
HYPOTHESIS AND THEORY
published: 25 November 2015

doi: 10.3389/fnsys.2015.00159

Frontiers in Systems Neuroscience | www.frontiersin.org 1 November 2015 | Volume 9 | Article 159

Edited by:

Jonathan B. Fritz,

University of Maryland, USA

Reviewed by:

Preston E. Garraghty,

Indiana University, USA

Hugo Merchant,

Universidad Nacional Autónoma de

México, Mexico

James W. Grau,

Texas A&M University, USA

*Correspondence:

Edward W. Large

edward.large@uconn.edu

Received: 02 June 2015

Accepted: 02 November 2015

Published: 25 November 2015

Citation:

Large EW, Herrera JA and Velasco MJ

(2015) Neural Networks for Beat

Perception in Musical Rhythm.

Front. Syst. Neurosci. 9:159.

doi: 10.3389/fnsys.2015.00159

Neural Networks for Beat Perception
in Musical Rhythm
Edward W. Large 1, 2*, Jorge A. Herrera 3 and Marc J. Velasco 4

1Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA, 2Department of Physics, University of

Connecticut, Storrs, CT, USA, 3Department of Music, Center for Computer Research in Music and Acoustics, Stanford

University, Stanford, CA, USA, 4Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL,

USA

Entrainment of cortical rhythms to acoustic rhythms has been hypothesized to be the

neural correlate of pulse and meter perception in music. Dynamic attending theory

first proposed synchronization of endogenous perceptual rhythms nearly 40 years

ago, but only recently has the pivotal role of neural synchrony been demonstrated.

Significant progress has since been made in understanding the role of neural oscillations

and the neural structures that support synchronized responses to musical rhythm.

Synchronized neural activity has been observed in auditory and motor networks, and has

been linked with attentional allocation and movement coordination. Here we describe

a neurodynamic model that shows how self-organization of oscillations in interacting

sensory and motor networks could be responsible for the formation of the pulse percept

in complex rhythms. In a pulse synchronization study, we test the model’s key prediction

that pulse can be perceived at a frequency for which no spectral energy is present

in the amplitude envelope of the acoustic rhythm. The result shows that participants

perceive the pulse at the theoretically predicted frequency. This model is one of the

few consistent with neurophysiological evidence on the role of neural oscillation, and

it explains a phenomenon that other computational models fail to explain. Because it

is based on a canonical model, the predictions hold for an entire family of dynamical

systems, not only a specific one. Thus, this model provides a theoretical link between

oscillatory neurodynamics and the induction of pulse and meter in musical rhythm.
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1. PERCEPTION OF PULSE AND METER IN MUSICAL RHYTHMS

The sounds that humans use for communication are temporally structured sequences of events,
such as musical notes or speech syllables. Rhythm refers to the pattern of timing and stress in
the amplitude envelope of an acoustic sequence. Musical rhythms are usually perceived to have
a pulse, or basic beat, in the approximate frequency range 0.5–4Hz (London, 2004). Meter is a
perceived temporal structure that includes the pulse frequency, as well as slower beat frequencies
that accent pulse cycles (<2Hz), and higher beat frequencies that subdivide the pulse (4–8Hz)
(Lerdahl and Jackendoff, 1983; London, 2004). Neural resonance theory (Large and Snyder, 2009)
hypothesizes that pulse and meter correspond to neural rhythms that synchronize with acoustic
rhythms, influencing temporal expectancy, attention, and movement coordination. Theoretical
approaches to understanding perceived structure have been based on neurodynamic models of
neural oscillation (for a review, see Large, 2008). However, only recently has a clear picture begun
to emerge regarding synchronization of neural oscillations and the neural structures that support
responses to musical rhythm.
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In this paper, we summarize current knowledge about the
synchronization of neural rhythms to musical rhythms and
outline a neurodynamic model of pulse perception based on
entrainment of neural oscillation. First, in §2, we present a
brief overview of the main theories and experimental findings
related to musical pulse and meter. We discuss the potential
function of neural oscillations in establishing the perceived
temporal structure of complex musical rhythms. In §3, we
sketch a neurodynamic model of pulse perception based on
the interaction between oscillatory neural networks. The model
incorporates the basic findings of the past 20 or so years
and makes a key prediction about the formation of the pulse
percept. In §4, we evaluate the fundamental prediction of the
theory, that perceived temporal structures may correspond to
frequencies that are not physically present in the amplitude
envelope. Finally, in §5, we discuss remaining important
questions regarding the link between pulse perception and neural
resonance.

2. NEURAL RESONANCE TO MUSICAL
RHYTHMS

Neural population rhythms—as observed in the local field
potential (LFP), the electroencephalogram (EEG), and the
magnetoencephalogram (MEG)—are cyclical fluctuations of
baseline neuronal activity that can be observed in neocortical and
thalamic regions of the brain (Steriade et al., 1993; Buzsáki and
Draguhn, 2004; Slézia et al., 2011). Thalamocortical oscillations
exhibit 1/f frequency spectra with peaks in specific frequency
bands, including delta (∼ 1–4 Hz), theta (∼ 4–8Hz), beta

FIGURE 1 | (A) Piano score of Isaac Albeniz’s Iberia II, Triana. (B) Annotation showing pulse (black dots), metrical structure (all dots), and phrasing (brackets). Pulse

frequencies overlap with cortical oscillations in the delta range, while other metrical frequencies extend into theta and sub-delta ranges. Frequency relationships

among metrical levels include harmonics, subharmonics, and other integer ratios. Adapted from Large (2014).

(∼ 13–30Hz), and gamma (∼ 30–70Hz) (Buzsáki, 2006). The
frequency range of musical pulse (London, 2004) corresponds
nicely with the delta band, while faster metrical frequencies fall
within the theta band, and slower metrical frequencies occupy
the sub-delta range (Musacchia et al., 2014, see Figure 1). Jones
originally hypothesized that endogenous perceptual rhythms
synchronize with temporally structured sequences, generating
expectancies for future events (Jones, 1976). Dynamic attending
theory (DAT; Jones, 1976; Jones and Boltz, 1989; Large and
Jones, 1999) addressed the issue of how neural rhythms may
be exploited by an organism to enable attentional coordination
with the dynamic external world (for a review, see Jones, 2008).
The sensory-motor theory of rhythm perception (Todd, 1994,
1995; Todd and Lee, 2015) hypothesized that rhythm and pulse
perception involve a sensory representation of the input as well
as a motor representation of the body. A related theoretical
framework that accounts for the predictive role of the motor
system has recently been proposed (Schubotz, 2007). Converging
lines of investigation have provided evidence supporting both
theoretical perspectives, and suggest that interaction between
sensory andmotor regions of the brainmay provide amechanism
for predicting sequence timing (Schroeder et al., 2010). In this
paper, we further develop a neural resonance theory of rhythm
perception, hypothesizing that oscillatory interactions between
sensory and motor areas are sufficient to give rise to percepts of
pulse and meter in complex musical rhythms (Large and Snyder,
2009).

Behavioral evidence for dynamic attending in adults and
infants comes from time discrimination and pitch discrimination
studies that revealed an advantage for auditory sequences that
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induce a metric percept, using both sensitivity and reaction
time measures (Yee et al., 1994; McAuley and Kidd, 1995; Jones
and Yee, 1997; Large and Jones, 1999; Barnes and Jones, 2000;
Jones and McAuley, 2005; Bergeson and Trehub, 2006; Jones
et al., 2006). Such findings are consistent with early-developing
predispositions for temporal regularity, and a preference for
more stable temporal organizations, as predicted by nonlinear
resonance (Large, 2008). In support of sensory-motor theory, a
fundamental sound-movement interaction was demonstrated in
infants and adults such that vestibular stimulation can influence
whether an ambiguous pattern is perceived in duple or triple
meter (Phillips-Silver and Trainor, 2005, 2007). The top-down
influence of motor networks on sensory representations has been
recently studied, showing how the former can “sharpen” the
temporal selection of auditory information (Morillon et al., 2014,
2015). In addition, the finding of perceptual narrowing in infants
demonstrated that meter perception is plastic and depends upon
musical enculturation (Hannon and Trehub, 2005).

EEG and MEG studies have directly tested the role of
endogenous oscillation. One EEG study revealed that fluctuations
in induced beta- and gamma-band power synchronized with
periodic and metrical rhythms, revealing both sensory-driven
and anticipatory responses to tones (Snyder and Large, 2005;
Figure 2A). A related MEG study also found sensory and
anticipatory responses in the beta- and gamma-band (Fujioka
et al., 2009). When subjects were instructed to impose a
subjective meter on a periodic stimulus, subharmonic responses
were observed in induced beta band MEG activity, closely
resembling those produced by physical accents (Iversen et al.,
2009). One EEG study reported synchronization of delta
rhythms, phasic responses in theta, and augmented phase
synchronization throughout the beta/gamma range, modulated
by the stimulus periodicity (Will and Berg, 2007). Another
study revealed entrainment of the delta rhythm to the onset
of target tones, and reaction times that correlated with
the phase of the delta band oscillation at target onset,
directly supporting the role of neural oscillation in attending
(Stefanics et al., 2010). The steady-state evoked potential (SS-EP)
technique revealed that a periodic rhythm elicited a sustained
response in the delta band, and meter imagery elicited an
additional subharmonic resonance corresponding to the metric
interpretation (Nozaradan et al., 2011; Figure 2B). Another
study showed that complex rhythms elicited multiple SS-EPs
in the EEG spectrum at frequencies corresponding to the
rhythmic pattern envelope, and the amplitude of the SS-
EPs at pulse and meter frequencies was selectively enhanced,
suggesting a role for neural oscillations in pulse and meter
induction (Nozaradan et al., 2012). Thus, delta, beta and
gamma band responses to auditory rhythms observed in both
in EEG and MEG in humans have confirmed predictions
of dynamic attending theory. Given the role of beta in
motor processing and long-range intra-cortical interaction, these
findings are consistent with the idea that the motor system
influences the perception of sound, even in the absence of overt
movement.

Functional magnetic resonance imaging (fMRI) studies of
musical rhythm perception have clearly demonstrated that

listening to musical rhythms recruits both auditory and motor
areas of the brain (Chen et al., 2008a; Figure 2C). A functionally
connected network is implicated in extracting higher-order
features of a rhythm’s temporal structure, with the dorsal
premotor cortex mediating auditory-motor interactions, and
functional coupling of auditory-motor networks observed even
in perception tasks without a motor component (Chen et al.,
2008b). Such studies have implicated the basal ganglia (Grahn
and Rowe, 2009), cerebellum and supplementary motor area
(Chen et al., 2008a; Bengtsson et al., 2009), as well as the
dorsal premotor cortex and right frontal lobe (Bengtsson
et al., 2009). Functional connectivity analysis implicates a
cortico-subcortical network including the putamen, SMA, and
PMC for the analysis of temporal sequences, especially under
conditions that may require internal generation of the pulse
(Grahn and Rowe, 2009; Figure 2D). Basal ganglia may play
an important functional role in the formation of the pulse
percept (Chapin et al., 2010; Kung et al., 2013) or pulse
prediction (Grahn and Rowe, 2013). Although functional
imaging cannot resolve rhythmic time scales, MEG source
analysis has revealed beta band interactions in auditory and
motor networks during musical rhythm processing, implying
oscillatory interactions among auditory and motor cortices
as well as the cerebellum, thalamus, and parahippocampal
gyrus (Fujioka et al., 2012; Figure 2E). Synchronization of beta
suppression with the auditory input (Fujioka et al., 2012) and
the spatial overlap of the beta network with the striato-thalamo-
cortical network implicated by functional imaging suggests that
the mechanism of pulse and meter perception is fundamentally
oscillatory. Moreover, in macaque monkeys, beta- and gamma-
band oscillations measured using LFPs during synchronization-
continuation tasks suggest differential roles in rhythmic tapping
versus stimulus processing (Bartolo et al., 2014). Observations
of beta oscillations in basal ganglia during synchronization
and continuation further support their role in the striato-
thalamocortical circuit during control of rhythm (Bartolo and
Merchant, 2015; for a recent review, see Merchant et al., 2015a).
Interaction between sensory and motor regions of the brain
has been found not only when listening to music, but also
in speech perception and production (Rauschecker and Scott,
2009).

A summary of this scenario is outlined in Figure 3. Interaction
of excitatory and inhibitory neuronal populations gives rise
to population rhythms throughout the brain (Brunel, 2003;
Börgers and Kopell, 2003; Buzsáki andDraguhn, 2004; Stefanescu
and Jirsa, 2008), including sensory and motor networks. When
sensory stimuli are presented in a periodic pattern, ambient
delta-band oscillations entrain to the structure of the stimulus
stream (Will and Berg, 2007; Nozaradan et al., 2011, 2012).
Fluctuations in beta- and gamma-band rhythms synchronize as
well, consistent with an oscillatory hierarchy in auditory cortex
(Lakatos et al., 2005). Neuronal entrainment emerges rapidly
and facilitates behavioral responses (Stefanics et al., 2010). The
perception of pulse andmeter involves broadly distributed motor
systems (Chen et al., 2008a; Grahn and Rowe, 2009, 2013;
Kung et al., 2013) which respond with synchronized fluctuations
in gamma- and beta-band amplitude (Fujioka et al., 2012),

Frontiers in Systems Neuroscience | www.frontiersin.org 3 November 2015 | Volume 9 | Article 159

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Large et al. Neural Networks for Beat Perception

FIGURE 2 | (A) EEG revealed synchronized fluctuations in induced beta- and gamma-band power that anticipated tone onsets, were sensitive to intensity accents,

and persisted when expected tones were omitted. Evoked activity occurred after tone onsets and were strongly diminished after tone omissions (Snyder and Large,

2005; reprinted with permission). (B) A periodic rhythm elicited a steady-state evoked potential (SS-EP) at the stimulus repetition frequency, and meter imagery elicited

subharmonic resonances corresponding to the metric interpretation of this periodic rhythm (Nozaradan et al., 2011; reprinted with permission). (C) fMRI showed that

listening to musical rhythms recruits both auditory and motor areas of the brain even in perception tasks without a motor component (Chen et al., 2008a; reprinted

with permission). (D) Functional connectivity analysis revealed a cortico-subcortical network including the putamen, SMA, and PMC under conditions that may require

internal generation of the pulse (Grahn and Rowe, 2009; reprinted with permission). (E) MEG revealed oscillatory interactions in a striato-thalamo-cortical network

(Fujioka et al., 2012; reprinted with permission).

enabling coordination of perception and rhythmic movements
with musical rhythms (Chen et al., 2008b; Nozaradan et al.,
2013). Auditory-motor coupling is reciprocal (Phillips-Silver
and Trainor, 2005, 2007), and connections within and between
sensory and motor systems are assumed to be plastic (Hannon
and Trehub, 2005).

3. OSCILLATORY NETWORK
INTERACTIONS COULD GIVE RISE TO
MUSICAL PULSE PERCEPTION

A fundamental challenge to understanding a complex neural
system such as the one just described lies in the integration of
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FIGURE 3 | Interaction of excitatory and inhibitory neuronal populations gives rise to population rhythms in sensory and motor networks. When

sensory stimuli are presented in a periodic pattern, auditory cortical oscillations entrain to the structure of the stimulus stream. The perception of pulse and meter in

music also involves broadly distributed motor systems. Auditory-motor coupling is reciprocal, as vestibular stimulation can influence auditory rhythm perception.

Connections within and between sensory and motor systems are assumed to be plastic.

data from multiple modalities and multiple levels of observation
into a coherent systems model of perception, attention and
behavior. Musical rhythm provides a unique opportunity in
this regard, because acoustic signals are thought to drive
entrainment of neuronal population oscillations. Nonlinear
oscillation in general, and neural oscillation in particular,
have been widely studied in the mathematical and physical
sciences over the past 50 years, putting us in a unique
position to link levels of observation from spiking neurons
to population dynamics and from population dynamics to
perception and behavior, because sophisticated mathematical
tools are available for understanding the behavior of such
systems. Models of neuronal oscillations arising from the
interaction of excitatory and inhibitory populations of neurons
can be used to study mechanisms of neural oscillation
(Whittington et al., 2000), with implications for many different
aspects of neural information processing (Wilson and Cowan,
1973; Hoppensteadt and Izhikevich, 1999; Varela et al., 2001;
Koepsell et al., 2010; Ainsworth et al., 2012). Models may
be driven with external input (Brunel, 2003; Large et al.,
2010), may include synaptic plasticity (Hoppensteadt and
Izhikevich, 1996b; Brunel, 2003), and predict a surprisingly
rich repertoire of behaviors, including steady states, Hopf
bifurcations, double limit cycle bifurcations, bursting, and
chaotic dynamics (Brunel, 2000; Stefanescu and Jirsa, 2008;
Ledoux and Brunel, 2011).

Mathematical models can be useful in linking oscillation of
high dimensional neuronal populations with lower dimensional
population-level models that capture much of the behavioral
richness observed in high dimensional systems (Wilson and
Cowan, 1973; Stefanescu and Jirsa, 2008), and are amenable to
theoretical and computational analysis (Aronson et al., 1990;
Hoppensteadt and Izhikevich, 1996a). We have proposed one
such population-level model (Equation 1; Large et al., 2010)
to describe the dynamics of networks of neural oscillators

with different natural frequencies responding to external
stimulation:

τi
dxi

dt
= fi(xi, yi, λ)+ ǫpi(x1, y1, . . . , xn, yn, s(t), λ, ǫ)

τi
dyi

dt
= gi(xi, yi, λ)+ ǫqi(x1, y1, . . . , xn, yn, s(t), λ, ǫ) (1)

Here, the variables xi and yi represent excitatory and inhibitory
activities in the ith neuronal population, respectively. The
nonlinear functions fi and gi describe the intrinsic (uncoupled)
dynamics of the excitatory and inhibitory subpopulations, and
pi and qi describe interactions between neuronal subpopulations
with external input s(t). λ is a set of model parameters and τi is
varied to create a frequency gradient as is found in many parts
of the auditory system (Langner, 1992). ǫ is a small number
that represents weak interaction (Hoppensteadt and Izhikevich,
1996a; Large et al., 2010).

This very general model implies a set of generic predictions
about emergent neuronal oscillations under the influence of
time-varying external input (e.g., musical rhythms) that hold
under a broad set of assumptions (Hoppensteadt and Izhikevich,
1996a; Large et al., 2010). Equation (2) describes a canonical
gradient frequency neural oscillator network derived from
Equation (1) using normal form theory (Large et al., 2010), that
has been used to model entrainment of perception, attention and
behavior to rhythmic stimuli (Large, 2010).

τi
dzi

dt
= zi(α + i2π + β1|zi|2 + ǫβ2|zi|4 + . . .)

+
n∑

j 6=i

cijP(ǫ, zj)A(ǫ, z̄i)+ bis(t) (2)

Here the roman i denotes the imaginary unit and zi is the
complex-valued state variable for the ith neural oscillator whose
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FIGURE 4 | (A) Intrinsic oscillatory dynamics can take the form of a Hopf bifurcation, where a value α = 0 is the critical point, between damped (left) and spontaneous

(right) oscillation. (B) Mode locking in the canonical model. Within each resonance region (shaded), the canonical model mode-locks to input at the ratio shown in

figure (c: coupling strength, f : oscillator’s intrinsic frequency, f0: input frequency). Insets show the inputs and traces produced by a canonical model. (C) Architecture of

a model that captures interacting oscillatory dynamics in sensory and motor networks. A rhythm is input to a sensory network; sensory and motor networks are

reciprocally connected, providing input to one another.

real and imaginary parts can be thought of as the activation of
the excitatory and inhibitory subpopulations, respectively. The
ith oscillator’s natural frequency is given by fi = 1/τi. The β ’s
are nonlinear damping parameters, and the complete expansion
of intrinsic terms describes a fully saturating nonlinearity
(Murdock, 2003; Large, 2010). The parameter α controls the
system’s intrinsic behavior. α = 0 is the critical point,
above which the system exhibits spontaneous oscillation and
below which damped oscillation, through an Andorov-Hopf
bifurcation, illustrated in Figure 4A. The interaction of the

external signal with the intrinsic oscillatory dynamics makes the
key predictions in this model.

Nonlinear stimulus coupling predicts mode-locked responses
of neural oscillators to the stimulus. Mode-locking is a
generalization of phase-locking in which a periodic stimulus
interacts with an intrinsic oscillatory dynamics of a neuron or
neural circuit, causing k cycles of an oscillation to lock to m
cycles of the stimulus, where k and m are integers, as shown
in Figure 4B (for phase-locking, k = m = 1). Mode-locking
predicts neural responses at harmonics, subharmonics, integer
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ratios, and combination frequencies of those present in a given
rhythmic stimulus. Mode-locking in the canonical model is
captured using a full expansion of resonant monomials (Large
et al., 2010) which is expressed as a “passive” nonlinear function
P of input from another oscillator, zj, multiplied by an “active”
nonlinear functionA of the current state, zi:

P(ǫ, z) = z +
√

ǫz2 + ǫz3 + ǫ
√

ǫz4 + . . . =
z

1−
√

ǫz
(3)

A(ǫ, z̄) = 1+
√

ǫz̄ + ǫz̄2 + ǫ
√

ǫz̄3 + . . . =
1

1−
√

ǫz̄
(4)

We use two gradient frequency networks to model the functional
coupling of auditory-motor networks observed in perception
tasks without a motor component (Chen et al., 2008a; Velasco
and Large, 2011). The sensory network is intended to capture
auditory cortical entrainment, while the motor network is
intended to capture the dynamics of a broadly distributed
network including basal ganglia and cortical areas. As illustrated
in Figure 4C, the sensory network takes a rhythmic input, sends
output to a motor network, and the motor network send input
back to the sensory network (for a detailed description, see
Velasco and Large, 2011). Connections within and between
networks are assumed to be plastic and tuned by musical
enculturation (cf., Hannon and Trehub, 2005; Large, 2010;
Velasco and Large, 2011).

Although the model makes only very general assumptions
regarding underlying neural structures (e.g., Chen et al., 2008a),
it makes strong commitments about the oscillatory dynamics
of auditory-motor interactions (Will and Berg, 2007; Fujioka
et al., 2012; Nozaradan et al., 2013). The sensory oscillators are
tuned to operate near a Hopf bifurcation (Hoppensteadt and
Izhikevich, 1997), as shown in Figure 4A; the motor oscillators
are tuned to operate near a double limit cycle bifurcation
(Izhikevich, 2000; Velasco and Large, 2011). The double limit
cycle regime of the motor network means that the model can
capture synchronization-continuation behavior, continuing to
produce rhythmic behavior after the stimulus ceases (Wing
and Kristofferson, 1973a,b). Here, however, we are interested
in evaluating predictions about synchronization (Velasco and
Large, 2011). To predict mean field time series as observed in
EEG recordings (e.g., Will and Berg, 2007; Stefanics et al., 2010),
we sum the output of all oscillators in each network (Figure 5,
left). To predict steady state evoked potentials (SS-EPs, e.g.,
Berens and Velasco, 2009) we take a frequency analysis (DFT)
of the mean field (Figure 5, right).

As shown in Figure 5A, for a periodic stimulus, both sensory
and motor networks produce synchronized oscillations at the
pulse frequency, and generate harmonics (Repp, 2008) and
subharmonics (Vos, 1973; Bolton, 1894; Nozaradan et al., 2011).
In the case of a complex rhythm, however, it becomes clear
that the two networks are doing something quite different from
one another. The mean field time trace for the sensory network
represents the input rhythm rather faithfully, producing well-
defined pulses at input event times. By contrast, the motor
network entrains at the pulse frequency. The rhythm itself
contains no energy at the pulse frequency (or its second

subharmonic; DFT in Figure 5B, SS-EP, solid black), however, in
the motor network the strongest response is found at the pulse
frequency. In other words, the development of the pulse percept
depends on the interaction of these two oscillatory systems.

This predicts that an oscillatory network interaction can lead
to spontaneous pulse induction in complex rhythms—even in the
most extreme case of a rhythm for which there is no energy at the
pulse frequency. Thus, the theoretical prediction is that pulsemay
be perceived at a frequency that is not physically present in the
rhythmic stimulus (Large, 2010; Velasco and Large, 2011). The
prediction for an isochronous rhythm (Figure 5A) is consistent
with observations of subharmonic resonance in EEG (Nozaradan
et al., 2011), however, in that EEG study subharmonic resonance
was observed only when subjects were instructed to imagine it.
The behavior of the sensory network in response to the complex
rhythm (Figure 5B) is consistent with the observation of the
enhancement of metrical frequencies in the SS-EP (Nozaradan
et al., 2012). However, the prediction of network interaction goes
further in that the motor network produces metrical frequencies
that are completely absent from the rhythm. This is a strong
prediction that has never been tested.

This points up a critical issue in the interpretation of most
of the empirical studies that have been conducted to date.
The problem that arises in the theoretical interpretation of
synchronized periodic movements or population-level neural
recordings is that of linking observations of synchrony
with intrinsic dynamics of emergent population oscillations
(Whittington et al., 2000). EEG oscillations, for example,
represent a remote consequence of periodic activity in the
area of the brain between recording electrodes and a reference
electrode. To generate a signal distinct from background noise,
this activity must be manifest in a large enough proportion of
neurons proximal to the electrode, implying a certain degree of
synchronization among neurons. However, there are at least two
distinct mechanisms by which neuronal synchrony can occur:
it can be a consequence of an emergent population oscillation
within the network of cells under the electrode—with its own
intrinsic dynamics—or it could be merely a consequence of a
common rhythmic input (Whittington et al., 2000). In neural
resonance theory it is postulated that both are present, i.e.,
a common rhythmic input entrains an emergent population
oscillation. In this case, interpretation of a synchronized neural
responses is especially tricky, because a synchronized response
itself does not imply interaction of the input with an intrinsic
oscillatory dynamics. However, demonstration of a pulse percept
at a frequency that is not physically present in a stimulus rhythm
would directly implicate intrinsic oscillatory dynamics in the
perception of pulse.

4. DOES RHYTHMIC INPUT INTERACT
WITH INTRINSIC DYNAMICS TO FORM
THE PULSE PERCEPT?

Thus, the fundamental prediction to be tested is whether people
will perceive a pulse frequency that is not present in a rhythmic
stimulus. This is a strong prediction, because if pulse perception
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FIGURE 5 | The network of Figure 4C was stimulated with (A) an isochronous rhythm and (B) a “missing pulse” rhythm. Output of the sensory network is

in green and output of the motor network is in blue. The mean field time series (left) was obtained by summing the output of all the oscillators in the network over time.

The SS-EP is obtained by Fourier analysis (DFT) of the mean field time series. DFT of the stimulus envelope is shown in black on the sensory SS-EP axis.

could be experimentally observed at a missing frequency, it
would rule out the interpretation of synchronization due merely
to a common input frequency, and equivalently models of pulse
induction based on linear resonance. On the other hand, if a
predicted missing pulse were not observed, it would falsify the
hypothesis that pulse induction occurs due interaction between
a rhythmic stimulus and the intrinsic dynamics of endogenous
oscillatory networks.

Pulse is operationally defined as the frequency at which a
listener coordinates a periodic movement with a complex rhythm
(Large, 2008). Thus, we asked participants to listen to eleven
rhythms ranging from isochronous to highly complex, where
the most complex rhythms contained no spectral energy at the
pulse frequency predicted by the model, as shown in Figure 6.
Participants were instructed to listen to each rhythm until they
heard a steady pulse, and then tap along with the rhythm at that

rate. The fourteen participants were primarily undergraduates
from Florida Atlantic University, who received partial credit in
fulfillment of undergraduate psychology courses, one participant
was a volunteer, and none were professional musicians (8 males,
6 females; mean age 25.3; mean years of musical training: 3.2). All
participants provided informed consent, following guidelines set
by the Institutional Review Board of Florida Atlantic University.

Rhythms were presented at five levels of complexity (0–4)
and at five different tempi (i.e., pulse frequencies): 2.28Hz
(420ms), 2.17Hz (460ms), 2Hz (500ms), 1.85Hz (540ms), and
1.72Hz (580ms). The location of acoustic events on a metric
grid was used to manipulate the level of rhythmic complexity
(i.e., syncopation, see Figure 6). Counting quarter-note beats
as “strong” and eighth-note subdivisions as “weak” (Lerdahl
and Jackendoff, 1983), the level of syncopation was varied by
manipulating the number of events that fell on weak beats,
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FIGURE 6 | Each stimulus pattern contained eight events distributed over eight pulse cycles. Complexity was varied by manipulating the number of events

that fell in phase versus anti-phase with the intended pulse. At complexity level 0, all eight events were in-phase, at complexity level 1, one event was anti-phase, at

complexity level 2, two events were anti-phase, and so on. Level 4 was the most complex, with four events in-phase and four events anti-phase. One isochronous

control (level 0), two level 1 patterns, two level 2 patterns, two level 3 patterns, and four level 4 patterns were used, for a total of 11 rhythms.

as illustrated in Figure 6. Weak beats (subdivisions) can also
be thought of as existing in anti-phase relation to the in-
phase strong beats. At complexity level 0, all eight events
fell on strong beats, at complexity level 1, one event fell on
a weak beat and seven events fell on strong beats, and so
on. Level 4 was the greatest level of syncopation, with four
events on weak beats and four events on strong beats. Each
pattern consisted of 8 sounded events (262Hz sine waves, 50ms
duration, 5-ms rise and fall times) laid out on an eight-beat
metrical grid with binary subdivisions. Thus, the total duration
of each pattern was sixteen (eighth-note) beats, equivalent to
eight quarter-note beats or two four-beat measures. Each trial
consisted of six pattern repetitions. Different combinations of
tempo and rhythm were presented in a pseudorandom order
such that consecutive trials always had different rhythms, and
different tempos. Thus, participants were forced to find both the
frequency and the phase of the pulse anew for each rhythm;
they could not simply tap at the same tempo throughout the
experiment.

We measured instantaneous tapping frequency distributions
to determine whether subjects induced a pulse at the intended
frequency. Instantaneous tapping frequency was computed as
1/ITI (ITI = inter-tap interval in seconds) and tapping
frequencies were normalized to a frequency of 2Hz so they could
be combined into a single distribution at each level of complexity.
Spectral analysis (DFT) of the stimulus rhythms (Figure 7A,
black) shows that at the hypothetical pulse frequency amplitude
decreases with increasing complexity. At complexity level 4,
the amplitude is precisely zero at 2 and 1Hz for each rhythm.
Normalized instantaneous tapping frequency (Figure 7A, red
histogram) displays a main peak at the normalized pulse
frequency of 2Hz for all rhythms at all levels of complexity,
with lesser peaks at 1 and 0.5Hz, and for some rhythms, a
diffuse peak around 4Hz. Thus, the participants most often
tapped the predicted pulse frequency even for the most complex
rhythms, which had no spectral amplitude at that frequency.

The distributions for the higher levels of complexity (levels 3
and 4) were significantly different from the distributions for the
lower complexity levels [Kolmogorov-Smirnov, D(N = 101) =
0.24, p < 0.01]. The change appeared to be due to a decrease in
the proportion of taps at 2Hz and an increase in the proportion
of (unsynchronized) taps between 1 and 2Hz.

Next, we examined synchronization for each trial. The
sequence of tap times was converted into a sequence of phases
relative to the predicted pulse frequency, and the circular mean
was computed for each trial (Batschelet, 1981; Figure 7B; blue
circles). The grand mean was then computed for each complexity
level (Figure 7B, red line). The length, r, of the mean vector is
the synchronization coefficient, a measure of tapping variability
(1 corresponds to no variability, and 0 corresponds to maximum
variability), and the angle, φ, of the mean vector indicates the
relationship to the hypothetical pulse, where positive values of
φ indicate late tapping and negative values indicate early taps, on
average (Batschelet, 1981).

At the lowest level of complexity, mean vectors clustered near
the unit circle, indicating a high degree of synchronization, and
near a phase of 0, indicating in-phase tapping. As complexity
increased, a growing number of vectors clustered near zero,
indicating lack of synchronization. The percentages of trials that
were synchronized at r > 0.5 (a highly conservative criterion
Fisher, 1993) were 97, 96, 89, 60, and 55% for complexity
levels 0–4, respectively. Thus, the more complex rhythms were
more difficult to synchronize with, however, the majority of the
time participants synchronized at the predicted pulse frequency,
even for the rhythms that had no stimulus energy at that
frequency. Finally, for the most complex rhythms (levels 3
and 4) a significant number of mean relative phases clustered
near a relative phase of π , indicating anti-phase tapping. The
proportion of anti-phase tapping changed across the five levels
of syncopation [χ2(1, n = 565) = 64.59, p < 0.001], but was
equally distributed across tempos, [χ2(1, n = 565) = 3.16, p >

0.10]. Although the stimulus tempo range was relatively small,
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FIGURE 7 | (A) Tapping frequencies were normalized to a 2Hz (120 bpm) tempo to allow comparison between trials at different tempos. Tapping frequency

distributions (red histograms) were computed by binning normalized instantaneous tapping frequencies from 0 to 5.00Hz in bin widths of 0.05Hz. Distributions were

computed for each rhythm separately, including every tap interval across trials. Black lines show amplitude spectrum of the stimulus envelope for comparison.

(B) Circular means of tap phases for each trial (blue circles) and grand mean for each complexity level (red line).

the fact that this analysis showed that the majority of trials were
well phase locked to the pulse indicates subjects were not merely
tapping near a preferred tempo (e.g., 2Hz). If this had been the
case, these trials would not have shown such strong phase locking.

As predicted by the model, participants synchronized—either
in-phase or anti-phase—predominantly at the missing pulse
frequency. This behavior is consistent with the prediction that
formation of the pulse percept arises due to entrainment of
emergent neuronal oscillations. It also rules out the potential
alternatives that synchronization is merely a consequence of a
common rhythmic input, or that the pulse percept may arise
due to linear resonance. Theoretically speaking, it is critical to
distinguish the role of a common stimulus frequency from the
intrinsic dynamics of a emergent oscillation (Whittington et al.,
2000), and the missing pulse rhythms used here enabled us to

dissociate the two. Such rhythms may also be useful in studying
the development of rhythm perception and synchronization
(e.g., Kirschner and Tomasello, 2009), as well as the capabilities
and limitations of “beat-deaf” individuals (e.g., Phillips-Silver
et al., 2011) and non-human animals (e.g., Patel et al., 2009;
Cook et al., 2013; Large and Gray, 2015), as it allows us
to tease apart the stimulus from any potential contribution
of endogenous neural rhythms. Additionally, more thorough
analysis of synchronization behavior will enable us to fit
model parameters and evaluate the detailed predictions of the
neurodynamic model.

Recent findings using the steady-state evoked potential (SS-
EP) approach provide converging evidence for the hypothesis
of nonlinear resonance in pulse perception. In one study, meter
imagery elicited subharmonic resonance at metric frequencies for
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a stimulus with no energy at the to-be-imagined subharmonics
(Nozaradan et al., 2011). This study provided direct evidence
of mode-locking, however, the subharmonic resonance was not
spontaneous, it was instructed. Therefore, it does not directly
address the issue of spontaneous pulse perception in complex
rhythms. In another study, the amplitudes of the SS-EPs at pulse
and meter frequencies were shown to be selectively enhanced
in syncopated rhythms even though acoustic energy was not
predominant at these frequencies (Nozaradan et al., 2012). While
the result of that study matched predictions for the sensory
network (Large, 2010; Velasco and Large, 2011) such a finding is
not inconsistent with linear resonance (Oppenheim and Schafer,
1975), because no responses were found at frequencies that were
absent from the stimulus. This study demonstrated perceived
pulse at frequencies that were completely absent from the
stimulus rhythms.

5. DISCUSSION

The hypothesis of neural resonance to musical rhythms has been
supported by a great deal of behavioral and electrophysiological
evidence since Jones’s original dynamic attending proposal nearly
forty years ago. Not only has the framework stood up to
empirical testing, but it has turned out to be compatible and
complementary in interesting ways with sensory-motor theory,
originally proposed by Todd as an alternative conception of
musical rhythm perception. It is not surprising that sensory and
motor rhythms interact, but what is somewhat unexpected is the
possibility that oscillatory sensory-motor interaction itself could
give rise to the percepts of pulse and meter. These data do not
speak to how the sensory and motor systems interact; for that,
additional work will be needed. Moreover, it remains to test the
theory at the level of neural population oscillations, using EEG
and MEG in humans, which is, in fact, the level of prediction
at which the mathematical theory operates. Nevertheless, the
fundamental prediction of the theory, that pulse should be
perceived in rhythms with no energy in the amplitude envelope
at the pulse frequency, is supported by behavioral evidence.

The phenomenon demonstrated empirically here, the
perception of a “missing pulse,” is reminiscent in some ways of
the “missing fundamental” phenomenon of pitch perception (for
a review, see Plack and Oxenham, 2005). If the energy at the
fundamental frequency is removed from the complex spectrum
of a periodic sound, the perceived pitch remains unchanged,
matching the pitch of a sinusoid with the frequency of themissing
fundamental (Schouten, 1938; Licklider, 1956). Both phenomena
involve the perception of a frequency that is “missing” from the
stimulus. The mechanisms of pitch perception are still debated
by theorists (Plack and Oxenham, 2005). However, the analogous
effect may indicate the involvement of a similar mechanism, i.e.,
neural oscillation, albeit at different time scales. For example,
a model based on the oscillations of cochlear nucleus chopper
cells has been proposed to account for complex pitch perception
(Meddis and O’Mard, 2006). It is important to note, however,
that while these phenomena are similar, they are not the same.
Perceived pitch generally corresponds to the fundamental of a

pitched sound, whereas the perceived pulse of a musical rhythm
is not its fundamental frequency.

A fundamental aspect of neural computation that our model
does not explicitly take into account is the discharge rate and
the temporal codes of action potentials produced by single
cells in the central nervous system. It has been suggested,
for example, that oscillatory signals themselves do not carry
information, but instead all information is represented in
the spiking activity of cells (see e.g., Shadlen and Movshon,
1999). Recent neurophysiological experiments in monkeys have
revealed that neurons in SMA dynamically encode duration
and serial order elements of the produced intervals in a
synchronization-continuation task (Merchant et al., 2013; Crowe
et al., 2014; Merchant et al., 2015b). However, oscillations and
spikes interact in important ways, and efforts are currently
being made to understand how spike discharge information
coordinates with local and global neural oscillatory activity
(Kayser et al., 2009; Buzsáki et al., 2012; Musacchia et al.,
2014). For example, the active sensing framework of Schroeder
and colleagues has clear parallels with neural resonance theory
that are beginning to be recognized and exploited (Henry
and Herrmann, 2014; Musacchia et al., 2014). This approach
describes rhythmic attention in terms of excitation-inhibition
cycles tied to slow neural oscillations that can be entrained by
rhythmic stimulation (Lakatos et al., 2005, 2008; Schroeder et al.,
2010). Entrainment of cortical rhythms is thought to engage
neurodynamic mechanisms of temporal prediction to segregate
incoming information and organize spike timing (Musacchia
et al., 2014). Experiments are investigating concepts of attending
dynamics at the neuronal level and, in combination with the
emerging study of behavioral synchronization in nonhuman
animals (Patel et al., 2009; Zarco et al., 2009; Honing et al.,
2012; Cook et al., 2013; Large and Gray, 2015), promises insights
that are capable of linking neuronal dynamics with perception,
attention and behavior.

Recently, Patel and Iversen have claimed that entrainment
of neural oscillation to external rhythms is not sufficient to
explain beat perception (Patel and Iversen, 2014). In their
view, neural oscillation cannot account for the fact that: “pure
perception of a musical beat (i.e., listening in the absence of
overt movement) strongly engages the motor system,” and they
suggest that “beat perception involves more than the passive
entrainment of neural responses to sound." They propose the
action simulation for auditory prediction (ASAP) hypothesis as an
alternative. However, these objections represent misconceptions
regarding the fundamental nature of neural oscillation and the
specific predictions of neural resonance theory. Here, we have
provided a specific model of pulse and meter perception based
on oscillatory interactions between auditory and motor systems,
and we have tested the prediction that pulse perception is based
on entrainment of active, endogenous neural oscillations. Our
result conclusively rules out passive synchronization of neural
activity with external rhythms. While the ASAP hypothesis
makes predictions regarding the specific neural structures
involved in the perception of pulse and meter, it makes no
predictions regarding the nature of the computations that
take place in these regions. By contrast, the neural resonance
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approach makes specific predictions about the nature of the
neurodynamic processes involved in musical rhythm perception
(see Large, 2008; Large and Snyder, 2009) and it explains a
phenomenon that other models fail to explain. It does not
make strong commitments to specific brain regions, however,
and more empirical data will be necessary to understand how
the various neural structures involved contribute to observed
neurodynamics. Nevertheless, the theory is based on a canonical
model of neural oscillation, thus the predictions hold for an
entire family of dynamical systems, suggesting that it will scale
as we learn more about the dynamical interactions in the striato-
thalamo-cortical network underlying rhythm perception. Neural
resonance theory is also consistent with Hebbian theory (Large,
2010), suggesting that it will be able to account for findings
regarding plasticity and perceptual narrowing in rhythmic
enculturation (e.g., Hannon and Trehub, 2005).

Additionally, Patel and Iversen have identified neural
resonance theory with Darwin’s idea that “The perception ... of
musical ... rhythm is probably common to all animals, and no
doubt depends on the common physiological nature of their
nervous systems” (Patel and Iversen, 2014). They argue against
neural resonance based on their interpretation that “[rhesus
monkeys] do not perceive a beat in rhythmic auditory patterns
. . . [and] could not learn to tap in synchrony with an auditory
metronome.” However, their fundamental argument appears to
be based on the assumption that if neural resonance underlies
pulse perception in humans, similar networks must be present
in all animals. Moreover, Patel (2014) and Fitch (2012) reason
that if that is true, then all animals should be able to synchronize
body movements to rhythms. As we have argued elsewhere
(Large and Gray, 2015), species differences in perception-action
coordination do not speak to the question of whether or not the

fundamental neural processes are oscillatory. Species differences
could be accommodated within a neural resonance framework,
for example, simply in terms of the differences in auditory-motor
coupling (see e.g., Merchant and Honing, 2013). Furthermore,
to the extent that ASAP is to be identified with Patel’s “vocal
learning hypothesis,” recent observations of entrainment to
musical rhythms in a sea lion (Cook et al., 2013), and entrainment
to simpler rhythms in a chimpanzee (Hattori et al., 2013) and a
bonobo (Large and Gray, 2015) are providing mounting counter
evidence.

An understanding of the relationship between auditory
neurophysiology, auditory population dynamics and auditory
perception is an elusive goal, due to the intricate circuitry,
the many structural levels involved, and the highly nonlinear
nature of the neural responses. Significant theoretical advances
will be necessary to understand signal processing, pattern
formation, and plasticity in this complex and highly nonlinear
system. Our approach draws upon the well-established theory
of nonlinear dynamical systems to build novel and increasingly
comprehensive models, and make predictions for physiological
and behavioral experiments. This may allow us to directly
link, for the first time, complex neuronal dynamics in animal
models, neural population dynamics observed in human EEG

andMEG, and perceptual dynamics assessed behaviorally, within
an overarching theoretical framework that describes system
dynamics at multiple levels of observation.
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