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Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the

brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal

properties during working memory processing; however, it is unclear whether the

multifractal properties inherent to hippocampal spike trains reflect active cognitive

processing. To examine this possibility, hippocampal neuronal ensembles were recorded

from rats before, during and after a spatial working memory task following administration

of tetrahydrocannabinol (THC), a memory-impairing component of cannabis. Multifractal

detrended fluctuation analysis was performed on hippocampal interspike interval

sequences to determine characteristics of monofractal long-range temporal correlations

(LRTCs), quantified by the Hurst exponent, and the degree/magnitude of multifractal

complexity, quantified by the width of the singularity spectrum. Our results demonstrate

that multifractal firing patterns of hippocampal spike trains are a marker of functional

memory processing, as they are more complex during the working memory task

and significantly reduced following administration of memory impairing THC doses.

Conversely, LRTCs are largest during resting state recordings, therefore reflecting

different information compared to multifractality. In order to deepen conceptual

understanding of multifractal complexity and LRTCs, these measures were compared

to classical methods using hippocampal frequency content and firing variability

measures. These results showed that LRTCs, multifractality, and theta rhythm represent

independent processes, while delta rhythm correlated with multifractality. Taken together,

these results provide a novel perspective on memory function by demonstrating that the

multifractal nature of spike trains reflects hippocampal microcircuit activity that can be

used to detect and quantify cognitive, physiological, and pathological states.

Keywords: delayed nonmatch-to-sample, hippocampus, long-range temporal correlations, multifractal detrended

fluctuation analysis, resting state, tetrahydrocannabinol (THC), working memory
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Introduction

By analyzing the mono- and multifractal properties of neural
temporal dynamics, we may generate new insights concerning
how the brain functions with implications for detection of
cognitive, physiological, and pathological states. Such analyses
have been used successfully to detect pathological conditions
such as heart disease (Ivanov et al., 1999), Alzheimer’s disease
(Lahmiri and Boukadoum, 2013), Parkinson’s disease (Zheng
et al., 2005), and epilepsy (Serletis et al., 2012; Dutta et al.,
2014). Additionally, multifractal analysis detects clear differences
in neural activity between wakefulness and sleep stages using
EEG signals (Weiss et al., 2009; Zorick and Mandelkern, 2013).
Multifractal complexity of time series is believed to indicate
functional connectivity because such complexity would provide
the essential temporal dynamics to support information transfer
via variable patterns of neural activity. Interactions across brain
regions, detected as multifractal complexity, regularly fluctuate
between task and rest conditions specifically in regions associated
with the task (Ciuciu et al., 2012). In order to assess cognitive state
detection abilities, a paradigm was implemented to examine how
multifractal complexity is reflected by active (i.e., task-related)
hippocampal microcircuit processing.

Temporal coding analyses attempt to derive information
about brain function from the timing of action potentials
generated by neuronal ensembles or from rhythmic neuronal
oscillations, such as theta rhythm (Jones andWilson, 2005). Some
temporal coding analyses assign physiological function to activity
within frequency bands (i.e., theta-phase precession or cross
frequency coupling), but we propose that multifractal analysis
can provide new insights into mechanisms of neurological
temporal coding because it quantifies the structure of variability
and the self-similar (fractal) nature of physiological systems.
Scale-free dynamics are often associated with long-range
temporal correlations (Linkenkaer-Hansen et al., 2001; Ciuciu
et al., 2012) and quantified by the monofractal Hurst exponent.
However, a single exponent does not capture the complexity of
many physiological signals, supporting the use of a spectrum
of scale invariant exponents that describe the multiple, co-
existing fractal patterns (Dixon et al., 2012). Memory is
commonly believed to occur through repetitive neuronal

sequences (Hampson et al., 2012), and therefore multifractal
analysis applied to spike train patterns may quantify a possible

basis of memory detected as multifractal complexity.
To assess if active memory processing is reflected by

multifractal measures, analyses of monofractal long-range
temporal correlations (LRTCs) and multifractal complexity
in hippocampal interspike interval (ISI) neural sequences
were conducted during a working memory task. In vivo
electrophysiological recordings of rat hippocampal CA3 and
CA1 subregions were conducted during a resting state condition
in a neutral (task-independent) context for 25–30min both
before and after performance of the delayed nonmatch-to-sample
(DNMS) task. Between the pre-task recording and the DNMS
task, rats were injected with vehicle or tetrahydrocannabinol
(THC), a psychoactive component of cannabis known to
impair memory function (Hampson and Deadwyler, 2000). Prior

results demonstrated that hippocampal neurons with memory-
correlated firing rate alterations (functional cell types, FCTs)
recorded during the DNMS task were more multifractal than
non-memory neurons (non-FCTs) and THC administration
impairedmemory while reducingmultifractality (Fetterhoff et al.,
2015). By examining the same neurons before, during and after
the DNMS task, alterations in multifractality were assessed in a
different context. These experiments and analyses were designed
to extend previous findings by testing three new hypotheses
and facilitating a stronger intuition concerning multifractal
properties of hippocampal microcircuits. First, we hypothesized
that LRTCs, as indicated by the Hurst exponent, would decrease
during the DNMS task compared to resting (pre/post) recording
conditions. Since LRTCs arise when distant activity has a greater
influence on future activity patterns, we hypothesized a decrease
would occur due to the constantly changing requirements of
the DNMS task. Second, we hypothesized that an increase in
multifractal complexity reflects active memory processing in
populations of hippocampal neurons and therefore, spike trains
should be more multifractal during the DNMS task compared to
both pre- and post-task recording phases. Third, we hypothesized
that THCwould decrease bothmultifractal complexity andHurst
exponents during the task and post-recording phases compared
to vehicle control recordings during the same phase. Finally,
to enrich conceptual interpretation of multifractal complexity
and LRTCs and establish the difference between structure
(multifractality) and amount of variability, classical spike train
variability measures (coefficient of variation, ISI STD and mean
ISI) were compared with the mono- and multifractal variables.

The primary goal of this study was to assess the capacity
of multifractal analysis to distinguish between recording phases
and drug conditions. Fourier analysis of neuronal signals
is one commonly employed method to distinguish between
physiological and cognitive states (De Carli et al., 2004; Jones and
Wilson, 2005; Nguyen et al., 2008; Palva et al., 2010; Van Someren
et al., 2011; Garn et al., 2014), and therefore, the performance
of multifractal analysis was compared to the frequency content
computed from the same spike trains. The results showed that
themonofractal Hurst exponent andmagnitude of multifractality
could differentiate between more recording/drug conditions
compared to frequency content (theta and delta) and further
support utility of multifractal analysis for this objective (Weiss
et al., 2009; Zorick and Mandelkern, 2013). Multifractal analysis
has the potential to generate novel insights into the role of
neuronal ensembles by quantifying different temporal features
compared to other analyses.

Materials and Methods

Rats
Male Long-Evans rats (Harlan) aged 6–10 months (n = 10) were
tested under protocols approved by the Wake Forest University
Institutional Animal Care andUse Committee, and in accordance
with the Association for Assessment and Accreditation of
Laboratory Animal Care and the National Institute of Health
Guide for the Care and Use of Laboratory Animals (NIH
Publication No. 8023). All animals were individually housed and
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allowed free access to food with water regulation to maintain 85%
of ad libitum body weight during testing. Upon termination of
the study, all rats were anesthesized with ketamine (100mg/kg)
and brains were perfused with formaldehyde for preservation and
subsequent histology to confirm electrode placement.

Apparatus
The behavioral testing apparatus for the delayed nonmatch to
sample (DNMS) task as used in other studies (Hampson and
Deadwyler, 2000; Hampson et al., 2012) consisted of a 43 ×

43 × 50 cm Plexiglas chamber with two retractable levers (left
and right) positioned on either side of a water trough on the
front panel. A nosepoke device (photocell) was mounted in the
center of the wall opposite the levers with a cue light positioned
immediately above the nosepoke device. A video camera was
mounted on the ceiling and the entire chamber was housed inside
a commercially built sound-attenuated cubicle.

Delayed Nonmatch-to-Sample (DNMS) Task
The DNMS task consisted of three main phases: Sample, Delay
and Nonmatch (Figure 1B). The Sample phase initiated the trial
via presentation of either the left or right lever (50% probability),
which required the animal to press and make the Sample
Response (SR). The lever was then retracted and the Delay phase
of the task initiated, as signaled by the illumination of a cue light
over a nosepoke photocell device on the wall opposite to where
the lever was presented. At least one nosepoke (NP) was required
following the interposed delay interval which varied randomly in
duration (1–30 s) on each trial during the session. The Nonmatch
phase began when the delay timed out, the photocell cue light
turned off, and both the left and right levers on the front panel

were extended. Correct responses consisted of pressing the lever
in the Nonmatch phase located in the spatial position opposite
to the position of the SR; in other words, a Nonmatch response
(NR). This produced delivery of a 0.4ml water reward in a
reservoir between the two levers. After the NR the levers were
retracted for a 10.0 s intertrial interval (ITI) before the Sample
lever for the next trial was presented. A lever press at the same
position as the SR (match response) constituted an “error” with
no water delivery and turned off chamber house lights for 5.0 s
with the next trial presented 5.0 s later. Individual performance
was assessed as % NRs (correct responses) with respect to the
total number of trials (80–100) per daily (1 h) session.

Task and Rest (Non-task) Recording Paradigm
All rats were recorded for 25–30min in a bare, white 38 ×

29 × 30 cm plastic container that was inserted within the DNMS
testing chamber both before (pre) and after (post) the DNMS
task (Figure 1A). This constituted a neutral environment used
to record task-independent neuronal activity that was opaque to
prevent rats from seeing task components, such as levers or the
nosepoke device.

Drug Preparation and Administration
19-THC was obtained from the National Institute on Drug
Abuse as a 50mg/ml solution in ethanol. Detergent vehicle was
prepared from Pluronic F68 (Sigma, St. Louis, MO), 20mg/ml
in ethanol. 19-THC was added to the detergent-ethanol solution
(0.04–0.12ml of THC), and then 2.0ml of saline (0.9%) was
slowly added to the ethanol-drug solution. The solution was
stirred rapidly and placed under a steady stream of nitrogen gas
to evaporate the ethanol (∼10min). This resulted in a detergent-
drug suspension (12.5mg/ml THC), which was sonicated and

FIGURE 1 | Rest (pre/post) and Delayed Nonmatch-to-Sample (DNMS) task recording paradigm. (A) Prior to each testing session, all rats were recorded in a

white, rectangular plastic box for 25–30min (pre-task recording). Upon completion of pre-task recording phase, the same rats were injected with either vehicle or

delta-9-tetrahydrocannabinol (THC) 5–10min before the start of delayed nonmatch-to-sample (DNMS) task. Immediately after completing the DNMS task, rats were

put back into the same plastic chamber for another 25–30min recording (post-task recording). (B) Progression of the DNMS task is illustrated. A 10 s Intertrial Interval

(ITI) precedes the Sample Presentation (SP). Rats must make the Sample Response (SR) and remember the lever position throughout the variable 1–30 s delay that

terminates after the Last Nosepoke (LNP). The LNP signals extension of both levers and rats receive a water reward (reinforcement) for appropriately making a

Nonmatch Response (NR).
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then diluted with saline to final injection concentrations
(1.0–3.0mg/ml THC). On testing days, animals were injected
intraperitoneally with the detergent vehicle solution or the THC
drug-detergent solution (1ml/kg) immediately after the pre-task
recording phase and approximately 5–10min before the start
of the behavioral session. At least one vehicle day was imposed
between each drug-testing day. All rats received THC on 5–8
days. All drug solutions were mixed fresh each day.

Hippocampal Electrode Array Surgery
All surgical procedures conformed to National Institutes of
Health and Association for Assessment and Accreditation of
Laboratory Animal Care guidelines, and were performed in a
rodent surgical facility approved by the Wake Forest University
Institutional Animal Care and Use Committee. Electrode arrays
and recordings were the same as described in several prior
publications from this laboratory (Hampson et al., 1999, 2012;
Hampson and Deadwyler, 2000). After being trained to criterion
performance level in the DNMS task animals were anesthetized
with ketamine (100mg/kg) and xylazine (10mg/kg) and placed
in a stereotaxic frame. Craniotomies (5mm-diameter) were
performed bilaterally over the dorsal hippocampus to provide
for implantation of 2 identical array electrodes (Neurolinc, New
York, NY), each consisting of two rows of 8 stainless steel
wires (diameter: 20µm) positioned such that the geometric
center of each electrode array was centered at co-ordinates
3.4mm posterior to Bregma and 3.0mm lateral (right or left)
to midline (Paxinos and Watson, 1997). The array was designed
such that the distance between two adjacent electrodes within
a row was 200µm and between rows was 400µm to conform
to the locations of the respective CA3 and CA1 cell layers. The
longitudinal axis of the array of electrodes was angled 30◦ to the
midline during implantation to conform to the orientation of the
longitudinal axis of the hippocampus, with posterior electrode
sites more lateral than anterior sites. The electrode array was
lowered in 25–100µm steps to a depth of 3.0–4.0mm from
the cortical surface for the longer electrodes positioned in the
CA3 cell layer, leaving the shorter CA1 electrodes 1.2mm higher
with tips in the CA1 layer. After placement of the array the
cranium was sealed with bone wax and dental cement and the
animals treated with Ketoprofen (3.0–5.0mg/kg) for pain relief
over the next 4–6 h. The scalp wound was treated periodically
with Neosporin antibiotic and systemic injection of penicillin
G (300,000 U, intramuscular) were given to prevent infection.
Animals were allowed to recover from surgery for at least 1
week before continuing behavioral testing (Berger et al., 2011;
Hampson et al., 2012).

Electrophysiological Monitoring, Acquisition and

Waveform Sorting of Neuronal Data
Animals were connected by cable to the recording apparatus via a
32-channel headstage and harness attached to a 40-channel slip-
ring commutator (Crist Instruments, Hagerstown, MD) to allow
free movement in the behavioral testing chamber. Single neuron
action potentials (spikes) were isolated by time-amplitude
window discrimination and computer-identified individual
waveform characteristics using a multi-neuron acquisition

(MAP) processor (Plexon Inc., Dallas, TX, USA). Single neuron
spikes were recorded daily and identified using waveform and
firing characteristics within the task (perievent histograms) for
each of the DNMS events (SR, LNP, and NR). To maintain
waveform shape across days, all recorded data was concatenated
into one file (separately for each rat) and offline sorting was
performed using principal component analysis, peak-valley, and
nonlinear energy algorithms in Offline Sorter (Figure S1; Plexon
Inc., Dallas, TX, USA). Hippocampal neuron ensembles used
to distinguish recording phases and drug treatment conditions
consisted of 10–30 single neurons, each recorded from a separate
identified electrode location on either of the bilateral arrays. Only
isolated neural spike waveforms exhibiting firing rates of CA1
and CA3 principal cells (i.e., 0.5–8.0Hz average firing rate) and
consistent multifractal properties across sessions were included
in analyses. Previous work has shown that hippocampal neurons
recorded identified in this manner exhibit consistent mean,
baseline, and DNMS taskmodulated firing rate over multiple task
sessions (Deadwyler et al., 1996; Hampson et al., 1999, 2003).

Multifractal Detrended Fluctuation Analysis
(MFDFA)
Detailed descriptions of multifractal detrended fluctuation
analysis (Kantelhardt et al., 2002; Kantelhardt, 2012) and
associated Matlab code (Ihlen, 2012) are available elsewhere. We
briefly summarize and illustrate the main components of the
MFDFA method. A demonstration of this method (Figure 2)
was constructed using recordings of a single neuron (Figure S1)
recorded during the DNMS task over two sessions/days: one
vehicle (blue) and one THC (green). First, a neuronal spike
train is converted to a sequence of interspike intervals (ISIs;
Figure 2A), represented as x, and commonly referred to as a
noise-like time series (Ihlen, 2012). The ISIs are converted into a
“random walk-like” time series Y(i) by subtracting the mean and
integrating the ISI signal x:

Y(i) =

i
∑

k= 1

[xk − 〈x〉 ] , i = 1, . . . ,N (1)

The random walk Y(i) (Figure 2B inset, blue line) is divided
into Ns non-overlapping segments of equal length s (scale). The
local quadratic trend yv (Figure 2B inset, black line) is calculated
for each of the Ns segments v by a least-square fit of the series
to determine the local root mean square variation F for each
segment v (Figure 2B):

F2(v, s) =
1

s

s
∑

i= 1

{

Y [(v− 1) s+ i]− yv (i)
}2

(2)

In this way, F2 (v, s) is essentially the mean-square error
difference between the quadratic fit yv and the walk-like ISI
sequence Y. Visualization of the walk like ISI sequence at multiple
q-order statistical moments permits observation of the structure
of variability quantified by multifractal analysis (Figure 2B).
Periods of low activity (i.e., clusters of short ISIs, faster firing rate)
are amplified with negative moments (Figure 2B). Conversely,
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FIGURE 2 | Multifractal detrended fluctuation analysis. An illustration of the MFDFA method was created using one CA1 neuron recorded on two different days:

one vehicle condition (blue) and one tetrahydrocannbinol (THC) condition (green). (A) The interspike interval sequence (ISI) of each neuron is shown for the first 2000

ISIs. Five seconds were subtracted from the entire THC ISI sequence for illustration purposes only. (B) The fluctuation function F is shown at scale 16 (s = 16) for four

different q-order statistical moments. Negative q-order statistical moments amplify small fluctuations, while positive moments amplify large fluctuations. Inset: F2 (v, s)

is the root mean-squared residual between the fit yv (black) of one segment s from the walk-like time series Y (blue). (C) The changes in variability across scales are

indicated by variable slopes at different qth powers (integer q-values from −3 to 3). The q-order Hurst exponent H(q) is the slope of each regression line. Blue lines are

from the vehicle recording and green lines are from the THC recording. Dots indicate individual values from each scale (19 scales ranging from 16 to 256). (D)

Multifractal complexity is visualized with the multifractal singularity spectrum. The Hurst exponent is closely related to the h-value at the apex of the singularity

spectrum (black data points). The width is obtained by subtracting h-values at each end of the spectrum (independent of D(h) values) indicated by the black arrow.

The singularity spectrum for the vehicle condition is wider than the THC condition, indicating THC decreases multifractality.

periods of high activity (i.e., clusters of longer ISIs, slower
firing rate) are amplified with positive moments (Figure 2B,
bottom). Next, the qth order fluctuation function is determined
by averaging over all segments v for each qth power (Figure 2C):

Fq (s) =

{

1

Ns

Ns
∑

v= 1

[F2 (v, s)]
q/2

}1/q

(3)

The scaling behavior of the fluctuation function is seen by
analyzing log-log plots of Fq (s) vs. s for each qth power
(Figure 2C). Standard (monofractal) Detrended Fluctuation
Analysis calculates the Hurst exponent from the slope of the
power-law regression line between the overall root mean square
variation F across multiple scales, s, for a single statistical
moment, q = 2. Multifractal analysis performs the same linear
regression for a broad range of statistical moments q. Fq (s)
increases as a power-law for large values of s if the signal x
contains long-range temporal correlations (LRTCs):

Fq (s) ∼ sH(q) (4)

The Hurst exponent (Hurst, 1951) is the slope of Fq (s) on
this log-log plot for H(q = 2). A greater slope yields a larger
Hurst exponent and indicates increased LRTCs which defines
how fast the overall root mean square variation grows with
increasing segment size (scale = s). Hurst exponents greater
than 0.5 indicate the time series contains positive correlations
(i.e., persistent structure), Hurst exponents ranging from 0 to

0.5 indicate negative correlations and uncorrelated Gaussian
noise has a Hurst exponent equal to 0.5. In multifractal signals,
changes in LRTCs occur at different q-order statistical moments.
These variations are visualized by comparing the q-order Hurst
exponents (slopes of regression lines) on log-log plots of Fq (s)
vs. scale s, where each line is computed from a different (integer)
qth power ranging from−3 to 3 (Figure 2C). Our example shows
more variable slopes in the vehicle condition (Figure 2C, blue)
compared to the similar slopes in THC condition (Figure 2C,
green), indicating greater multifractality during the vehicle
condition. The qth order fluctuation function Fq (s) is one way to
visualize multifractal properties of variability, but generally the
multifractal singularity spectrum (Figure 2D) is constructed to
illustrate the distinction between (mono)-fractal and multifractal
analyses. The q-order Hurst exponent H(q) is converted to the
q-order mass exponent τ

(

q
)

:

τ (q) = qH(q)− 1 (5)

Finally, a Legendre transform relates τ (q) to the fractal
dimension D(h) and Hölder exponent h:

h = t′(q) and D(h) = qh− τ
(

q
)

(6)

The singularity spectrum is like a histogram of the q-order
Hurst exponents (slopes of regression lines in Figure 2C). The
magnitude of multifractality is determined by the width of
the singularity spectrum and consequently the range of Hölder
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exponents h covered by the ISI signal (Figure 2D). The Hurst
exponent is closely approximated by the Hölder exponent at
the apex of the singularity spectrum (where D(h) = 1). In
our example, the singularity spectrum for the THC condition
is narrower, and thus less multifractal than the singularity
spectrum computed for the control condition (Figure 2D). The
parameters used for all analyses were determined by viewing
log-log plots of Fq (s) vs. s for each qth power and multifractal
singularity spectra that resembled those found in the literature
(Kantelhardt et al., 2002; Ihlen, 2012). MFDFA was performed
by fitting a second-order polynomial, scales used ranged from
16 to 256, and singularity spectrum width was determined
by computing h(q = 3) − h(q = −3). All analyses were
performed in Matlab using publicly available MFDFA code
(Ihlen, 2012).

Fourier Transform
A fast Fourier transform of the spike train data in 1ms binary
bins where 1 = spike and 0 = no spike was performed for every
neuron recorded during every recording phase. Delta and theta
power were measured by taking the ratio of signal power in the
delta (0.5–4.0Hz) or theta range (4–8Hz) over the total power
of the normalized signal, bandpass filtered from 0.5 to 12Hz. All
analyses were performed using Matlab.

Statistical Analyses
All calculations were performed in Matlab, results were recorded
spreadsheets and imported into Statistical Analysis Systems
(SAS) software (SAS Institue, Cary, NC) to perform repeated
measures ANOVAs and correlations. A total of seven repeated
measures ANOVAs were performed using these dependent
variables: the Hurst exponent, singularity spectrum width,
coefficient of variation, ISI standard deviation, mean ISI, delta
power, and theta power. Neurons were the subject identifier, each
session as a within-subjects effect, and no group identifier was
used. The covariance structure used was compound symmetry.
Main effects of drug condition or recording phase were only
discussed when the interaction between drug condition and
recording phase was non-significant. When significant ANOVA
effects were found, post-hoc tests were performed with 10,000
Monte Carlo permutations to determine two-tailed p-values.
Significance levels were set to p < 0.0083 to control for multiple
comparisons (Bonferoni correction). Correlations (Spearman’s
rho) were used to examine the associations between mono- and
multifractal variables (Hurst exponent and singularity spectrum
width) and coefficient of variation, ISI standard deviation, mean
ISI, delta and theta power. 55 total correlations were performed
to assess the relationships for monofractal and multifractal
variables during all three recording phases (pre-task, task,
post-task).

Results

To investigate dynamical interspike interval (ISI) patterns
associated with different hippocampal microcircuit processing
states, a comparision was made between those generated during
the DNMS task (Deadwyler et al., 1996; Hampson et al.,

1999) and those occuring during a resting state after either
vehicle or THC administration (Hampson and Deadwyler, 2000).
Hippocampal principal (pyramidal) cells were identified based
on mean firing rate (0.5–8.0Hz), and neurons exhibiting rates
outside this range were excluded. Identified neurons from
selected wires were “tracked” from day to day by waveform and
multifractal properties (i.e., Hurst exponent andwidth). A total of
197 hippocampal principal (pyramidal) cells were recorded from
10 different rats and each neuron was recorded from the same
electrode over multiple days (10–16 recording days per rat). 117
CA1 and 80 CA3 neurons were analyzed for this study. Every
neuron included in the analyses was recorded during at least 4
days (2 vehicle and 2 THC).

Delayed Nonmatch-to-Sample Task
Hippocampal spike trains were recorded during a resting state
condition in a neutral (i.e., task-independent) environment both
before (pre) and after (post) the DNMS task (Figure 1A) to
assess the influence that active memory processing (during
the task) exerts on the structure of spike train variability,
as indicated by multifractal analysis. This approach was
designed to assess electrophysiologcal distinctions between three
different recording phases (pre-task, task, post-task) and in
two drug conditions. Since drug injections (pluronic vehicle
or THC) were given immediately after the pre-task/pre-drug
resting state recording phase, all computed measures for the
pre-task phase are equal across the two drug conditions.
THC, the main active ingredient in cannabis (Gaoni and
Mechoulam, 1964), was chosen because it impairs memory
encoding during the DNMS task (Hampson and Deadwyler,
1999, 2000), reduces LRTCs and multifractal complexity of
task-related neuronal spike trains (Fetterhoff et al., 2015) and
impairs theta frequency-related working memory performance
in both rats (Robbe et al., 2006) and humans (Ilan et al.,
2004; Böcker et al., 2010). THC doses were chosen to
maximally impair DNMS performance in order to examine
effects on associated multifractal spike train characteristics using
previously established dose-response relationships (Hampson
and Deadwyler, 2000). Working memory was assessed in 10
rats after vehicle or THC administration using the DNMS
task (Figure 1B). A within subjects design was used to assess
behavioral performance and hippocampal electrophysiology for
5–8 days per drug condition (vehicle or THC) per rat. The DNMS
performance was inversely correlated with delay length, as all
animals performedworse at longer delays (Figure 3). THC (green
line) impaired performance compared to vehicle (Figure 3, blue
line).

Frequency and Singularity Spectra of
Hippocampal Spike Trains
Interactions between frequency bands are believed to represent
coordination and exact timing relationships within neuronal
ensembles (Buzsáki and Moser, 2013). Multifractal dynamics
are believed to arise from interactions across spatiotemporal
scales (Ihlen and Vereijken, 2010; Kelty-Stephen et al., 2013)
and therefore may represent phenomena related to frequency-
specific activity. Additionally, both analyses are commonly
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FIGURE 3 | Delayed nonmatch-to-sample behavioral performance

during vehicle and tetrahydrocannabinol (THC) sessions. Mean correct

nonmatch responses summed across all rats (n = 10) shows the

delay-dependent decline in performance under both conditions. A within

subjects design with at least one non-drug day between THC administration

was used. All animals were given THC (1.0–3.0mg/kg) for at least five

sessions spaced over consecutive weeks. Error bars indicate S.E.M.

used to assess differences in sleep/arousal state, and increasing
interest is focused on multifractal analysis as an automatic
sleep stage detection method (Weiss et al., 2009; Zorick
and Mandelkern, 2013). The performance of multifractal and
Fourier analyses was evaluated here in terms of their ability
to distinguish between recording phases and drug treatment
conditions (Figure 1) based on analyses of hippocampal spike
trains. Fourier transforms were used to measure both delta
(0.5–4Hz) and theta (4–8Hz) power in binary spike train
representations. These frequency bands were chosen due to
their prominence during the DNMS task (Hyman et al., 2010,
2011) and pervasive presence in working memory literature
(Sato and Yamaguchi, 2003; Mormann et al., 2008; Assenza
et al., 2013; Clemens et al., 2013; Hasselmo and Stern, 2014).
MFDFA quantifies the structure of variability of an ISI sequence
and permits estimation of the multifractal singularity spectrum
(Ihlen, 2012) that describes a given spike train. The singularity
spectrum presents two important pieces of information: the
Hurst exponent and magnitude of multifractality. The Hurst
exponent H is a self-similarity parameter that quantifies long-
range temporal correlations (LRTCs) and takes values nearly
equivalent to the Hölder exponent h-value at the center
apex of the singularity spectrum (Figure 2D) where D(h) =
1 (Ciuciu et al., 2012; Ihlen, 2012). The Hurst exponent
quantifies the (mono)-fractal structure of the ISI time series,
however, many physiological signals exhibt a wider range
of dynamical activity that is better described as multifractal.
The magnitude of multifractality quantifies the structure of
variability in an interspike interval (ISI) sequence and is directly
proportional to the width of the singularity spectrum. The
width is defined by the range of local Hölder exponents h
(Figure 2D) which quantify the dynamical profile of a time
signal.

The singularity and frequency spectra for two different
example neurons are shown in Figure 4 while the population
singularity spectra are shown in Figure 5. Repeated measures

ANOVA results from population analyses are briefly mentioned
here and presented fully in the subsequent sections. The
first example permits comparision of all three recording
phases taken from vehicle treatment conditions (Figures 4A,B,
5B). One example neuron exhibits increased multifractal
complexity during the DNMS compared to either resting
state recordings (Figure 4A). The frequency spectra for this
same neuron exhibits both delta and theta power in all
recording phases (Figure 4B). This neuron illustrates the
same effect found in the population (Figure 5B): multifractal
complexity (width) increases from post-task to pre-task to task
(Figure 7F) and LRTCs (Hurst exponent) are larger during
the resting states (pre- and post-task) compared to the task
(Figure 6F). Although the singularity spectra are discernable
across task phases for this neuron, the frequency spectra were
not (Figure 4B). However, the population analyses revealed
increased theta power during vehicle resting state recordings
(pre- and post-task) compared to vehicle task recordings
(Figure 8E).

Another example neuron was chosen to illustrate the finding
that THC reduced multifractal complexity (width) during the
DNMS task compared to vehicle (Figure 4C). This neuron
was recorded over 16 total days, 8 vehicle days and 8 THC
days. Individual and average singularity spectra are shown
(Figure 4C). The frequency spectrum for this neuron shows delta
rhythm but not theta (Figure 4D). This neuron is representative
of the entire population: during the DNMS task, THC reduces
multifractality (width; Figures 5C, 7D,F), but has no significant
effect on the Hurst exponent (Figures 6D,F). Additionally, THC
did not affect frequency content during theDNMS task compared
to vehicle (Figures 8D,E).

Temporal Correlations and Multifractal
Complexity of Hippocampal Population
Two repeated measures ANOVAs were performed to assess the
capacity of monofractal and multifractal variables, the Hurst
exponent and singularity spectrum width, to distinguish between
recording phases and drug treatment conditions. Hurst and
width were used as dependent variables to examine main effects
of drug condition (vehicle vs. THC) and recording phase (pre-
task/pre-drug, DNMS task, post-task) and an interaction between
the two. Only interactions (not main effects) are discussed
when significant. We primarily wanted to evaluate the ability
of computed variables to establish 6 ad hoc chosen differences:
vehicle pre-task vs. task, vehicle task vs. post-task, vehicle pre-
task vs. post-task, vehicle task vs. THC task, vehicle post-
task vs. THC post-task, and THC task vs. THC post-task.
Since the distributions were long-tailed, post-hoc Monte Carlo
permutation tests were performed with signifiance levels set
at p < 0.0083 (Bonferoni correction). All analyses were
performed on a total of 5143 individual interspike interval (ISI)
sequences: 829 (495 CA1, 334 CA3) individual ISI sequences
from vehicle pre-task recordings, 1004 (592 CA1, 412 CA3)

from vehicle task recordings, 848 (510 CA1, 338 CA3) from
vehicle post-task recordings, 771 (443 CA1, 328 CA3) from

THC pre-task/pre-drug recordings, 923 (550 CA1, 373 CA3)
from THC task recordings, and 768 (453 CA1, 315 CA3) from
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FIGURE 4 | Singularity and frequency spectra of example neurons. Singularity and frequency spectra pairs are shown for two different CA1 neurons. Single

neurons were measured across multiple days in various recording phases (pre-task, task, post-task) and drug conditions (vehicle or THC) and each spectrum trace

represents the multifractal complexity (A,C) and frequency content (B,D) computed from one recording phase on 1 day. (A) Singularity spectra are shown for each

recording phase over three vehicle experiment days (diamonds for day 1, squares for day 2, triangles for day 3). Singularity spectra are wider, thus multifractal

complexity is greater, during the task compared to either resting state recording phases. (B) Frequency spectra are shown for the same neuron recorded during the

same 3 days as in (A) and color coded to match the legend in (A). This neuron exhibits both delta (0.5–4Hz) and theta (4–8Hz) frequency activity during all recording

phases on all days. (C) Singularity spectra computed from the DNMS task are compared between vehicle and THC conditions for one example neuron recorded over

16 total days. Individual session singularity spectra are plotted in thin blue lines for vehicle and green lines for THC sessions. The average singularity spectra for this

neuron is plotted as a dashed orange line for vehicle and as a dashed red line for THC. (D) Frequency spectra are shown for the same neuron recorded during the

same 16 days as in (C) and color coded to match the legend in (C). Only spectra from individual neurons were plotted. This neuron exhibits delta rhythm only.

THC post-task recordings. Population statistics were performed
for all hippocampal neurons (Figures 6, 7) and differences by
hippocampal location were shown in the SupplementaryMaterial
(Figure S2).

The Hurst exponent is a monofractal self-similarity parameter
that quantifies LRTCs in an ISI sequence. A significant main
effect of drug condition [F(1, 196) = 97.61, p < 0.0001], a
significant main effect of recording phase [F(2, 379) = 182.7,
p < 0.0001], and a significant interaction [F(2, 369) =

80.77, p < 0.0001] were found when using the Hurst
exponent as the dependent variable. The significant drug
treatment by recording phase interaction revealed three out
of six important group differences (Figure 6F): both pre- and
post-task vehicle recordings contain greater LRTCs than task
recordings (Figures 6A,B) and THC reduces LRTCs compared
to control during the post-task recording (Figure 6E). No
significant difference was found between the Hurst exponent
from vehicle pre-task recordings compared to vehicle post-
task recordings (Figure 6C), nor was a difference established
between the Hurst exponent computed from vehicle or THC
task recordings (Figure 6D). After THC treatment, the Hurst
exponent of the task condition was similar to those from the
post-task (Figure 6F).

Multifractal complexity reflects energy flow through all
scales of a dynamical system (Dixon et al., 2012; Kelty-Stephen
et al., 2013) and is greater in memory processing neurons
compared to randomly spiking ones (Fetterhoff et al., 2015).
Therefore, multifractality may selectively arise in hippocampal
microcircuit processing when task-specific input-output
transformations occur (Berger et al., 2012; Hampson et al.,
2012). A repeated measures ANOVA using multifractal
width as the dependent variable yielded a significant main
effect of drug condition [F(1, 196) = 11.09, p = 0.001], a
significant main effect of recording phase [F(2, 379) = 30.8,
p < 0.0001], and a significant interaction [F(2, 369) = 13.87,
p < 0.0001]. The significant drug condition by recording phase
interaction established four out of six significant differences
(Figure 7F): in the vehicle condition, all three recording phases
are different from each other (Figures 7A–C; task > pre >

post). Multifractal complexity was greatest when hippocampal
ensembles were processing task-relevant information. THC
reduced multifractal complexity (width) during the task
(Figure 7D) but had no effect on multifractal complexity
during post-task recordings (Figure 7E). Therefore, the effect
of THC to reduce multifractality of hippocampal neurons
only occurred when memory was impaired during the task.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 September 2015 | Volume 9 | Article 130

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Fetterhoff et al. Distinguishing cognitive state with multifractality

FIGURE 5 | Average singularity spectra across recording phases and drug conditions. Average spectra were computed by averaging all neurons within the

respective recording phase and drug condition. A total of 197 hippocampal neurons were recorded from 10 different rats. Each neuron was recorded from the same

electrode over multiple days and multifractal analysis was performed on a total of 5143 individual ISI sequences. 771–1004 individual ISI sequences were averaged for

each condition. The legend in the upper right corner of (A) holds true for all figures. (A) Average singularity spectra were obtained from all neurons recorded during

their respective recording phase and drug condition. (B) Average singularity spectra from all recording phases during vehicle treatment are plotted for comparison.

Neurons exhibit greater multifractal complexity (i.e., wider singularity spectra; wider range of Hölder exponents h) during the task compared to either resting state.

Long-range temporal correlations, indicated by the Hurst exponent, which is closely related to the Hölder exponent at the apex of the singularity spectrum [where

D(h) = 1], are stronger during the resting states compared to the task. (C) Average singularity spectra from both drug conditions during DNMS task recordings show

that THC reduces multifractal complexity, as indicated by decreased singularity spectra width. (D) Average singularity spectra taken from post-task recording phases

show that THC reduces LRTCs (i.e., decreased Hurst exponent) compared to vehicle recordings; this effect is seen as the leftward shift in the THC spectrum

comapred to the vehicle one. Multifractal complexity was unchanged by THC during post-task recordings.

Additionally, multifractal complexity (width) of neurons
after THC administration was similar during DNMS task
and post-task phases (Figure 7F). The lack of multifractality
adjustments between task and post-task recordings after THC
administration suggests that THC impairs functional transistions
in hippocampal microcircuit activity detected as multifractal
complexity.

Standard Variability Measures are Marginally
Task-specific
Multifractal analysis quantifies the structure of variability (Ihlen,
2012); therefore, to establish the differences between structure
and amount of variability, we compared multifractal indices to
standard variability measures of the same hippocampal multi-
neuron data. To determine if the amount of variability of
hippocampal spike trains can account for distinctions between
recording phases and drug conditions, the coefficient of variation
(CV) was computed for all hippocampal ISI sequences by
dividing ISI standard deviation by mean ISI. A CV greater
than 1 is an indicator of neuronal bursting and a CV equal
to 1 indicates a poisson process. Repeated measures ANOVAs
were performed for all three variables: CV, ISI STD and mean
ISI. For CV, there was no significant main effect of THC

administration [F(1, 196) = 0.68, p = 0.4096], nor was there
a significant interaction between drug condition and recording
phase [F(2, 369) = 1.61, p = 0.2008]. A significant main effect
of recording phase was found [F(2, 379) = 3.76, p = 0.0241] and
post-hoc assessment showed that CVs were higher during the pre-
task recording phase compared to the task phase (Figure 8A).
For ISI standard deviation, neither main effect was significant
[drug condition: F(1, 196) = 2.72, p = 0.1004; recording phase:
F(2, 379) = 0.1, p = 0.9017], but the interaction between drug
condition and recording phase was significant [F(2, 369) = 3.72,
p = 0.0252]. Post-hoc assessment of ISI STD revealed only two
significant differences: amount of variability is greater during the
task compared to either before or after in the vehicle condition
(Figure 8B). For mean ISI, neither main effect was significant
[drug condition: F(1, 196) = 3.84, p = 0.0514; recording phase:
F(2,379) = 1.82, p = 0.1633], but there was a significant
interaction [F(2, 369) = 7.2, p = 0.0009]. Post-hoc assessment
for mean ISI revealed three significant differences: neurons
fire slower after THC compared to vehicle during post-task
recordings, and neurons fire slower during the task compared to
pre- and post-task after vehicle administration (Figure 8C). Both
the Hurst exponent and multifractal complexity (width) appear
to be better indicators of hippocampal microcircuit processing
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FIGURE 6 | Fractality (Hurst exponent) across recording phases and drug conditions. The scatter plots show each data point obtained by averaging the Hurst

exponent for individual neurons over all recordings. All neurons included in the analysis were recorded for 2–8 days of vehicle and THC administration. Thick gray lines

are y = x. Data points from vehicle only sessions are displayed in (A–C). (A) Neurons exhibited greater Hurst exponents during the pre-task recordings compared to

DNMS task recordings. (B) The Hurst exponent of ISIs was also greater during the post-task compared to task recordings. (C) Hurst exponents were similar during

pre-task and post-task recordings. (D) THC had no effect on the Hurst exponent of neurons recorded during the DNMS task. (E) THC significantly reduced the Hurst

exponent during post-task recordings. (F) Each bar was obtained by averaging Hurst exponent values from individual spike trains within specified recording phase

and drug treatment combinations (n = 771–1004 neurons per group). Errors bars represent S.E.M. Statistical significance is designated by * indicating p < 0.0083.

FIGURE 7 | Multifractality (singularity spectrum width) across task and rest conditions after vehicle or THC administration. The scatter plots show each

data point obtained by averaging singularity spectrum width for individual neurons over all recordings. All neurons included in the analysis were recorded for 2–8 days

of vehicle and THC administration. Thick gray lines are y = x and thin black lines are regression lines. Data points from vehicle only sessions are displayed in (A–C).

(A) Neurons exhibit greater multifractal complexity (defined by the width or the singularity spectrum) during the DNMS task compared to pre-task recordings. (B)

Multifractal complexity of ISIs is greater during the task compared to post-task recordings. (C) On average, multifractal complexity is greater during the pre-task

resting state recording compared to the post-task recordings. (D) THC significantly reduces multifractal complexity during the DNMS task. (E) THC has no effect on

multifractal complexity during the post-task recordings. (F) Each bar was obtained by averaging multifractality (width h) from individual spike trains within specified

recording phase and drug treatment combinations (n = 771–1004 neurons per group). Errors bars represent S.E.M. Statistical significance is designated by *

indicating p < 0.0083.
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FIGURE 8 | Distinction between recording phases and drug conditions using frequency spectra and spike train variability measures. Each bar was

obtained by averaging values from individual spike trains within specified recording phase and drug treatment combinations (n = 771–1004 neurons per group).

Vehicle (blue) or THC (green) was given after pre-task recording, so measures obtained during the pre-task recording should be the same for drug conditions.

Statistical significance is designated by * indicating p < 0.0083 (Bonferoni correction). Error bars represent S.E.M. (A) Repeated measures ANOVA using coefficient of

variation (CV) as the dependent variable yielded a significant main effect of recording phase but no significant interaction between drug condition and recording phase.

CV was greater during pre-task recordings compared to recordings during the DNMS task. (B) A significant interaction between recording phase and drug condition

revealed that ISI standard deviation is greater during the task compared to pre- and post-task recordings. (C) A significant interaction between recording phase and

drug condition revealed that ISIs recorded under vehicle administration were larger during the task vs. pre- and post-task conditions. THC increased mean ISI only

during the post-task recording but had no effect during the task. (D) A significant main effect of recording phase was found when assessing delta power: Delta power

was larger during task and post-task vs. pre-task sessions. (E) Theta power of hippocampal neurons was higher during the task-independent (pre- and post-task)

resting phases compared to during DNMS task performance.

than these standard variability measures since they were able to
distinguish task phase and drug condition combinations.

Frequency Content Varies in a Task-specific
Manner
Independent delta and theta rhythms were found in the
human medial temporal lobe and are hypothesized to perform
separate cognitive functions (Mormann et al., 2008). Delta
power is a classical marker used to assess physiological/sleep
state (Harmony et al., 1996; Pereda et al., 1999; Clemens
et al., 2013) and is negatively correlated with human working
memory performance (Axmacher et al., 2010). Additionally,
theta frequency activity is known to coordinate neuronal
interactions in working memory networks (Jones and Wilson,
2005), has been correlated with performance during the DNMS
task (Hyman et al., 2010, 2011) and is reduced by cannabinoid
administration (Ilan et al., 2004; Robbe et al., 2006; Böcker
et al., 2010; Kucewicz et al., 2011). Therefore, we assessed the
performance of these frequency components in distinguishing
between recording phases and drug conditions. Delta and theta
power in all hippocampal neurons were assessed by calculating
the total power in the delta (0.5–4Hz) and theta bands (4–8Hz)
using a fast Fourier transform (Figures 4B,D). These two activity
bands were chosen because of their prominence in hippocampal
spike train recordings. Two repeated measures ANOVAs were
performed using delta and theta power as the dependent variable

to determine if alterations in frequency content can account for
the same differences detected with multifractal analysis.

When using delta power as the dependent variable, a
significant main effect of different recording phases was found
[F(2, 379) = 5.23, p = 0.0057]. Post-hoc analysis of the recording
phase effect showed that delta power is greater during task
and post-task compared to pre-task (Figure 8D). There was no
significant main effect of drug condition [F(1, 196) = 2.19,
p = 0.141] or interaction between drug condition and recording
phase [F(2, 369)= 2.52, p = 0.082].

Theta power was assessed in the same manner. The overall
effect of drug condition was not significant [F(1, 196) = 3.1,
p = 0.0796]. However, there was a significant main effect of
recording phase [F(2, 379) = 41.91, p < 0.0001] and a significant
drug condition by recording phase interaction [F(2, 369) = 13.28,
p < 0.0001]. Post-hoc analysis of the interaction revealed that
theta power was significantly higher during both the pre- and
post-task recording sessions compared to the task (Figure 8E).

Correlation Analysis
The aforementioned results suggest a relationship between spike
train temporal coding properties quantified by fractality (Hurst
exponent/LRTCs/self-similarity), multifractality (singularity
spectrum width), variability measures (mean ISI, ISI STD, CV),
and frequency content variables (delta and theta). Correlation
analyses were performed in order to improve theoretical
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understandings of multifractal variables and provide insight for
developing computational models of the nervous system that
reproduce LRTCs and multifractal complexity of neuronal spike
trains. Spearman’s rho values were computed for all recording
phases and drug condition combinations separately. Correlations
between the Hurst exponent and singularity spectrum width
yielded small positive rho values ranging from 0.10 to 0.28
(data not shown). This indicates that the Hurst exponent and
multifractal width quantify different spike train properties with
respect to hippocampal microcircuit processing. Fifty additional
correlation analyses were performed to determine relationships
of LRTCs (the Hurst exponent) and magnitude of multifractality
(width) with CV, ISI STD, mean ISI, delta, and theta power
for each recording phase and drug condition. Spearman’s rho
values greater than |0.5| were considered to indicate “strong”
correlations. Pre-task THC values were not reported because
they were similar to pre-task vehicle values in all cases.

We tested whether LRTCs were associated with changes in
variability or frequency content using correlation. A strong
relationship was found between the Hurst exponent and mean
ISI during task recordings (Figure 9A), indicating that LRTCs are
more prominent with shorter average ISIs (i.e., when neurons fire
more frequently). The Hurst exponent was negatively correlated
with ISI STD during the task (Figure 9A), indicating that LRTCs
and self-similarity occur more frequently when neurons fire with
less variable ISIs. Both of these correlations were weaker during
the resting phase recordings (pre- and post-task), suggesting a
task-specific relationship of fractal vs. firing rate and variability
patterns. None of the other three relationships were strong, which
indicate that LRTCs and self-similarity quantified by the Hurst
exponent are independent from CV, theta and delta power.

To develop a deeper conceptual understanding of multifractal
complexity, the singularity spectrum width was correlated
with standard variability measures and frequency content.
Multifractal complexity (width) was strongly correlated with
relative variability, expressed as the coefficient of variation (CV;
Figure 9B), during all recording phases and drug conditions.
Despite this strong correlation, multifractal complexity was able
to distinguish between recording phases and drug conditions
better than CV (Figure 7F vs. Figure 8B). This indicates
that multifractal complexity is a more sensitive measure
for detecting memory-specific alterations in hippocampal
microcircuit processing. A strong positive correlation was found
between multifractal complexity and delta power during the task
that decreased during the resting state recordings (Figure 9B),
suggesting that low frequency activity may support multifractal
complexity during working memory. Multifractal complexity
strongly correlated with “Poison-ness” (CV) and delta power but
not with mean ISI, ISI STD, or theta power. Taken together, these
results suggest that fractality, multifractality, and theta frequency
activity quantify different properties of spike train temporal
coding structure.

Discussion

Multifractal analysis revealed something never shown before: the
nature of the temporal structure in hippocampal spike trains is

altered by performing a working memory task. Monofractality
(Hurst exponent) decreased but multifractality (width) increased
from pre-task to task and these trends reversed from task to post-
task. Prior indications that the neuronal encoding during the task
is essential for successful performance (Hampson et al., 2012)
support the hypothesis that spike trains represent information
with multifractal temporal coding properties (Fetterhoff et al.,
2015). Previous results showed that microcircuit activity
patterns occurring when encoding information during the
sample phase are correlated with correct performance (Berger
et al., 2011; Opris et al., 2012) and support the notion that
memory functions through repetitive neuronal ensemble codes
(Deadwyler and Hampson, 1997; Berger et al., 2012). Therefore,
multifractal, self-similar spiking patterns detected during this
study might constitute a substrate for memory information
transmission.

The main goal of this study was to elucidate the multifractal
properties of active hippocampal microcircuit processing
by assessing differences between resting state and working
memory conditions. The presented results show that multifractal
complexity (indicated by singularity spectrum width) permits
distinction between all recording phases and support the use of
multifractal analysis in extracting variables related to cognitive
state better than other commonly applied methods. Our first
hypothesis was verified by the finding that long range temporal
correlations (LRTCs), indicated by the Hurst exponent, were
decreased during task performance compared to the resting
state (Figures 6A–C,F). We verified our second hypothesis that
multifractal complexity (width) of hippocampal ISI sequences
is greater during active memory processing (task recording
phase) compared to the resting state (pre- and post-task;
Figures 7A–C,F). Unexpectedly, we found that pre-task was
more multifractal than post-task (Figure 7C). We believe this
could be due to a “priming” effect because the rats are more
motivated for water and their hippocampal ensembles are
preparing to perform the DNMS task by some form of mental
rehearsal. Due to the rats’ experience with the habitual daily
testing procedure, they may learn to associate pre-task recording
conditions with subsequent task recordings when reward is
available. The rats are also more satiated during the post-task
recording after receiving water during the task and this may
reduce the hippocampal inputs responsible for generating
multifractality during the task. This finding highlights the
advantage of using multifractal analysis for detecting even subtle
differences in cognitive states. These results are consistent with
other findings showing that task performance elicits multifractal
fluctuations restricted to task-related regions while LRTCs
decrease in all analyzed brain regions, independent of task
involvment (Ciuciu et al., 2012). The structure of variability,
detected as multifractal complexity, becomes more intricate
when hippocampal microcircuits exhibit a wider range of
dynamics required for memory processing (during the task) and
this alteration may elicit breakdowns of LRTCs (Figures 6F,
7F). These results suggest that enhancement of the theoretical
and conceptual foundations of neuroscience is possible by
applying multifractal analysis in order to achieve the larger goal
of producing a dynamic portrait of the functioning brain.
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THC impairs hippocampal information transmission by
disrupting the multifractal spike train patterns that may
constitute a basis of memory processing. THC administration
reduced multifractal complexity during the DNMS task and
decreased LRTCs during post-task recording phase (Figures 6F,
7F). Under control conditions, multifractal complexity (width)
and LRTCs became lower and higher, respectively, when
rats transitioned from the task to the post-task, but THC
administration inhibited these changes. Therefore, it is possible
that THC effectively prevented endogenous microcircuit
dynamics that facilitate neurophysiological adjustments from
memory processing to a resting state. These findings are
consistent with others demonstrating that THC promotes
default mode network activity at inappropriate times (Bossong
et al., 2013), and they support the application of multifractal
complexity as a marker of network involvment if the reduction
of multifractal complexity is due to decreased memory-related
interactions that occur when DNMS performance is impaired
by THC.

Computational models attempting to reproduce the temporal
coding properties of neuronal spike trains (Goris et al., 2014) can
likely be improved by replicating endogenously occuring LRTCs
(Fürstenau, 2010) and multifractal complexity. Interpretation of
the structure of variability assessed usingmultifractal analysis was
enhanced by comparing performance and relationships between
monofractal and multifractal variables (Hurst and width) and
standard measures of variability. The correlation analysis showed
that the Hurst exponent is negatively correlated with mean
ISI and ISI STD during the DNMS task under both vehicle
and THC conditions (Figure 9A). This task-specific correlation
demonstrates that the increase of LRTCs during resting phase
(pre/post) recordings (Figure 6F) is not due to independent
changes inmean ISI and ISI STD but may be related to alterations
in their ratio when expressed as CV (Figure 9A). The strongest
relationship was found between multifractal complexity (width)
and the coefficient of variation (Figure 9B), and this finding
would suggest that multifractal complexity reflects information
directly related to how ISI variability scales with ISI mean.
However, the superiority of singularity spectrum width in
distinguishing between examined cognitive states is clear in the
population ANOVA results: multifractality (width) confirmed
four out of six ad hoc distinctions from the interaction between
drug condition and recording phase while CV failed to yield
a statistically significant interaction and could only distinguish
between the pre-task and task recording phases (Figure 7F vs.
Figure 8A).

Examination of brain oscillations via frequency content
is a commonly used method to study temporal information
processing in the nervous system (Lisman, 2005; Axmacher et al.,
2006; Dragoi and Buzsáki, 2006). Therefore, it is important
to understand how these methods compare to new ways of
quantifying and describing temporal coding properties, such
as multifractal analysis. It was found that the combination
of delta and theta power quantification distinguished between
recording phases to a lesser extent than multifractal complexity
(width) and LRTCs (Hurst). We found that theta power
determination permitted distinction between two out of six ad

FIGURE 9 | Correlations of fractality (Hurst exponent) and

multifractality (singularity spectrum width) with spike train variability

and frequency spectrum measures. Correlations (Spearman’s rho) are

plotted with 95% confidence intervals as error bars. (A) The Hurst exponent is

negatively correlated with mean ISI and ISI STD during task recordings

independent of drug condition—indicating that faster spiking and less variable

firing patterns are correlated with greater LRTCs during the task only. (B) The

coefficient of variation (CV) was positively correlated with multifractal

complexity (width)—indicating “burstiness” correlates with multifractality. Delta

power was positively correlated with multifractality (width) during the task

phase, regardless of drug condition.

hoc differences (Figure 8E), and interestingly, both were identical
to changes detected by the Hurst exponent (Figure 6F). Further
inspection using correlation analyses promoted discovery that
the Hurst exponent was not correlated with oscillatory activity
in the tested frequency bands and therefore suggests that they
are independent dynamical processes. Theta and delta power
were negatively and positively, respectively, correlated with
multifractal complexity (width). This supports the finding that
both delta and theta rhythms exist independently in the human
hippocampus (Mormann et al., 2008) and suggests that temporal
coding properties detected as multifractality may preferentially
arise from the delta frequency activity. It is possible that the
precise action potential timing in the delta frequency range, from
1 s to 250ms, conveys essential information utilized to support
cognitive function and reflected as multifractality. It is shown
here that multifractal analysis can be used to detect changes in
hippocampal processing better than standard Fourier spectrum
analyses. However, it will be necessary to compare both methods
in order to integrate multifractal concepts with prior findings
describing frequency content and to ultimately synthesize new
hypotheses about how the brain functions.
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FIGURE 10 | Summary of how multifractal complexity relates to

memory processing. Hypothetical singularity spectra were constructed

based on the qualitative results of the study. The gray spectrum represents the

maximal amount of multifractal complexity possible in a system (i.e.,

hippocampal spike trains in this example). Active memory processing recruits

a large portion of this potential, but additional resources are still available to

support more cognitively demanding instances. THC impaired working

memory and reduced multifractal complexity. During resting conditions, the

singularity spectrum shrinks compared to the task (blue) condition.

Multifractality may be highest when embedded information relevant for

working memory is being processed. Consequently, resting and

pharmacological impairment could reduce multifractal complexity by

decreasing the fraction of utilized resources.

Learning and memory require information to be carried
from the past into the future, and multifractal complexity of
hippocampal neurons may fluctuate depending on how strongly
information is received, processed and sent by these neurons.
To put our results into a more general perspective, hypothetical
singularity spectra were constructed to match our qualitative
findings with respect to memory processing (Figure 10). We
hypothesize that physiological states are characterized by specific
monofractal and multifractal features. All different states must
fall within a range of possible dynamics (Figure 10, gray
spectrum) and thus a range of possible multifractality. Active
memory processing (Figure 10, blue) recruits this system to a
stronger degree than resting (Figure 10, orange) and therefore
neurons recorded during the task exhibit stronger multifractality.
This multifractality may facilitate memory processing by offering
a larger range of spike train variability and greater processing
capacity. When THC or other memory impairing agents are
administered during the task (Figure 10, green), the normal level
of multifractal complexity exhibited is reduced and memory
performance suffers. Alterations in multifractal complexity may
reflect the degree of presently embedded information and
therefore would provide information relevant for detection of
physiological state.

The application of multifractal analysis revealed that repeating
spatiotemporal activity patterns detected in hippocampal spike
trains may form a previously undiscovered contribution to the
temporal coding of memory information. This demonstrated
how analysis of the multifractal structure of temporal dynamics

can enable new insights about how the brain functions and
can facilitate methodological improvements for detection of
alterations in cognitive, physiological, and pathological states
(Suckling et al., 2008; Wink et al., 2008). Multifractal analysis
is being utilized in pathology diagnosis and has already been
successfully applied to Parkinson’s Disease (Zheng et al., 2005),
seizure detection (Dutta et al., 2014), Alzheimer’s Disease
(Vysata et al., 2013), and many others (Slezin et al., 2007;
Di Ieva et al., 2015). As for physiological state, multifractal
analysis was proposed as a method for automatic detection
of sleep stages (Weiss et al., 2009; Zorick and Mandelkern,
2013), and an fMRI study showed changes in multifractality
selectively occur in task-related brain regions (Ciuciu et al.,
2012). The presented assessment of cognitive state can be
integrated with these results concerning physiological state: deep
sleep contains more LRTCs and less multifractality compared
to REM sleep (Weiss et al., 2009), REM sleep contains larger
LRTCs than waking (Zorick and Mandelkern, 2013), and as
shown here, hippocampal neurons during a task-independent
(resting) state exhibit greater LRTCs but less multifractality
compared to when recorded during the working memory DNMS
task. It is therefore possible that consciousness, described in
terms of cognitive/physiological state, occurs on a spectrum
that can be quantified and understood via computation of
the multifractal singularity spectrum. Multifractal analysis
quantifies the scale invariant, self-similar structure that is
pervasive throughout biological processes and application of
this method to neurophysiological data will improve our
understanding of how the nervous system processes cognitive
information.
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