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The hippocampus has been the focus of memory research for decades. While the

functional role of this structure is not fully understood, it is widely recognized as being

vital for rapid yet accurate encoding and retrieval of associative memories. Since the

discovery of adult hippocampal neurogenesis in the dentate gyrus by Altman and Das in

the 1960’s, many theories and models have been put forward to explain the functional

role it plays in learning and memory. These models postulate different ways in which new

neurons are introduced into the dentate gyrus and their functional importance for learning

and memory. Few if any previous models have incorporated the unique properties of

young adult-born dentate granule cells and the developmental trajectory. In this paper,

we propose a novel computational model of the dentate gyrus that incorporates the

developmental trajectory of the adult-born dentate granule cells, including changes

in synaptic plasticity, connectivity, excitability and lateral inhibition, using a modified

version of the Restricted Boltzmann machine. Our results show superior performance

on memory reconstruction tasks for both recent and distally learned items, when the

unique characteristics of young dentate granule cells are taken into account. Even though

the hyperexcitability of the young neurons generates more overlapping neural codes,

reducing pattern separation, the unique properties of the young neurons nonetheless

contribute to reducing retroactive and proactive interference, at both short and long time

scales. The sparse connectivity is particularly important for generating distinct memory

traces for highly overlapping patterns that are learned within the same context.

Keywords: neurogenesis, dentate gyrus, sparse coding, computational modeling, restricted Boltzmann machines

1. Introduction

The role of the hippocampus inmemory has been a subject of endless fascination for many decades.
It is widely recognized that the hippocampus is crucial for rapid, accurate encoding and retrieval of
associative memories. However, the neural mechanisms underlying these complex operations are
still relatively poorly understood. Marr’s theory of archicortex (Marr, 1971) was highly influential
in setting the stage for subsequent computational theories of hippocampal function. At the core
of his theory was the proposal that an associative memory system requires an initial coding
stage followed by a subsequent processing stage that performs associative retrieval. Subsequent
modelers refined Marr’s ideas and further suggested that these functions of coding and retrieval

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnsys.2015.00136
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2015.00136&domain=pdf&date_stamp=2015-10-06
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:becker@mcmaster.ca
http://dx.doi.org/10.3389/fnsys.2015.00136
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00136/abstract
http://loop.frontiersin.org/people/222712/overview
http://loop.frontiersin.org/people/1718/overview


Finnegan and Becker Neurogenesis decreases memory interference

map onto the known anatomical and physiological properties of
the dentate gyrus andCA3 region, respectively (McNaughton and
Morris, 1987; Treves and Rolls, 1992; O’Reilly and McClelland,
1994; McClelland et al., 1995; Myers and Scharfman, 2009).
These models incorporate an important characteristic of the
mature dentate granule cells: they are heavily regulated by
feedback inhibition, resulting in extremely sparse firing and high
functional selectivity (Jung andMcNaughton, 1993; Chawla et al.,
2005). Computer simulations demonstrate that the DG is thereby
able to improve its capacity for storing overlapping memory
traces by generating less overlapping neural codes, a process that
has come to be known as pattern separation (Rolls, 1987; O’Reilly
and McClelland, 1994; Rolls and Treves, 1998).

The discovery of adult hippocampal neurogenesis (AHN), first
in rodents (Altman and Das, 1965, 1967) and subsequently in a
wide range of mammalian species including humans (Eriksson
et al., 1998), has forced theorists to reconsider the computational
functions of the dentate gyrus. Several computational models
incorporating neurogenesis have been put forward. These models
postulate a range of functional roles for neurogenesis, including
mitigating interference (Chambers et al., 2004; Becker, 2005;
Wiskott et al., 2006; Becker et al., 2009; Cuneo et al., 2012),
temporal association of items in memory (Aimone et al.,
2006, 2009), and clearance of remote hippocampal memories
(Chambers et al., 2004; Deisseroth et al., 2004; Weisz and
Argibay, 2009, 2012). While these different theories are not
necessarily incompatible with one another, they make different
predictions regarding the effect of temporal spacing.

When similar items are spaced closely in time, some models
predict that neurogenesis should increase pattern integration
(Aimone et al., 2006, 2009). By the same token, the reverse should
be true of animals with reduced neurogenesis: they should exhibit
impaired pattern integration, and therefore, enhanced pattern
separation for closely spaced items. Thus, factors that suppress
neurogenesis such stress and irradiation (Gould et al., 1998;
Wojtowicz, 2006) should impair pattern integration, resulting
in superior abilities to distinguish similar items that are learned
within the same time period. However, the opposite has been
observed empirically. Rodents with reduced neurogenesis are
impaired at spatial discriminations for closely spaced locations
that are learned within the same session (Clelland et al., 2009),
while rodents with running-induced elevated neurogenesis show
enhanced performance on spatial tests of pattern separation
(Creer et al., 2010). Consistent with these data, humans who
have undergone several weeks of aerobic exercise training show
superior performance on a within-session behavioral test of
pattern separationwhile those with elevated stress and depression
scores show a deficit on the same task (Déry et al., 2013).

When similar items are spaced widely in time, different
predictions can be made regarding the fate of the item in remote
memory vs. the newly learned item. Most or all computational
theories agree that neurogenesis should facilitate the encoding
of new items, protecting against proactive interference from
previously learned information. Empirical data support this
notion. For example, animals with intact levels of neurogenesis
are able to learn to discriminate olfactory odor pairs that overlap
with pairs learned several days ago, whereas irradiated animals

with reduced neurogenesis show greater proactive interference
on this task (Luu et al., 2012). On the other hand, opposing
predictions arise regarding the influence of neurogenesis on
remote memories. Some theories predict that neurogenesis
should promote clearance of remote memories (Chambers
et al., 2004; Deisseroth et al., 2004; Weisz and Argibay,
2009, 2012). Other theories make the opposite prediction, that
intact neurogenesis levels should protect against retroactive
interference of new learning on remote memories (Becker, 2005;
Becker et al., 2009). Consistent with the latter prediction, when
animals with reduced neurogenesis learn overlapping visual
discriminations in different sessions spaced several days apart,
the more recently learned discrimination disrupts the retrieval of
the earlier memory (Winocur et al., 2012). These data support
a role for neurogenesis in minimizing retroactive interference
between remote and recent memories. However, it is possible
that neurogenesis plays dual roles in remote memory, protecting
some hippocampal memories from interference while causing
other memories to decay.

Among existing computational dentate gyrus models, those
that incorporate neurogenesis typically do so by either replacing
existing neurons by re-randomizing their weights (Chambers
et al., 2004; Becker, 2005) or introducing new neurons with
random weights (Weisz and Argibay, 2009, 2012). Several
additional models have looked at how regulation of neurogenesis
can impact learning and plasticity by simulating dynamically
regulated neural turnover and replacement. (Deisseroth et al.,
2004; Crick and Miranker, 2006; Chambers and Conroy, 2007).
Studies by Butz and colleagues even include a model of
synaptogenesis, providing a framework for how neurogenesis
regulation impacts synaptic rewiring and plasticity over varying
time periods (Lehmann et al., 2005; Butz et al., 2006, 2008).
However, none of these models encode the unique functional
properties of young DGCs themselves into their learning
rules.

How is it that AHN can contribute to improved memory
and reduced interference when similar items are learned within
a single session as well as when items are learned across
temporal separations of days or weeks? The present study set
out to investigate whether a single computational model of
hippocampal coding could accommodate the role played by
neurogenesis across this wide range of time scales. We propose
that the functional properties of a heterogeneous ensemble of
young and mature DGCs contributes to this improved memory
and reduced interference among similar items. The heterogeneity
of the functional properties for DGCs map closely to the
developmental trajectory of adult-generated neurons, as such,
our model attempts to take this trajectory into account during
learning (Wang et al., 2000; McAvoy et al., 2015). In most if not
all previous DG models, these characteristics have been ignored.
It is known that young adult-generated neurons in the DG are
more plastic, have less lateral inhibition, sparser connectivity and
are more broadly tuned than their mature counter-parts. All of
these may effect how young DGCs learn in relation to the existing
networks of mature DGCs (Snyder et al., 2001; Schmidt-Hieber
et al., 2004; Marin-Burgín et al., 2012; Dieni et al., 2013; Piatti
et al., 2013; Temprana et al., 2015).
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In the model described here, the maturational trajectory of
adult born DGCs will be loosely based on data from the mouse,
for DGCs from the third week of maturation onward. It is at
about age 3–4 weeks that adult born DGCs have established
synaptic afferent and efferent connections and are able to fire
action potentials (Zhao et al., 2006). At this point, the young
neurons still have decreased membrane resistance and elevated
resting potentials, making them more excitable (Snyder et al.,
2001; Schmidt-Hieber et al., 2004). Moreover, the young neurons
are more sparsely connected to their perforant path inputs from
the entorhinal cortex relative to mature DGCs (Piatti et al.,
2013). From weeks 5 through eight the young neurons undergo
a gradual decline in synaptic plasticity and are increasingly
regulated by feedback inhibition (Temprana et al., 2015). By the
eighth week the physiological properties of the adult-generated
DGCs are largely indistinguishable from that of existing mature
DGCs (Piatti et al., 2013; Temprana et al., 2015).

In this paper, we propose a novel computational model of
the dentate gyrus incorporating the developmental trajectory of
adult-born DGCs, using a modified version of the Restricted
Boltzmann machine (RBM) to model the neural circuitry and
learning equations of DGCs. As will be discussed later, an RBM is
a type of neural network model consisting of 1 layer of visible
and 1 layer of hidden units with each visible unit connected
reciprocally to each other hidden unit. In our model, a single
RBM (not stacked RBMs) will represent the EC input and DGCs
with its visible and hidden units, respectively. As themodel DGCs
undergo development, they become progressively less plastic,
more sparse in their firing, and more densely connected to their
entorhinal inputs. We demonstrate how these properties can
explain the importance of adult-generated DGCs at both short
and long time scales.

2. Methods

In this section, we propose a novel approach to expressing
neurogenesis in an artificial neural network model of the DG.
While several replacement and additive models of neurogenesis
have looked at how new neurons affect learning (e.g., Becker,
2005; Weisz and Argibay, 2009), few if any models have
considered the full range of unique properties of AHN
including the developmental trajectory of of adult-generated
neurons: changes in plasticity, connectivity, excitability, and
survival vs. apoptosis. The primary contribution of this work
is to provide a computational framework within which all
of these factors can be manipulated, differentiating the role
of young vs. mature DGCs in memory, and the progression
from one to the other. In the computational model described
here we use the Restricted Boltzmann Machine (RBM)
(Smolensky, 1986; Freund and Haussler, 1992; Hinton, 2002)
architecture and learning procedure. RBMs are a type of
generative, associative neural network model commonly used
in deep learning applications (see e.g., Hinton and Osindero,
2006; Nair and Hinton, 2009). Our approach to expressing
the neural trajectory of young DGCs in an RBM is by
incorporating additional constraints into the learning equation,
such as a dynamic learning rate and sparsity penalties.

It is important to note that these are not limited to
RBMs and could easily be applied to other types of neural
network models (e.g., multilayer perceptrons, autoencoders,
recurrent neural networks, etc.), however, there are several
advantages to RBMs that will be discussed later in the
discussion.

2.1. Restricted Boltzmann Machines
A Restricted Boltzmann Machine (RBM) is a type of artificial
neural network model with a simple architecture and Hebbian
learning equations. The architecture of an RBM includes a set
of visible and hidden units or nodes. In our model the visible
units will simulate the input from the EC and the hidden units
represent the DGCs. All visible nodes are fully, reciprocally
connected with all hidden nodes. In the field of computer science
this is referred to as a bipartite graph. Importantly, unlike
the original Boltzmann machine, an RBM has no within-layer
connections, making the model more tractable. The synaptic
connection strengths, hereafter referred to as weights, can be
described by an N byM matrix, where N is the number of visible
units and M is the number hidden units. As in most artificial
neural network algorithms, learning is expressed viamodification
of this weight matrix, according to a specific learning rule.

A Boltzmann machine learns a set of weights so as to form a
probabilistic, generative model of the training data. The RBM is
trained via a more tractable approximation using the contrastive
divergence (CD) learning procedure (Hinton, 2002; Carreira-
Perpinan and Hinton, 2005). The CD learning rule is provided
in Equation (1). This equation includes positive and negative
Hebbian learning terms. To obtain the visible and hidden unit
states for the positive and negative terms in the learning rule, a
procedure called brief Gibbs sampling is used, as detailed below.

1Wij = ǫ((vihj)data − (vihj)recon) (1)

where vdata is the input vector and hdata is the data-driven hidden
state generated by clamping the states of the visible units to
vdata and sampling the hidden units’ states according to Equation
(2). vrecon is a reconstruction of the input vector generated by
clamping the states of the hidden units to the data-driven pattern
hdata and sampling the states of the visible units according to
Equation (3). hrecon is then created in the same way as hdata, but
by clamping the visible units’ states to vrecon. In Equations (2, 3)
below ai and bi represent biases which provide a mechanism for
shifting the output of the sigmoid activation function, similar to
thresholds in other neural network models.

p(hj = 1|v) = σ (bj +
∑

i

viwij) (2)

p(vi = 1|h) = σ (ai +
∑

j

hjwij) (3)

As can be seen from the CD learning (Equation 1), the positive
Hebbian term associates data-driven input and hidden state
vectors, while the negative Hebbian term tries to “unlearn”
the association between the corresponding reconstructed visible
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and hidden state vectors. Theoretically, the learning procedure
should converge when its internal reconstructions of the training
patterns exactly match the corresponding data-driven states.
In general, an RMB model’s reconstructions of the training
patterns are obtained by alternatingly sampling nearby hidden
and visible unit states using the model’s bottom-up and top-
down weights, respectively. In the simulations reported here,
we applied this brief Gibbs sampling procedure for just one
iteration. Performance of this model can be improved further
by performing multiple steps of brief Gibbs sampling (Hinton,
2012). The Boltzmann machine learning procedure is normally
performed repeatedly for many iterations through the training
set. In contrast, here we simulated just one exposure to each
training pattern.

2.2. Sparsity
In our simulations of neurogenesis, we take into consideration
both sparse coding and sparse connectivity. Sparse coding means
that very few strongly activated neurons respond to a given event.
This helps to improve pattern separation as it minimizes the
probability of overlap in the model’s internal representation of
highly similar input patterns. As noted above, extreme sparse
coding is observed in mature DG granule cells, but not in
less mature adult-generated neurons. In our model we simulate
sparse coding by incorporating a sparsity cost constraint into the
learning objective. Our sparse coding constraint is the average
squared difference between each hidden unit’s average activation
and it’s target probability of activation (Nair and Hinton, 2009).
By taking the derivative of this cost term with respect to
the weights, we obtain an added component to the learning
equation that adjusts the weights so as to penalize units whose
activation deviates from a target level of sparseness. The relative
importance of this sparse coding term increases with the age of
the neurons, to simulate the increased degree of connectivity
with inhibitory interneurons of mature DGCs. In the updated
learning equation below q is the mean of our sampled hidden
activation from Equation (2) and p is our target activation
probability.

1Wij = ǫ((vihj)data − (vihj)recon)− cost ∗ (q− p) (4)

Sparse connectivity describes the level of interconnectedness
between the visible and hidden layers. As mentioned earlier, the
degree of inter-connectivity is another property that changes as
the young DGCs mature.

We simulate the maturational evolution of increased sparse
coding and decreased sparse connectivity as follows. In the case
of sparse coding we vary the weight on the sparsity cost for each
hidden unit so that it is smaller for young neurons and larger
for their mature counterparts. To impose a sparse connectivity
constraint, a binary matrix is used as a connectivity mask for the
weight matrix. As the hidden units mature, the number of non-
zero visible-to-hidden connections in the connectivity matrix
for that hidden unit is increased probabilistically. At the end
of each weight update the weight matrix is multiplied by this
connectivity mask in order to maintain the “disconnected” links
to have weights of zero.

2.3. Neuron Growth
Our model makes the assumption that young neurons are
more plastic, have less lateral inhibition (simulated via our
sparse coding cost) and are more sparsely connected than
their mature counterparts (Wang et al., 2000; Schmidt-
Hieber et al., 2004; Oswald and Reyes, 2008; Marin-Burgín
et al., 2012). For simplicity, we assume that each of these
characteristics follows a temporal growth curve that can be
described with some permutation of the Gompertz function
(Gompertz, 1832). The Gompertz function has been used
to model growth in a variety of applications ranging from
modeling bacterial growth in biology to product demand
in economics (Zwietering et al., 1990; Towhidul et al.,
2002).

g(t) = e−e−st
(5)

The Gompertz function in Equation (5) defines a sigmoid-
like growth curve, where t describes the time step and s
describes the shape or steepness of the function as can be
seen in Figure 1. For our purposes, t is bounded between -
1 and 1 and the s is always set to 5. To model young DGC
growth characteristics in the RBM, each hidden neuron has
its own set of parameters defining its current learning rate
and sparsity constraints. Additionally, each hidden unit has a
time parameter representing its age. At each simulated unit
time interval, the age of a hidden unit is increased, and its
constraint parameters are updated as follows. The learning
rate, which can be thought of as a neuron’s plasticity level,
is defined as 1 − g(t) normalized to lie between 0.1 and 0.3.
Inversely, our sparsity cost can simply be taken from g(t) and
normalized to lie between 0 and our initial sparsity cost of
0.9. Given these variable properties, the learning rule can be

FIGURE 1 | Gompertz function where s is set to 5 and t is between −1

and 1.
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redefined as

1Wij = ǫ((vihj)data − (vihj)recon)) − (λ ∗ Wij) − cost ∗ (q−p)
(6)

where the learning rate ǫ, weight decay λ and sparsity cost terms
are now each weighted by dynamically changing vectors of values
rather than static hyper-parameters.

2.4. Neural Turnover
It is difficult to estimate the rate at which adult-generated neurons
undergo apoptosis vs. survival and maturation into adult DGCs.
These processes are governed by many factors (see, e.g., Hutchins
and Barger, 1998; Cameron andMcKay, 2001; Cecchi et al., 2001;
Elmore, 2007) and are not completely understood. Generally
apoptosis among healthy neurons tends to be activity and age
dependent (Hutchins and Barger, 1998; Cecchi et al., 2001) and a
significant number of newDGCs survive to adult hood (Cameron
and McKay, 2001). Using these observations, we formulate a rule
for determining whether a given neuron will survive or undergo
apoptosis based on its age, specificity and average synaptic
strength. To assess stimulus specificity, we calculate the standard
deviation of each hidden unit’s incoming weights, a quantity we
refer to hereafter as its “differentiation.” The justification is that
hidden units with equal weight to all visible units will be less
effective at differentiating different input patterns. Similarly, to
assess synaptic strength we calculate the average absolute value of
the those incoming weights. Combining the differentiation and
synaptic strength penalty terms, we are penalizing hidden units
with incoming weights that are all very similar and close to zero.
We rank each hidden neuron based on a weighted average of its
synaptic strength, differentiation and age with the equation given
below. Neurons within the lowest 5% of this ranking undergo
simulated apoptosis by having their age reset to 0 and weights
reset to random initial values (or set to 0 in the case of bias
weights).

Zi= (α ∗ Strengthi +β ∗Differentiationi+ γ ∗Agei)/(α+β + γ )
(7)

where

• Strengthi is the average of the weights from all visible units to
a given hidden unit i.

• Differentiationi is the standard deviation of the visible weights
to hidden unit i

• Agei is our recorded age for the hidden unit i
• α, β , and γ are coefficients for modifying the relative

importance of the Strength,Differentiation, and Age terms. For
our simulations these are set to 0.2, 0.65, and 0.15, respectively.

2.5. Experiments
All models simulated in the experiments reported here used CD
with 1 step Gibbs sampling on a single layer RBM as described
above. A learning rate of 0.1 was used for all non-neurogenesis
models and a value between 0.1 and 0.3 was used for all
neurogenesis models. For all sparse coding models the expected
probability of activation for each hidden unit (representing the
target sparseness of mature DGCs) was set to 0.05. This is a
very conservative constraint as previous models and empirical

studies have this set at around an order of magnitude lower, 0.004
or 0.4% (Barnes et al., 1990; Jung and McNaughton, 1993). All
models had 200 visible units and 1000 hidden units in order
to roughly match the relative numbers of EC and DG neurons,
respectively observed in rodents, as in previous models (O’Reilly
and McClelland, 1994). For all experiments, each model was
trained on mini-batches of 5 training patterns at a time, 1 sample
from each parent class as described below. In order to simulate
rapid one-shot learning, only 1 iteration through the training
set was taken. Similar to Orielly and McClelland (O’Reilly and
McClelland, 1994), we set the expected probability of activation
of each unit in the training and test patterns (representing the
activation level of each EC input unit) to be 0.1.

Each simulated model was trained on a set of binary patterns
representing input from the entorhinal cortex. These patterns
were randomly generated, with 10 percent of the elements of
each pattern being active (set to 1.0) and the remainder inactive
(set to 0.0). The patterns were created as random variations
on a base set of prototypes, so as to create patterns that had
varying degrees of similarity. Initially, five binary seed patterns
were created, representing prototype patterns from 5 different
classes. For each of these classes, 10 additional overlapping
prototypes were generated by randomly resetting 20% percent
of the original pattern. From these 55 prototypes (representing 5
classes and 11 subclasses per class), 1200 patterns were generated
and partitioned into 1000 training patterns and 200 test patterns.
Each of these patterns were created by randomly resetting
another 5% of the elements in one of the subclass patterns.

While the training and testing scenarios varied between
experiments, our evaluation of performance remained the
same. A test pattern was presented to the model and the
Hamming distance between the input pattern and the model’s
reconstruction of that test pattern was calculated using Equation
(8). From there the percent match was calculated using Equation
(9), where l is the length of Vdata / Vrecon. This metric serves as an
approximation of the formal log-likelihood cost function for the
Boltzmann model, however, other approximations such as brief
gibbs sampling and small mini-batches are inherent to the RBM
model.

D(Vdata,Vrecon) =

n∑

i=1

|(Vdatai − Vreconi )| (8)

M(Vdata,Vrecon) = 1− (D(Vdata,Vrecon)/l) (9)

Before introducing neurogenesis into the models, in simulation
1, we evaluated the contribution of sparse coding to associative
memory in the DG model. Thus, we compared the accuracy
of the sparse coding RBM with the base RBM lacking a sparse
coding constraint. We hypothesized that the sparse coding RBM
would perform better, particularly for encoding highly similar
patterns. We evaluated this and all other models on both
proactive and retroactive interference. Learning a pattern that
is highly similar to the model previously learned is a source
of proactive interference, potentially making it more difficult to
encode the current pattern. Additionally, learning the current
pattern could interfere retroactively with the model’s ability to
retrieve a previously learned overlapping pattern. Thus, each
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model was trained on groups of patterns, consisting of all training
patterns from 5 of the 55 prototypes (90 patterns for a training
set of 1000), one from each class, and immediately tested with
the corresponding test patterns on its accuracy at reconstructing
these patterns. Asmentioned above these patterns were presented
to the model in mini-batches of 5 (1 example per class), and
the training and test patterns had noise added to them from
their prototypes by randomly resetting 5% of the elements. It
was then trained on another group of 90 patterns with one
prototype selected from each class, with each successive group of
90 patterns overlapping with previously learned patterns. After
learning the entire set of 1000 patterns consisting of 11 groups
of 90, the model was finally tested on its ability to reconstruct all
test patterns from all previously learned groups to test retroactive
interference.

In Simulation 2, the sparsely coded RBM with neurogenesis,
with and without sparse connectivity, was compared to the sparse
RBM. We were particularly interested in how the neurogenesis
model would perform at encoding and recognizing similar
patterns when they were encountered within the same learning
session vs. across different learning sessions spaced more widely
in time. We therefore compared the performance of the various
models across 2 conditions: (1) same-session testing in which
the neurogenesis models had no neural turnover or growth, (2)
multi-session testing which had both neural growth and neural
turnover. The same-session testing condition was created with
no simulated passage of time after training on each successive
group of 90 patterns. In contrast, for multi-session training
conditions the passage of time between training on blocks
of 90 patterns were simulated by incrementing the neuron
age parameter for all hidden units after each group of 90
patterns. As discussed previously neural growth was simulated by
incrementing the age parameter and recomputing the learning
rate and sparsity cost using the Gompertz function for each
hidden unit. Similarly, to simulate neural turnover, we ranked the
performance of each hidden unit based on the weighted average
of the synaptic strength, differentiation, and age as described
earlier, and reinitialized the lowest 5%. Both neural turnover
and growth were performed between sessions (or groups of 90
patterns) when we incremented the age parameter of the hidden
units.

Our hypothesis for same-session testing was that the
neurogenesis models would perform better than the sparsely
coded RBM without neurogenesis due to the presence of a
few young more plastic neurons. Further, because the available
pool of young excitable neurons would be constant for same-
session learning, making it difficult for the model to generating
distinctive traces for similar items experienced within the
same context, we predicted that sparse connectivity would be
particularly important for same-session learning. For multi-
session testing, giving that a new pool of young neurons would
be available at each learning session, we hypothesized that the
neurogenesis models would perform even better then they did
for same-session testing. Further, allowing some of the young
neurons to mature and forcing less useful neurons to be replaced
was predicted to lead to improved reconstruction accuracy with
lower proactive and retroactive interference.

3. Results

The results from initial tests comparing the sparse coding RBM
with the base RBM, show a significant improvement in overall
reconstruction accuracy, as can be seen in both the during and
post training tests shown in Figures 2A,B, respectively, as well
in the summary graph in Figure 2D. Similarly, the sparse coding
was shown to be effectively helping to increase pattern separation,
as can be seen by the reduced pattern overlap of the hidden
unit activations in Figure 2C. It is note worthy that the overlap
for the base RBM was less than 30% and the slow increase in
performance during training suggests that it was able to learn the
sparse representation of the dataset to some extent, but not as
quickly as its sparse counterpart.

The same session tests showed improved accuracy for both
neurogenesis models, even without neural aging or turnover.
This was expected since the initial age of the hidden units
were randomly selected, allowing the encoded characteristics of
our young neurons to provide the necessary advantage. The
sparse connectivity appears to provided a further advantage for
same session testing as we can see in Figure 3D. Interestingly,
Figure 3C shows that the neurogenesismodels havemore overlap
among hidden unit activation than the normal sparse RBM,
which demonstrates that the neurogenesis models are providing
an opportunity to have slightly less sparse activations due to
the young neurons. Another interesting pattern that can be
seen in Figure 3B, which shows a kind of recency effect found
in numerous memory studies (Murdock, 1962). At the same
time, Figure 3A, show the neurogenesis models having reduced
proactive interference. The increase in accuracy on subsequent
groups of patterns suggests that the neurogenesis models may
be better at distinguishing novel and common elements to each
group of patterns.

The multi session tests showed similar improvement as
expected. Figure 4D once again shows the neurogenesis models
outperforming the sparse RBM model. Once again, we can
see from Figures 4A,B a recency effect and reduced proactive
interference from the neurogenesis models. However, the use
of neural maturation and turnover in the multi session tests
provided less benefit to overall performance than expected.While
the non-sparsely connected neurogenesis model did see about
a 1% increase in performance from the same session tests, the
sparsely connected neurogenesis model saw no improvement and
did about the same as its non-sparse counterpart. Interestingly,
Figure 4C shows that the increased overlap for the sparsely
connected model is no longer present for our multi session
tests and instead the overlap for the non-sparsely connected
neurogenesis model has increased. This latter point, suggests that
the sparse connectivity and neural turnover work in equilibrium
with each other depending on the learning demands required.

In summary, the results from the neurogenesis tests showed
an improvement over the sparse coding RBM in all cases with and
without sparse connectivity. Similarly, the sparse connectivity did
show better performance on the same session scenario, however,
it showed no significant improvement for multisession tests. This
suggests that the sparse connectivity of young neurons provides
improved performance on pattern separation and completion
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FIGURE 2 | Simulation 1: performance of the models with and without sparse coding on within-session pattern reconstruction tests. The models were

trained sequentially on 11 groups of 90 patterns, and tested on noisy versions of these training patterns after each group to test proactive interference and after all

groups had completed to test retroactive interference. (A) Shows proactive interference for input reconstruction accuracies during training. (B) Shows retroactive

interference for input reconstruction accuracies on each group after training to test retroactive interference. (C) Shows the relationship between post training

reconstruction accuracy with hidden unit activation overlap. (D) Shows the distribution of post training accuracy over all groups.

tasks in the short-term, but provides little benefit for longer
term applications. Table 1 shows the mean values and confidence
intervals from the post training tests for each simulation.

4. Discussion and Future Work

The main goal of this paper was to investigate whether the
unique characteristics of young adult-born DGCs during their
maturation period, such as increased synaptic plasticity and
reduced lateral inhibition (Schmidt-Hieber et al., 2004; Marin-
Burgín et al., 2012), contribute to learning novel, highly
overlapping patterns. We were particularly interested in the
potential contribution of these various properties of young

neurons to interference reduction when similar patterns are
encountered at short vs. long time spacings.

We chose to simulate the contribution of neurogenesis to
memory encoding using a Restricted BoltzmannMachine (RBM)
to simulate the dentate gyrus circuitry. This was achieved by
adding a set of additional constraints to the RBM learning rule
to simulate the properties of young immature neurons as they
evolve over time into mature granule cells. While several neural
network models exist which are more biologically plausible than
RBMs, the RBM has several useful properties which require little
computational overhead. Unlike most other types of artificial
neural network models RBMs can be stacked and trained
sequentially to form deep multilayer networks without relying
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FIGURE 3 | Simulation 2: performance of the models with and without neurogenesis and sparse connectivity on within-session pattern reconstruction

tests. The models were trained sequentially on 11 groups of 90 patterns, and tested on noisy versions of these training patterns after each group to test proactive

interference and after all groups had completed to test retroactive interference. (A) Shows proactive interference for input reconstruction accuracies during training.

(B) Shows retroactive interference for input reconstruction accuracies on each group after training to test retroactive interference. (C) Shows the relationship between

post training reconstruction accuracy with hidden unit activation overlap. (D) Shows the distribution of post training accuracy over all groups.

on back-propagation. In contrast, deep networks trained by
the error back-propagation learning procedure (LeCun, 1985;
Rumelhart et al., 1986) suffer from the vanishing gradient
problem (Hochreiter et al., 2001). Put another way, the learning
typically gets lost in the noise and converges on a very poor
set of weights. Furthermore, these models are considered to
be less biologically plausible due the requirement of non-local
computations (Stocco et al., 2011). The RBM has the additional
advantage of forming a generative model of the data. Hence, this
model can generate novel input patterns from the same data
distribution that it was trained on. It thereby has the potential
to simulate cognitive processes such as memory reconstruction
and consolidation (Kali and Dayan, 2002). RBMs have also

been used in various challenging machine learning problems
ranging from image and document classification, (Hinton and
Osindero, 2006; Salakhutdinov and Hinton, 2010) to user rating
systems (Salakhutdinov et al., 2007), but have rarely been used
in modeling the nervous system. Given that our objective was
to see how the variability in plasticity, lateral inhibition, and
connectivity among a heterogenous pool of young and mature
DGCs impacts memory and interference, the RBM satisfied
our requirements. As previously mentioned, our learning rule
modifications are not specific to the RBM and could easily
be combined with other neural network learning rules. For
example, autoencoders, multilayer perceptrons, and recursive
neural networks can all use the same variability in learning rate,
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FIGURE 4 | Simulation 2: performance of the models with and without neurogenesis and sparse connectivity on across-session pattern

reconstruction tests. The models were trained sequentially on 11 groups of 90 patterns, and tested on noisy versions of these training patterns after each group to

test proactive interference and after all groups had completed to test retroactive interference. (A) Shows proactive interference for input reconstruction accuracies

during training. (B) Shows retroactive interference for input reconstruction accuracies on each group after training to test retroactive interference. (C) Shows the

relationship between post training reconstruction accuracy with hidden unit activation overlap. (D) Shows the distribution of post training accuracy over all groups.

weight decay, and sparsity constraints based on the age of the
neurons in the DG layer.

Previous modeling studies have shown that the sparse coding
caused by lateral inhibition within the DG results in improved
pattern separation (O’Reilly and McClelland, 1994) which is
useful for distinguishing highly similar patterns. We reaffirmed
this in simulation 1, where we compared the reconstruction
of highly similar patterns for an RBM with and without a
sparse coding constraint. Similar to previous studies, we found
significantly better performance for the RBM using a sparse
coding constraint.

Our main finding is that the models with a mixture of young
and old neurons did not learn a neural code that maximized

pattern separation, and yet they outperformed models with
sparser, less overlapping codes but lacking neurogenesis. This
may seem counter-intuitive in light of the findings of simulation
1: for models lacking neural turnover, those with a sparse coding
constraint were superior. An alternative explanation for these
results is that the degree of pattern separation achieved by
the control model (sparsely coded RBM lacking neurogenesis)
was so high (less than 0.05% pattern overlap in some cases;
see Figure 3C) that it would be impossible for models without
such a sparseness constraint on the young neurons to achieve
the same degree of pattern separation. However, a closer
examination of the distribution of pattern separation scores
vs. model performance makes this explanation seem unlikely.
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TABLE 1 | Post training summary statistics for the 3 simulations.

Simulation Models Means Confidence Significant

Interval

1 - SAME-SESSION

RBM vs.

SparseRBM

(0.844, 0.884) (0.03, 0.054) *

2 - SAME-SESSION

SparseRBM vs.

Neurogenesis

(0.883, 0.938) (0.035, 0.057) *

SparseRBM vs.

Neurogenesis

sparsely connected

(0.883, 0.938) (0.04, 0.065) *

Neurogenesis vs.

Neurogenesis

sparsely connected

(0.93, 0.938) (0.006, 0.01) *

2 - MULTI-SESSION

SparseRBM vs.

Neurogenesis

(0.883, 0.934) (0.04,0.06) *

SparseRBM vs.

Neurogenesis

sparsely connected

(0.883, 0.932) (0.037, 0.058) *

Neurogenesis vs.

Neurogenesis

sparsely connected

(0.934, 0.932) (−0.004, 0.0)

Mean accuracies of each pair of models and 99% bootstrapped confidence intervals

around the difference between means are shown; *’s indicate statistically significant

differences (those with confidence intervals which do not include 0). The confidence

intervals were generated by calculating the difference in mean performance of pairs of

models across 20 repeated simulations with different randomly generated training and test

sets. From these 20 repeated simulations, we generated 10,000 bootstrapped resamples,

to obtain bootstrapped estimates of the distributions of the mean differences.

The RBM has the flexibility to learn any neural code that is
optimal for pattern reconstruction, ranging from a sparse code
to a highly distributed code. In fact, the sparse RBM and the
RBM with neurogenesis produced codes with varying degrees
of pattern separation in different cases (see Figure 3C), and
there was considerable overlap in the distributions of pattern
separation scores for the two models. In cases where the sparse
RBM achieved the highest degree of pattern separation (the
bottom tail of the distribution in Figure 3C) the sparse RBM
actually performed most poorly. In other cases where the sparse
RBM converged to somewhat less sparse codes, performance
appeared to be asymptotically approaching about 95% (the top
end of the distribution in Figure 3C). On the other hand,
models with neurogenesis achieved performance approaching
100%, in spite of a wide range of pattern separation scores; in
some situations the neurogenesis models achieved comparable
pattern separation to the sparse RBM but still produced superior
performance. These results support our main conclusion that a
heterogeneous model with a balance of mature more sparsely
firing neurons and younger neurons with higher firing rates
achieves superior pattern encoding relative to a purely sparse
code. While our simulations suggest that the addition of younger,
more hyperactive neurons strictly leads to reduced pattern
separation, McAvoy et al. (2015) suggest that young neurons
may counter this effect via potent feedback inhibition of mature
granule cells. The latter mechanism could thus compensate for
the increased activity in the young neuronal population by

inducing greater sparsity in the mature population. The net
result of this could be a homeostatic maintenance of the overall
activity level in the dentate gyrus (McAvoy et al., 2015). In either
case, pattern separation is obviously not a strict requirement for
accurate neural coding. The more distributed code learned by the
models with a pool of younger neurons seems to offer a good
compromise between high pattern separation and high plasticity.

Sparse connectivity was found to be critical when the model
attempted to encode similar patterns encountered within a single
training session. In this case, the model would not have the
opportunity to generate a set of new neurons between encoding
of one similar pattern and the next, and it therefore had to
rely on sparse connectivity of the young neurons to generate
distinct responses to similar patterns. Across a longer temporal
separation, some of the young neurons would havematuredwhile
there would be additional young, more plastic neurons available
to encode successive similar patterns. Thus, these additional
properties of greater plasticity and higher activation were more
important for separating patterns that were encountered across
longer time scales. While these results shed light on the ways
in which different features of young neurons may contribute to
memory, there are several limitations to ourmodels that will need
to be addressed in future work.

The current model using the RBM requires reciprocal
connectivity between the input and output layers, whereas
the known anatomy of the dentate gyrus does not support
this architecture; dentate granule cells do not project back to
the entorhinal cortex. However, in an elaborated version of
this model (Becker and Hinton, 2007) that will be developed
further in future work, we incorporate the reciprocal connections
between the CA3 and the dentate gyrus (Myers and Scharfman,
2011), and between the CA3 and the entorhinal cortex, thus
providing a natural fit of the stacked RBM architecture as
described earlier to that of the hippocampal circuit. This full
hippocampal circuit model will be required to explore the
functional impact of young vs. mature DGCs on hippocampal
learning, particularly when investigating the performance
changes on memory recall (pattern completion) and sequence
replay tasks. Similarly, the the generative characteristics of the
RBM combined with this stacked architecture provide a method
of simulating imagination and dreaming along with memory
reconstruction.

The model of the young adult-born DGC maturation
presented in this paper looked specifically at changes in synaptic
plasticity and lateral inhibition during the cell development
trajectory, however, it does not take into account temporal
changes in action potential kinetics (Schmidt-Hieber et al.,
2004; Marin-Burgín et al., 2012). This temporal component
would be a valuable contribution for future work, particularly
when modeling spatio-temporal learning and sequence replay
(Karlsson and Frank, 2009).

Finally, we modeled neurogenesis and apoptosis as one
operation with the simplified replacement approach. However, in
future work neurogenesis and apoptosis should be treated as two
independent processes for regulating the population of DGCs.
We propose creating a hybrid additive and replacement model
in which neurogenesis can be up or down regulated in order to
better investigate the role of neurogenesis in pattern separation
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and completion tasks over varying time spans. This ability to up
and down regulate neurogenesis could prove extremely useful in
exploring the results of recent studies examining the potential
role of neurogenesis in human memory at both short and long
time scales. A recent study by Dery, Goldstein & Becker showed
that lower stress and depression scores, which were presumed to
correlate with higher neurogenesis levels, result in improved item
recognition over larger time spans (2 weeks) (Déry et al., 2015).

In summary, our results suggest that the developmental
trajectory of adult-born DGCs may be important in explaining
the role of young neurons in interference reduction at both
short and long time scales. Interestingly, even though the young
neurons decrease sparseness and pattern separation, they play
a critical role in mitigating both retroactive and proaction

interference. Future work in this area should address the
following questions: The most important are (1) What is the
functional impact of DGC maturation on full Hippocampal
learning tasks? (2) How do changes in the temporal dynamics of
action potentials between young and mature DGCs impact these
results? (3) How could this model of young vs. mature DGCs be
expanded into a hybrid additive & replacement model?
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