (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4,
PO8, O1, Oz, O2). Trials containing saccadic eye-movements at
any point in time, blinks during stimulus presentation, or other
non-stereotyped artifacts were rejected from all further analyses.
Impulse trials were subsequently re-epoched to two shorter
epochs, time-locked to the memory item (−200 to 1400ms) or
to the impulse stimulus (−200 to 1400ms). Finally, the data were
smoothed with a Gaussian kernel (SD = 8ms).

EEG Analysis
Multivariate Pattern Analysis
To determine whether the pattern of the EEG signal across
the posterior channels of interest contained information about
the remembered item, we used the Mahalanobis distance

(Mahalanobis, 1936; De Maesschalck et al., 2000) to perform
pair-wise comparisons between sets of trials in which orthogonal
orientations were presented.

Trials were divided across four angle bins two times and
only orthogonal angle bins were compared in the multivariate
analysis (0◦ to 45◦ vs. 90◦ to 135◦; 45◦ to 90◦ vs. 135◦ to
180◦; −22.5◦ to 22.5◦ vs. 67.5◦ to 112.5◦ and 22.5◦ to 67.5◦ vs.
112.5◦ to 157.5◦). For illustration, see Figure 2 for the event-
related potentials of occipital electrodes (O1, Oz, and O2) for
each pairwise comparison between orthogonal angle-bins.

We used a leave-one-trial-out cross-validation approach
to calculate, on each trial, the multivariate dissimilarity
(Mahalanobis distance) of that trial to the average of all other
trials in the same angle bin, relative to the dissimilarity of that
trial to the average of all trials in the orthogonal angle bin.
Mahalanobis distances of the test trial were computed for each
time point as follows:

D1 =

√

(Train angle 1− Test trial)T ∗ pC+
∗

(Train angle 1− Test trial)

D2 =

√

(Train angle 2 − Test trial)T ∗ pC+
∗

(Train angle 2 − Test trial)

where “Train angle 1” and “Train angle 2” are row vectors
containing the average signals of angle bins 1 and 2 (excluding the
test trial) of each channel, and “pC+” is the pseudo inverse of the
error covariance matrix. The error covariance was estimated by
pooling over the covariances of each angle condition, estimated
from all trials within each condition (excluding the test trial)
using a shrinkage estimator that is more robust than the
sample covariance for data sets with many variables and/or few
observations (Ledoit and Wolf, 2004; Kriegeskorte et al., 2006).

FIGURE 2 | Event-related potentials of each angle bin averaged over the occipital channels (O1, Oz, and O2). Illustrated are all pairwise orthogonal angle

bin comparisons that were made in the multivariate analysis of the memory item epoch (A) and impulse epoch (B). Light-gray and dark-gray bars represent the

presentation of memory item and impulse stimuli, respectively.
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The variables “Train angle 1,” “Train angle 2,” and “pC+” are
all part of the training set, on which “Test trial,” a row vector
containing the signal of each channel of the left-out test-trial, is
tested on. This was done by computing the difference between the
two Mahalanobis distances between “Test trial” and “Train angle
1” (D1) and “Test trial” and “Train angle 2” (D2). The same-
angle bin distance was always subtracted from the orthogonal-
angle bin difference (so if the “Test trial” was part of angle bin
1 then D1 would be subtracted from D2). If the signal indeed
contained information about the memory item at that time
point, this distance difference should be positive (because the
orthogonal-angle bin distance should be higher than the same-
angle bin distance). See Figure 3 for a schematic overview of
the analysis. This procedure was performed for all trials and
all previously defined angle bin comparisons, resulting in two
equivalent estimates of distance differences per trial. Observed
distances were then averaged over the two estimates, and across
trials, to derive a single value for each time point and each
participant for subsequent statistical testing and plotting.

Cross-temporal Analysis
To explore the dynamics of information processing, and to
test if the informative signal cross-generalizes to other time
points (King and Dehaene, 2014), we computed a cross-temporal
extension of the Mahalanobis analysis described above. The
difference between condition-specific distances was computed as
described above. However, instead of training and testing only
on the same equivalent time points, train/test sliding windows
were decoupled: The training data consisting of “Train angle 1,”
“Train angle 2” and the corresponding pseudo inverse of the

covariance matrix (as described above) at train time Y was used
to compute the distances to the test-trial at test time X (e.g.,
Stokes et al., 2013). After computing the distance differences for
all possible train-test time combinations and averaging across
all test trials, the results were combined into a cross-temporal
matrix in which differences along the diagonal correspond
directly to the time-resolved analyses already discussed, but off-
diagonal coordinates reflect the extent to which the underlying
discriminative neural patterns cross-generalize between train-
test time points. This cross-temporal analysis was carried out
within each trial epoch separately (memory-item and impulse),
as well as across epochs, where the train data was taken from
the impulse epoch and tested on all trials within the memory
item epoch and vice versa, resulting in four cross-temporal
discrimination matrices.

Univariate Analysis
To explore to what extent the differences in the EEG signal
between memory items is driven by amplitude rather than
pattern differences, we performed the univariate equivalent to
the multivariate analysis described above. Instead of calculating
the difference between the same- and orthogonal-angle bin
Mahalanobis distances, the difference between the absolute same-
and orthogonal-angle bin voltage differences averaged across all
17 posterior channels was computed.

Significance Testing
Statistics of one-dimensional EEG-analyses were inferred
non-parametrically (Maris and Oostenveld, 2007) with sign-
permutation tests. For each time-point, the decoding value

FIGURE 3 | A schematic representation of the trial-wise Mahalanobis distance analysis. (A) The signal for two orthogonal angle bins (angle 1 and angle 2) was

extracted from all posterior channels at a specific time point. (B) A single trial was either removed from angle 2 (top; test-triali ) or angle 1 (bottom; test-trialj ) and the

mean signal for each angle condition of all other trials comprised the training set (train angle 1, train angle 2). (C) The Mahalanobis distances of the left-out test-trial to

train angle 1 (D1) and train angle 2 (D2) illustrated in two-dimensional space. The pooled covariance is computed from the training data. When the test trial belongs to

angle bin 2, D2i is subtracted from D1i (top), when it belongs to angle bin 2, D1j is subtracted from D2j (bottom). This procedure is repeated for each trial and time-point

and the resulting distance differences are averaged across all trials.
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of each participant was randomly multiplied by 1 or −1. The
resulting distribution was used to calculate the p-value of the
null-hypothesis that the mean discrimination-value was equal to
0. Cluster-based permutation tests were then used to correct for
multiple comparisons across time using 10,000 permutations,
with a cluster-forming threshold of p < 0.01. The significance
threshold was set at p < 0.05 and all tests were two-sided.
Significance tests were carried out separately for the memory
item (0–1400ms) and the impulse (0–800ms). The sample size
of all tests was 24.

Data Sharing
In accordance with the principles of open evaluation in science
(Walther and van den Bosch, 2012), all data and fully annotated
analysis scripts from this study are publicly available at http://
datasharedrive.blogspot.co.uk/2015/05/revealing-hidden-states-
in-working.html.

We also hope these data and analyses will provide a valuable
resource for future re-use by other researchers. In line with the
OECD Principles and Guidelines for Access to Research Data
from Public Funding (Pilat and Fukasaku, 2007), we have made
every effort to provide all necessary task/condition information
within a self-contained format to maximize the re-use potential
of our data. We also provide fully annotated analysis scripts that
were used in this paper. Any further queries can be addressed to
the corresponding author.

Results

Behavioral Results
Visual working memory performance (Figure 4A) was modeled
separately for short and long trials, each consisting of 800 trials.
The difference in guess rates for short (M = 0.074, SD = 0.048)
and long trials (M = 0.073, SD = 0.047) was not statistically
different [t(23) = 0.182, p = 0.858]. On the other hand, the
standard deviation of remembered items (sd) was significantly
different between trial length conditions [t(23) = 2.458, p =

0.022]: sd was lower for short trials (M = 4.272, SD = 1.318)

than for long trials (M = 4.927, SD = 1.292; Figure 4B).
Whether this decrease in precision in long trials is due to the
increase in trial duration (Zhang and Luck, 2009) or the possible
interference effect of the impulse stimulus (Magnussen et al.,
1991) cannot be concluded, as the present study was not designed
to address this issue.

The very low guess rates in both conditions provided evidence
that the participants had little difficulty to reliably memorize the
low contrast angle stimuli. Because most errors were attributed
to noise in mnemonic precision rather than absolute forgetting,
we included both incorrect and correct trials in all EEG
analyses.

Memory Item Discrimination during and after
Item Presentation
The averaged trial-wise difference in Mahalanobis distances
between across- and within-angle conditions enabled us to
decode the memory items from the EEG signal of the posterior
channels as a function of time. A statistically significant
cluster emerged 68ms after memory item onset, and lasted
until the end of this epoch (1400ms, cluster p < 0.001;
Figure 5A, cyan). Because the impulse analysis was only based
on 50% of trials, we also analyzed the memory encoding effect
only on corresponding long trials (Figure 5A, blue), enabling
a power-matched comparison between the memory item-
and impulse-epoch. This revealed several significant decoding
clusters: 76–632ms (p < 0.001), 668–720ms (p = 0.023),
756–788ms (p = 0.047), 876–936ms (p = 0.016), and 964–
1000ms (p = 0.036).

Memory Item Discrimination during and after
Impulse Presentation
The same analysis as above was performed on the subsequent
epoch for long trials, time-locked to the impulse onset. Significant
temporal clusters of above-chance discrimination were detected
at 140–408ms (p < 0.001) and 424–508ms (p = 0.005 after
impulse onset (Figure 5B, blue, bottom).

FIGURE 4 | Behavioral performance and model parameters. (A) Mean proportion of clockwise responses as a function of angle difference between memory

item and probe plotted separately for short (gray) and long (black) trials. Error bars are standard deviations. (B) Guess rates and memory variability (sd) for short and

long trials estimated by the standard mixture model of visual working memory (Zhang and Luck, 2008). Long trials result in significantly higher sd than short trials (*).

Error bars are normalized standard errors.
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FIGURE 5 | Multivariate discrimination of the memory item across time. (A) Memory item epoch. The discrimination for both trial types (in cyan), and

exclusively for the long trials used in the impulse response analysis (in blue). Significant positive clusters are marked with bars in the corresponding colors. (B)

Impulse epoch. The discrimination of memory item is shown for long trials (in blue), with positive clusters are marked in the corresponding significance bar along

the bottom. Significant increases in discrimination compared to the mean discrimination 100ms prior to impulse onset are indicated with dark-blue bars at the

top. Light-gray and dark-gray bars represent memory item and impulse presentation, respectively. Error bars are standard deviations from the permuted

null-distributions.

Decoding Accuracy Increases Significantly after
Impulse Presentation
Since the decoding accuracy does not seem to drop completely
to chance levels in the initial delay period, we also tested
whether the presentation of the impulse results in a significant
increase in discriminability. To this end, we subtracted the
mean discriminability between −100 and 0ms prior to impulse
onset from the discrimination values after impulse onset. Two
significant clusters were identified: 188–232ms (p = 0.012)
and 364–0.404ms (p = 0.016). These results confirm that
discrimination accuracy increased significantly after impulse
presentation (Figure 5B, blue, top).

The Memory Item and Impulse Show Dynamic
Coding
The cross-temporal analysis of the memory item epoch using
both long and short trials showed a dynamic coding pattern.
Discrimination was greatest when trained and tested on the same
time-points, as opposed to different time-points (Figure 6, lower
left). The impulse response, though weaker than the memory
item response, suggested a dynamic coding pattern as well
(Figure 6, upper right).

Memory Item and Impulse Coding Do Not
Cross-generalize
We saw no evidence for cross- generalization between the
neural patterns evoked by the memory stimulus and the impulse
response, either when the training set was taken from the impulse
epoch and tested on the memory item epoch (Figure 6, top left),
or the other way around (Figure 6, bottom right).

Discrimination Accuracy is Time-locked to
Impulse Onset
The increased discrimination accuracy shortly after the impulse
could in principle be explained by a probe expectancy effect.
Because the memory probe is presented on half the trials at
this point, participants might prepare to respond to the probe.
This could result in a more “active” maintenance of the memory
item (e.g., Watanabe and Funahashi, 2007), which in turn
could improve decoding accuracy. Although we do not find any
evidence for a progressive ramp-up in discriminability at this
time, this does not rule out a very precise form of temporal
expectation.

To address this potential issue directly, we had introduced a
very subtle temporal variability in the presentation of the impulse
stimulus. Our reasoning was as follows: If discriminability
is tightly time-locked to the variable onset of the impulse,
rather than to the expected onset of the probe relative to the
memory item, we can sensibly attribute the observed boost in
discriminability to the presentation of the impulse stimulus.

We therefore plotted the cross-temporal matrices of the
discrimination of the early and late impulse onset trials separately
(Figure 7A) time-locked to memory item onset, where the
training data of both matrices was based on all impulse trials
time-locked to impulse onset. As is apparent from the figure, the
highest discrimination effect is not along the diagonal (where the
test and train times correspond to the mean impulse onset and
the actual impulse onset of all trials, respectively). Rather, for the
early impulse trials, discrimination is highest when the training
time is shifted by+30ms, while a−30ms shift is best for the late
impulse trials. We then plotted and analyzed the discriminations
of the early and late impulse trials based on these shifted training
times (Figure 7B). Three positive significant clusters were found
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FIGURE 6 | Dynamics of memory item discrimination. Mean discrimination matrices derived from training and testing on all time-point combinations. Light-gray

and dark-gray bars represent memory item and impulse presentation, respectively.

both in the early-onset condition (1544–1664ms, p = 0.003;
1704–1776ms, p = 0.007; 1792–1828ms, p = 0.028) and in the
late-onset condition (1568–1744ms, p < 0.001; 1784–1836ms,
p = 0.012; 1860–1908ms, p = 0.016). As is apparent from both
the figure and the significant clusters, the time course of the late
impulse onset trials is clearly later than the early onset trials.

To more directly test for the expected 60ms latency shift in
discrimination accuracy corresponding to the onset difference of
the two impulse stimuli, we computed the Pearson’s correlation
between discrimination values of the time window from 1370
to 2170ms of the early impulse onset condition with different
time windows of the same length of the decoding values of
the late impulse onset condition. Correlation coefficients were
computed between the same time windows (0ms difference) as
well as for each 4ms step up to a difference of 120ms, resulting
in 31 correlation values for each participant in total (Figure 7C).
The mean correlation clearly peaked at a 60ms difference and
a cluster-corrected permutation test on the Fisher transformed
correlation values showed that only the correlation coefficients
between a time-difference of 32 to 100ms were significantly
positive across subjects (p < 0.001). These results provide clear
evidence that the decoding time-course was time-locked to the
onset of the impulse.

Memory Item Discrimination is Not Simply Driven
by Mean Amplitude Difference
The univariate analysis that was based on the averaged signal
of all posterior electrodes showed significant memory item

discrimination only shortly after memory item onset, where a
single short significant cluster was present (140–168ms, p =

0.022). No significant discrimination could be made within the
impulse epoch (Figure 8).

Discussion

We report the results of a novel method to recover visual
working memory states that are otherwise hidden to EEG
using a functional perturbation approach. We presented a high-
energy visual impulse stimulus during the vWM delay period
and measured the visual evoked response. Critically, we found
that the impulse response carried significant information about
the contents in vWM. Using multivariate analysis, we could
decode the orientation of the previous memory item from
the impulse-driven visual response. This provides important
proof-of-principle evidence for the feasibility of exploring
hidden neural states with non-invasive EEG, with important
implications for working memory (Stokes, 2015).

We used Mahalanobis distances to compute the multivariate
dissimilarity between the evoked response during maintenance
of specific orientations. The Mahalanobis distance is superior
to Euclidean distance (Stokes et al., 2013) because it accounts
for the covariance structure of the noise between features
(Kriegeskorte et al., 2006). In the current study, features
were EEG sensors, which are known to be highly correlated.
Analysis of the evoked response to the memory stimulus clearly
validated this multivariate method as a powerful approach
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FIGURE 7 | Effect of late impulse onset. (A) Mean discrimination matrices derived from training on all impulse trials, time-locked to impulse onset, and testing

separately on early (left, red) and late (right, green) impulse onset trials. The black dotted lines illustrate the multivariate discrimination when tested on the average

impulse onset relative to memory item (1400ms) but trained relative to the actual impulse onset (0ms). Discrimination for early onset trials is highest when the

training time is shifted by +30ms (left, red line) and highest for late onset trials when shifted by −30ms (right, green line). (B) A one dimensional plot of the early

(red) and late (green) onset discriminations trained at +30ms and −30ms relative to impulse onset, respectively. Significant positive clusters of each onset

condition are indicated by bars in a darker shade of the corresponding colors. Error bars are standard deviations of the permuted null distributions. (C) Mean

correlations (Fisher’s z) between the decoding time-course for the early and late impulse onset trials as a function of different temporal shifts. Mean correlation

peaks at 60ms. The blue bar illustrates the significant positive cluster of correlations. Error bars are standard deviations of the permuted null distributions.

for decoding task-relevant parametric dimensions. Robust
orientation discrimination was observed in the EEG activity as
early as 68ms after the presentation of the memory stimulus.
Decoding peaked at around 160ms, before decaying into the
memory delay period. Despite returning almost to baseline prior
to the onset of the impulse stimulus, we observed a robust
“reactivation” in decodability of the memory item that peaked at
200 and 360ms after the impulse stimulus.

The impulse onset was temporally jittered by ±30ms.
The rationale for introducing this variability was to control
for the possibility that reactivation could be explained by
temporal expectation. On half the trials, the response probe
was presented instead of the impulse stimulus. This was to
ensure that participants were attending throughout the delay
period. However, previous studies have shown that temporal
expectation can also result in a ramp-up of item-specific delay
activity (Takeda and Funahashi, 2004; Watanabe et al., 2009;
Barak et al., 2010). Ramp-up activity could reflect a build-up of
temporal expectation (Nobre et al., 2007), which could trigger
attention-related pre-activation of the task-relevant template, as

previously observed in monkey PFC (Rainer et al., 1999) and the
human visual system (Stokes et al., 2009). Jittering the impulse
onset time allowed us to differentiate the relative contribution
of temporal expectation and of the impulse response. This subtle
temporal offset allowed us to test whether reactivation was indeed
time-locked to the impulse stimulus, or whether decodability was
better explained by the temporal structure of the task.

Visual inspection of the decodability time-course locked to the
impulse probe already suggests that temporal expectation is not a
plausible account. It would be surprising if template-reactivation
could be so precise over an interval as long as 1.2 s. Moreover,
plotting the impulse response for the different impulse onset
times relative to the onset of the memory stimulus provides an
estimate of the time-locking to the stimulus onset (Figure 7B). As
expected, the decodability profiles appear offset by approximately
60ms. Finally, a correlation analysis of the decodability time-
courses between impulse onsets confirmed that the correlation
peaked at an offset of 60ms. Overall, this pattern of results is
consistent with the prediction that a neutral stimulus presented
during the delay period drives activity in the memory network,
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FIGURE 8 | Univariate discrimination of the memory item. The cyan and blue lines show the univariate discrimination of the memory item of

the (A) memory item and (B) impulse epoch, respectively. The cyan bar indicates the significantly positive discrimination cluster of the memory

item epoch. Light-gray and dark-gray bars represent memory item and impulse presentation, respectively. Error bars are standard deviations of the

permuted null-distributions.

resulting in a patterned response that systematically reflects the
representational characteristics of the information in working
memory (i.e., orientation).

Previous studies have argued that early visual cortex is
important for vWM (Pasternak and Greenlee, 2005). For
example, Harrison and Tong conducted an fMRI study using
a very similar paradigm as the current design (Harrison and
Tong, 2009). Using multivariate analyses, they found significant
decoding during the delay period despite an absence of above-
baseline activity levels. This suggests that subtle activity patterns
in fMRI could also reflect hidden states (patterned spontaneous
activity). Computational modeling provides evidence that
spontaneous spiking activity should be patterned by the hidden
state (Sugase-Miyamoto et al., 2008). Moreover, we previously
found evidence for significant pattern separation in monkey
PFC, despite activity levels that were no greater than the pre-
trial baseline (Stokes et al., 2013). Increasing the overall level of
activity increased the pattern separation in that study. Future
research could explore the relationship between spontaneous
activity patterns measured with fMRI, single unit recording,
and EEG.

It is also possible that the activity observed by Harrison and
Tong (2009) actually reflected attentional preparation (Stokes
et al., 2009) or imagery-related activity (Stokes et al., 2011; Albers
et al., 2013). Indeed, it is almost impossible to separate potential
non-working memory contributions in their design (Stokes,
2011). In the current study, we clearly dissociate impulse-
driven decoding from temporal expectation. Moreover, visual
imagery is unlikely to be triggered so rapidly by the impulse
stimulus. It would be important for future research to explore the
relationship between discriminating stimulus-driven and non-
driven activity as a function of attention and imagery to further
pinpoint the relative contribution of different neural states to
these separable, but interrelated cognitive functions.

We also observed evidence for dynamic coding of the memory
stimulus. Cross-temporal analyses clearly revealed superior
discrimination along the diagonal axis, reflecting within-time

generalization, relative to off-diagonal coordinates representing
cross-temporal generalization. This is the hallmark pattern for
dynamic coding, indicating that the discriminative patterns
vary over time (King and Dehaene, 2014). Previously, Cichy
and colleagues observed a similar pattern in MEG data during
perceptual categorization (Cichy et al., 2011), consistent with
similar results from intracranial recordings in monkey visual (IT;
Meyers et al., 2008), parietal (Crowe et al., 2010) and prefrontal
cortices (Meyers et al., 2008; Stokes et al., 2013). There was also
some evidence for a dynamic coding pattern in the impulse
response, suggesting that the impulse response might be best
conceptualized as a memory-specific trajectory, although future
research would need to clarify this interpretation.

Interestingly, we found no evidence for cross-generalization
between the neural patterns evoked by the memory stimulus
and the impulse response. Again, this could be interpreted as
an extension of dynamic coding. The same task parameters
are represented in both epochs (i.e., memory orientation),
but using independent coding schemes. Epoch-independent
coding schemes could be optimal for structured high-level
representations (Sigala et al., 2008). However, this result could
also reflect a fundamental difference in patterns of activity
that modulate hidden states, and the patterns of activity that
are emitted from a particular impulse stimulus. Indeed, the
current results are consistent with the hypothesis that the impulse
response should be an interaction between the input pattern and
the current hidden state, rather than a simple “reactivation.”
Readout of the hidden state from the EEG response only requires
a systematic relationship between the impulse response and the
hidden state. By contrast, downstream cortical areas that read
out the hidden state to generate a response might need to learn
how to decode a time- and context-varying hidden state to access
a memorized orientation. Recent theoretical models have shown
that unsupervised read-out of dynamically changing states is in
principle possible (Sussillo and Abbott, 2009; Sussillo, 2014).

Although this proof-of-principle experiment does not
provide the definitive test for “activity-silent” working memory,
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the results are nonetheless consistent with a number of
key predictions. First, memory-discriminative information
effectively returns to baseline after initial encoding. Although
this is essentially a null effect, the decay function is consistent
with studies decoupling persistent content-specific delay
activity and memory-guided behavior (Sreenivasan et al., 2014).
Secondly, impulse-driven reactivation is consistent with a
context-dependent response of a memory-configured hidden
state (Mongillo et al., 2008; Sugase-Miyamoto et al., 2008).
Finally, the dynamic trajectory during memory encoding is also
consistent with a more general dynamic coding framework for
working memory (Stokes, 2015).

Irrespective of any particular theoretical framework, the
current experiment also provides an important demonstration of
combining a functional perturbation approach with multivariate
decoding to reveal otherwise hidden neural states. Activity
states that we usually measure with non-invasive recordings
only provide an incomplete picture of the diversity of neural
states underlying cognition. This might be especially true for
more tonic cognitive states, such as working memory, attention,
or task set. Activity-silent representations pose an obvious
problem for contemporary neuroscience, which is dominated
by measurement and analysis of activity states. The ultimate
success of future research will depend on new approaches to
existing measurement techniques to probe diverse neural states,
including “activity-silent” states. We believe that this paper
provides an important proof-of-principle toward an accessible
non-invasive approach. Non-invasive brain stimulation could be
used in combination with EEG to probe hidden states (Bortoletto
et al., 2015).The advantage of transcranial magnetic stimulation

is that the response profile of distinct brain networks can be
targeted specifically (Rosanova et al., 2009), but with the major
disadvantage that the stimulation artifact effectively precludes
analysis of the initial local response to the perturbation. While
this is less problematic for measuring context-dependent changes
in effective connectivity between distant brain areas (Taylor et al.,
2007), this limitation could easily obscure the kind of effect
studied here.

In conclusion, we provide useful proof-of-principle
demonstration of the utility of combining a functional
perturbation approach with EEG to reveal otherwise silent
neural states. Although these results are consistent with a
dynamic coding framework that suggests visual working
memory could be encoded in an “activity-silent” state, the main
purpose of the experiment was to develop a powerful tool for
exploring cognitive states that cannot otherwise be differentiated
with EEG. Future experiments will be able to exploit this novel
approach in more complex experimental designs to tease apart
the key coding principles underlying visual working memory.
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