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Oscillatory neuronal activity may provide a mechanism for dynamic network coordination.

Rhythmic neuronal interactions can be quantified using multiple metrics, each with their

own advantages and disadvantages. This tutorial will review and summarize current

analysis methods used in the field of invasive and non-invasive electrophysiology to

study the dynamic connections between neuronal populations. First, we review metrics

for functional connectivity, including coherence, phase synchronization, phase-slope

index, and Granger causality, with the specific aim to provide an intuition for how these

metrics work, as well as their quantitative definition. Next, we highlight a number of

interpretational caveats and common pitfalls that can arise when performing functional

connectivity analysis, including the common reference problem, the signal to noise ratio

problem, the volume conduction problem, the common input problem, and the sample

size bias problem. These pitfalls will be illustrated by presenting a set of MATLAB-scripts,

which can be executed by the reader to simulate each of these potential problems. We

discuss how these issues can be addressed using current methods.

Keywords: functional connectivity (FC), coherence analysis, phase synchronization, granger causality,

electrophysiology, oscillations

INTRODUCTION

Different cognitive or perceptual tasks require a coordinated flow of information within networks
of functionally specialized brain areas. It has been argued that neuronal oscillations provide a
mechanism underlying dynamic coordination in the brain (Singer, 1999; Varela et al., 2001; Fries,
2005, 2015; Siegel et al., 2012). These oscillations likely reflect synchronized rhythmic excitability
fluctuations of local neuronal ensembles (Buzsáki and Wang, 2012), and may facilitate the flow
of neural information between nodes in the network when the oscillations are synchronized
between those nodes (Womelsdorf et al., 2007). The neural information transmitted from one
region to another is reflected by the action potentials, where the action potentials themselves
may be temporally organized in bursts. These bursts may occur during oscillations and may
further enhance the reliability of the information transmission (Lisman, 1997) or contribute to
the establishment of long-range synchronization (Wang, 2010). The brain could dynamically
coordinate the flow of information by changing the strength, pattern, or the frequency with which
different brain areas engage in oscillatory synchrony.

The hypothesis that neuronal oscillations in general, and inter-areal synchronization of these
oscillations in particular, are instrumental for normal brain function has resulted in widespread
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application of quantitative methods to evaluate neuronal
synchrony in electrophysiological data. These data can be
obtained with invasive or non-invasive recording techniques,
and in a context that involves an experimental manipulation
or in a context that is task-free. Irrespective of the recording
technique and context, once the data have been collected the
experimental researcher is faced with the challenge to quantify
neuronal interactions as well as to provide a valid interpretation
of the findings. We feel that this is challenging for several
reasons. First, the methods literature provides a multitude of
metrics to quantify oscillatory interactions (for example, a recent
review characterized 42 distinct methods, Wang et al., 2014),
often described with a large amount of technical detail. Some
methods, such as coherence and Granger causality, are based
on rigorous statistical theory of stochastic processes, while
others, such as Phase-Locking Value (PLV) are modifications to
these methods that may be somewhat ad hoc, but nevertheless
useful. Each of these metrics has their own advantages and
disadvantages, and their own vigorous adherents and opponents.
It is often difficult to choose and justify which method to use,
even for the technically initiated. Second, since the algorithmic
implementation of a particular interaction metric can be quite
complicated, some research groups may have an idiosyncratic
implementation of their championed interaction measures, with
limited accessibility to the wider research community. This
complicates applicability of these particular metrics and the
comparison to other metrics. Third, the interpretation of the
findings is typically not straightforward and results are therefore
prone to being over-interpreted.

The purpose of this paper is to provide a (non-exhaustive)
review and tutorial for the most widely used metrics to quantify
oscillatory interactions, and to provide the reader with an
intuitive understanding of these metrics. First, we provide a
general taxonomy of metrics to estimate functional connectivity.
Next, we provide a more formal definition of the most commonly
used metrics, where possible illustrating the principles behind
these metrics using intuitive examples. In the last part, we discuss
various analysis pitfalls that one can encounter in applying these
methods to real data. Using simulations, we generate synthetic
time series to demonstrate how a multitude of practical issues
can arise to generate spurious functional connectivity, which
should not be interpreted in terms of underlying neuronal
interactions. The different problems we discuss are signal-to-
noise ratio (SNR) differences, limits in sample size, volume
conduction/electromagnetic field spread, the choice of reference,
and the problem of unobserved inputs. The generation of the
synthetic time series as well as their analysis has been performed
in MATLAB, using FieldTrip (Oostenveld et al., 2011), which
will enable the comparison of how different data features affect
the metrics of oscillatory interactions, and how different metrics
perform on the same data. For each simulation of common
pitfalls, where possible we present practical steps that can be
used to mitigate the concerns. These simulations are put forward
as toy examples of some of the problems that can occur, and
are not intended to reproduce the full complexity of real data.
Yet, we hope that they will serve as a useful guide to common
interpretation issues and the current state of the art in addressing

them. Finally, we also discuss where future methods might be
useful in order to deal with limitations of current methods.

TAXONOMY OF FUNCTIONAL
CONNECTIVITY METRICS

In this section, we will present a possible taxonomy of commonly
used metrics for functional connectivity (Figure 1) and briefly
describe the main motivations for each of those methods.
A first subdivision that can be made is based on whether
the metric quantifies the direction of the interaction. Non-
directed functional connectivity metrics seek to capture some
form of interdependence between signals, without reference
to the direction of influence. In contrast, directed measures
seek to establish a statistical causation from the data that is
based on the maxim that causes precede their effects, and
in the case of Granger causality and transfer entropy, that
causes in some way predict their effects. These definitions
of statistical causality were originally developed by Wiener
(1956) and later practically implemented using auto-regressive
models by Granger (1969). In neuroscience, a rich and growing
literature has evolved that used these particular methods
to quantify neuronal interactions, which has been reviewed
elsewhere (Bressler and Seth, 2011; Sakkalis, 2011; Seth et al.,
2015).

Within both directed and non-directed types of estimates, a
distinction can be made between model-free and model-based
approaches. The model-based approaches depicted in Figure 1

FIGURE 1 | A taxonomy of popular methods for quantifying functional

connectivity.
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all make an assumption of linearity with respect to the kinds
of interactions that may take place between two signals. The
simplest measure for non-directed model-based interactions is
the Pearson correlation coefficient, which measures the linear
relationship between two random variables. In the general linear
modeling framework the squared correlation coefficient (R2)
represents the fraction of the variance of one of the variables (or
signals) that can be explained by the other, and vice versa. Amore
generalized approach that does not assume a linear relationship
is mutual information (Kraskov et al., 2004), which measures
the generalized (linear and non-linear) interdependence between
two or more variables (or time series) using concepts from
information theory.

The Pearson correlation coefficient (and mutual information)
as such are non-directed measures of interaction. Also, these
measures ignore the temporal structure in the data, and treat
the time series as realizations of random variables. In other
words, this latter property means that the estimated connectivity
will be the same irrespective of whether the time series have
been randomly shuffled or not. Yet, when we shift the two
time series with respect to one another before the correlation
is computed (and do this shift at multiple lags), we will obtain
the cross-correlation function, and evaluation of the cross-
correlation as a function of time lag does account for temporal
structure in the data. In particular, in some well-behaved cases it
may sometimes be used to infer directed neuronal interactions.
Specifically, the cross-correlation function has been effective
to study neuronal systems containing dominant unidirectional
interactions that exert their largest influence at a specific time
delay (e.g., the retino-geniculate or geniculocortical feedforward
pathways, Alonso et al., 1996; Usrey et al., 1998). In these
cases, the time lag of maximal correlation and the magnitude of
correlation can be informative about information flow between
brain areas (e.g., Alonso et al., 1996). However, the interpretation
of the cross-correlation function becomes complicated when it is
estimated from neuronal signals with bidirectional interactions,
which is the dominant interaction scenario in the majority of
cortico-cortical connections. The cross-correlation functions of
these interactions typically lack a clear peak, and have significant
values at both positive and negative lags, indicating complex,
bi-directional interactions that occur at multiple delays.

To address this limitation, other methods can be used, which
assess the extent to which past values of one time series are
able to predict future values of another time series, and vice
versa. This notion is formally implemented in the metric of
Granger causality. This metric can be computed using a linear
auto-regressive model fit to the data or through non-parametric
spectral matrix factorization (described in more detail later), and
allows for an estimation of directed interactions. In particular, it
allows for a separate estimate of interaction from signal x to signal
y, and from signal y to signal x.

Finally, model-free approaches have also been developed to
detect directed interactions. For instance, transfer entropy is
a generalized, information-theoretic approach to study delayed
(directed) interactions between time series (Schreiber, 2000;
Lindner et al., 2011). Transfer entropy is a more generic
implementation of the maxim that causes must precede and

predict their effects, and is able to detect non-linear forms of
interaction, which may remain invisible to linear approaches
like Granger causality. In addition, transfer entropy has also
been extended to specifically measure directed interactions
between ongoing phase estimates of separate signals, which is
useful to study non-linear oscillatory synchronization (Lobier
et al., 2014). However, due in part to its generality, it is
more difficult to interpret this measure. While the model-free
approaches may be useful in quantifying non-linear neuronal
interactions, this review will focus on the model-based, linear
methods. Linear methods are sufficient to capture a wide-array
of oscillatory interactions which are expected to take place
under the hypothesis that oscillatory phase coupling governs
neuronal interactions. For example, if we are interested in
determining whether neuronal oscillations at similar frequencies
in brain areas A and B engage in oscillatory coupling with a
preferred phase difference, linear measures such as coherence
or PLV will capture this interaction. If on the other hand
we are interested in non-linear forms of coupling, such as
cross-frequency coupling (where the phase or amplitude of
frequency f1 interacts with the phase or amplitude of frequency
f2, where f1 6= f2), then other metrics would be necessary.
Therefore, the choice of method or data analysis should
always be guided by the underlying hypothesis that is being
tested.

A particularly important distinction if we wish to study
oscillations is the distinction between metrics that are computed
from the time or frequency domain representation of the signals.
In order to identify individual rhythmic components that
compose the measured data, and specifically to study rhythmic
neuronal interactions, it is often convenient to represent
the signals in the frequency domain. The transformation to
the frequency domain can be achieved by the application of
non-parametric (Fourier decomposition, wavelet analysis, or
Hilbert transformation after bandpass filtering) or parametric
techniques (autoregressive models). Subsequently, frequency-
domain functional connectivity metrics can be estimated
to evaluate the neuronal interactions. As we will see, many
of these metrics in some way or another quantify the
consistency across observations of the phase difference
between the oscillatory components in the signals. A non-
random distribution of phase differences could be indicative
of functionally meaningful synchronization between neural
populations.

We also note that there are a diverse group of methods
that operate purely on the amplitude (envelope) of the
oscillations to quantify amplitude and power correlations
independent of phase relations. These methods have been
fruitfully used to quantify large-scale brain networks by several
groups (Hipp et al., 2012; Vidal et al., 2012; Foster et al.,
2015). Indeed, there is now a growing debate about whether
phase-relations or amplitude relations govern large-scale brain
networks, with evidence existing for both perspectives (see
Foster et al. this issue). In the following section we will
focus on frequency-domain metrics that require an estimate
of the phase of the oscillations, as opposed to metrics that
quantify amplitude relations. Again, the choice of method
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depends on the underlying hypothesis that is being tested. Phase-
based methods are appropriate for testing hypotheses where
phase and moment-by-moment changes in synchronization are
considered to be mechanisms for neuronal communication
(e.g., Fries, 2005; Bastos et al., 2014). We will also not review
methods that quantify phase-amplitude coupling as they are
beyond the scope of this review and have been discussed
extensively elsewhere (Canolty and Knight, 2010; Aru et al.,
2015).

MEASURES OF SYNCHRONIZATION

In general measures of phase synchrony are computed from
the frequency domain representation of a pair of signals,
which represents across a set of observations (epochs or time
windows), and for a set of frequency bins, an estimate of the
amplitude and the phase of the oscillations. Mathematically, it is
convenient to represent these amplitudes and phases combined
into complex-valued numbers, Aeiϕ , or equivalently x + iy,
which can be geometrically depicted as points in a 2-dimensional
Cartesian coordinate system, where the magnitude of the vector
connecting the point with the origin reflects the amplitude,
and the angle of the vector with the X-axis reflects the phase
(see Figure 2A; equivalently the x and y coordinates of this
number represent the Real and Imaginary parts, respectively).
The spectral representation of individual signals is combined
to obtain the cross-spectral density (the frequency domain
equivalent of the cross-covariance function), by means of
frequency-wise multiplication of the spectral representation of
one of the signals with the complex conjugate of the spectral
representation of the other signal, where complex conjugation
is defined as taking the negative of the phase angle. This
multiplication results in a complex number, which geometrically
depicts a vector in 2-dimensional space, where the magnitude
of the vector reflects the product of the two signals’ amplitudes,
and the angle between the vector and the X-axis reflects the
two signals’ difference in phase (see Figure 2B). Measures of
phase synchrony now aim to capture some property of the
probability distribution of the single observation cross-spectral
densities, quantifying the consistency of the distribution of phase
differences. One way to combine the cross-spectral densities
would be to take a weighted sum, which geometrically amounts
to drawing all vectors head to tail, and normalize the end
result. The idea is now that if there is some consistency across
observations of the phase difference between the two oscillatory
signals, the length of the weighted sum will have a non-zero
value (because the vectors efficiently add up), whereas it will be
close to zero when the individual observations’ phase differences
are evenly distributed between 0 and 360◦. Figure 3 displays
three “toy scenarios” to illustrate this concept. Imagine two
oscillators that have a consistent zero-degree phase relation over
many trials or observation epochs. This is depicted graphically
in the time domain in the left panels of Figure 3, showing two
signals (oscillation 1 and oscillation 2) that are observed for
four trials. The right panels of Figure 3 show the vector sums
of the cross-spectral densities. For the time being we assumed
the amplitude of the oscillations to have a value of 1. In the

first scenario (Figure 3A) the phase difference is the same (and
0) for each of the observations, yielding a vector sum that has
a length of 4. In the second scenario, the phase difference is
also consistent across observations (i.e., 90◦ each time). In the
third scenario however, the phase difference is not consistent
across observations. In this example, the individual observations’
phase differences were 0, 90, 180, and 270◦ respectively, resulting
in individual observation cross-spectral density vectors pointing
right, up, left and down. This results in a vector sum that has zero
length, which coincides with the fact that there was no consistent
phase difference in this case. Note that real data will fall between
the two extremes of perfect phase synchronization (vector sum
normalized by number of epochs equals 1) and a zero phase
synchronization (vector sum to zero), even in the absence of
any true phase synchronization due to sample size bias (see the
section on sample size bias for an in depth discussion of this issue
and how it can be mitigated).

The Coherence Coefficient
One widely used metric quantifying phase synchrony
between a pair of measured signals is the coherence
coefficient. Mathematically, the coherence is the frequency
domain equivalent to the time domain cross-correlation
function. Its squared value quantifies, as a function of
frequency, the amount of variance in one of the signals
that can be explained by the other signal, or vice-versa,
in analogy to the squared correlation coefficient in the
time domain. The coherence coefficient is a normalized
quantity bounded by 0 and 1, and is computed mathematically
as:

cohxy(ω) =

∣
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∣
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The numerator term represents the length of the vector
average of the individual trial cross-spectral densities between
signal x and y at frequency ω. The denominator represents
the square root of the product of the average of the
individual trial power estimates of signals x and y at
frequency ω.

It is usually more convenient to represent the averaged
cross-spectral density in a single matrix, omitting the complex
exponentials in the notation:

S (ω)=

[

Sxx (ω) Sxy (ω)

Syx (ω) Syy (ω)

]

The diagonal elements reflect the power estimates of signals x
and y, and the off-diagonal elements reflect the averaged cross-
spectral density terms. The coherence can then be concisely
defined as:

cohxy (ω)=

∣

∣Sxy(ω)
∣

∣

√

Sxx(ω)Syy(ω)
(2)
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A B

FIGURE 2 | Using polar coordinates and complex numbers to represent signals in the frequency domain. (A) The phase and amplitude of two signals. (B)

The cross-spectrum between signal 1 and 2, which corresponds to multiplying the amplitudes of the two signals and subtracting their phases.

Coherency and the Slope of the Phase
Difference Spectrum
When the magnitude operator (|. . . |) is omitted from the
numerator in equation above, we obtain a complex-valued
quantity called the coherency, where the phase difference angle
may be interpretable (if there is a clear clustering of phase
difference angles across trials) in terms of temporal delays. This
is based on the notion that a consistent phase lag (or lead)
across a range of frequency bins translates to a time lag (or
lead) between the two time series. Note that the phase difference
estimate in a single frequency bin may be ambiguous in its
interpretation, because a, say, −150◦ phase delay cannot be
disentangled from a +210◦ phase delay. This is due to the fact
that the phase difference is circular modulo 360◦. However,
observing the phase difference over a range of frequencies
may give an unambiguous interpretation of temporal delays. A
disambiguated estimate of the time delay can be obtained when
the rhythmic interaction can be described as a predominantly
unidirectional time-lagged linear interaction. This estimate is
then based on an estimate of the slope of the phase difference
as function of the frequency range in which there is substantial
coherence. This is because a fixed time delay between two time
series leads to a phase difference that is a linear function of
frequency. As an example, consider a time lag of 10ms and
a rhythmic process with substantial oscillatory power in the
frequency range between 8 and 12Hz. At 8Hz, i.e., at a cycle
duration of 125ms, a time shift of 10ms amounts 10/125 (0.08)
of an oscillatory cycle (which amounts to 28.8◦). At 10Hz, the
same time shift amounts to 10/100 of an oscillatory cycle (36◦),
and at 12Hz, a time shift of 10ms amounts to 10/83.33 (0.12)
of an oscillatory cycle (43.2◦). We would like to emphasize,
however, that an interpretation of the estimated slope of the
phase difference spectrum in terms of a temporal delay (and
thus as an indicator of directionality) is only valid under rather
ideal circumstances, where the interaction is predominantly
unidirectional and well-captured under the assumption of

linearity. Under non-ideal circumstances, the phase difference
spectrum is a complicated function of frequency, and using it
alone to assign directionality is un-principled (Witham et al.,
2011; Friston et al., 2012).

Phase Slope Index
Compared to the slope of the phase difference spectrum,
which assumes time-lagged and linear interactions, the phase
slope index (PSI) is a more generic quantity to infer
dominant unidirectional interactions (Nolte et al., 2008). It is
computed from the complex-valued coherency, and quantifies
the consistency of the direction of the change in the phase
difference across frequencies. Given a pre-specified bandwidth
parameter, it computes for each frequency bin the change
in the phase difference between neighboring frequency bins,
weighted with the coherence. As a consequence, if for a given
frequency band surrounding a frequency bin the phase difference
changes consistently across frequencies, and there is substantial
coherence, the PSI will deviate from 0. The sign of the PSI
informs about which signal is temporally leading the other one.
As discussed in the previous section, under situations where
interactions are bi-directional, the phase difference spectrum
(and consequently PSI) may fail at correctly describing the
directionality. For further discussion of this, the reader is referred
to Witham et al. (2011) and Vinck et al. (2015).

Imaginary Part of Coherency
When the complex-valued coherency is projected onto the
imaginary axis (y-axis) we obtain the imaginary part of the
coherency (Nolte et al., 2004). This measure has gained some
momentum over the past years, in particular in EEG/MEG
connectivity studies (García Domínguez et al., 2013; Hohlefeld
et al., 2013). Discarding contributions to the connectivity
estimate along the real axis explicitly removes instantaneous
interactions that are potentially spurious due to field spread, as
discussed in depth in a later section.
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A

B

C

FIGURE 3 | The mechanics of the computation of phase synchrony. (A) An instance of perfect phase alignment at 0 radians. (B) An instance of perfect

synchronization at a difference of π/2 radians. (C) Absence of phase synchronization due to inconsistent phase differences.
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Phase Locking Value
When applying the formula for the computation of coherence
(Equation 1) to amplitude normalized Fourier transformed
signals, we get the phase locking value (PLV) (Lachaux et al.,
1999):

plvxy (ω) =
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As a result of these individual observation normalizations, the
PLV is computed as the length of the vector-average of a set of
unit-length phase difference estimates. In motivating the use of
PLV, as opposed to coherence, it is often claimed that the former
reflects more strictly phase synchronization than coherence,
because the latter confounds the consistency of phase difference
with amplitude correlation. From a mathematical point of view
this may be true, but on the other hand one could argue that it
is more “difficult” to obtain a meaningful non-zero coherence
value in the absence of consistent phase differences, compared
to when there are no amplitude correlations. Intuitively, when
all individual observation cross-spectral density estimates are
pointing in random directions (no phase synchrony), even in
the presence of perfect amplitude correlations, expected value
of their vector average will still be comparatively small. On the
other hand, if all individual cross-spectral density estimates are
pointing more or less into the same direction (strong phase
synchrony), even in the absence of amplitude correlations, the
expected value of their vector average will still be appreciable.
Also, one could argue, in the case of coherence, that assigning
a stronger weight to observations with a large amplitude product,
one is favoring those observations that have a higher quality
phase difference estimate. This realistically assumes that a higher
amplitude reflects a higher SNR of the sources of interest and
thus, a better quality phase estimate.

Other Measures to Quantify Consistent
Phase Differences
In addition to the quantities described in the previous sections,
over the past years various other metrics have been defined
to quantify synchronized interactions between neuronal signals.
The motivation for the development of these metrics is that
most connectivitymetrics suffer from interpretational difficulties.
These difficulties, which are discussed and illustrated in more
detail below, have prompted methods developers to define
metrics that are less prone to suffer from these problems.We have
already discussed the imaginary part of coherency and the phase
slope index, and this section describes two additional measures
that are increasingly popular, the phase lag index (PLI), and
pairwise phase consistency (PPC).

The PLI is a metric that evaluates the distribution of phase
differences across observations. It is computed by averaging the
sign of the per observation estimated phase difference (Stam et al.,

2007). It is motivated by the fact that non-zero phase differences
cannot be caused by field spread (just like with the imaginary
part of coherency and the PSI). More recently, some adjustments
to the PLI have been proposed, yielding the weighted PLI and
debiased weighted PLI to make the metric more robust against
field spread, noise and sample-size bias (Vinck et al., 2011).

The PPC is a measure that quantifies the distribution of
phase differences across observations (Vinck et al., 2010). Unlike
the PLV, which is computed directly as a vector average of the
relative phase across observations, the PPC is computed from
the distribution of all pairwise differences (between pairs of
observations) of the relative phases. The idea behind this is that,
similar to the situation when investigating the distribution of
relative phases directly, the distribution of pairwise differences
in the relative phases will be more strongly clustered around an
average value in the presence of phase synchronization. When
no phase synchronization is present, the individual relative phase
vectors are distributed around the unit circle, as are all pairwise
differences of these relative phase vectors. The advantage of PPC
beyond PLV is that this metric is not biased by the sample size
that is used for the estimation. This means that the expected value
of PPC does not change as a function of trial number (see section
titled “The sample size bias problem” for more details).

In essence, many of the measures mentioned as such are not
based on a principled mathematical approach (as opposed to for
instance coherence and Granger causality which are rooted in the
theory of stochastic processes). For instance PLI, the imaginary
part of the coherency, and the phase slope index are pragmatic
measures primarily put forward to address the interpretational
problem of field spread, and by design intend to capture similar
features of the interaction between time series. It is often an
empirical question as to which of the measures is most suited
to be used, and ideally one should expect that the conclusions
drawn do not strongly depend on the measure that was chosen.
Therefore, in general it is advisable to interrogate the data using
several of these measures, in order to get a feel for how the
estimates relate to one another.

Going Beyond Pairwise Interactions
So far we have discussed connectivity metrics that are defined
between pairs of signals. Often, however, more than two signals
have been recorded, and it may be relevant to investigate in
more detail the pattern of multiple pairwise interactions. For
this, graph theoretic approaches can be employed (Sporns,
2011). These approaches build on a valid quantification of the
connectivity, are discussed extensively elsewhere and are beyond
the scope of this tutorial. It is brought up here as a prelude to the
next section, where we discuss the problem of common input.
In general, the problem at stake is the correct inference of a
direct interaction in the presence of other (possibly unobserved)
sources. Although latent, unobserved sources pose a fundamental
and irresolvable problem, information from sources that have
been observed can be used to remove indirect influences on the
estimation of connectivity. One of the ways in which this can
be done in the context of coherence analysis, is by means of
using the partial coherence (Rosenberg et al., 1998). If multiple
signals have been recorded, one can compute for any signal
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pair the so-called partialized cross-spectrum, which is obtained
by removing the linear contribution from all the other signals.
From the partialized cross-spectrum, the partial coherence can be
easily obtained. The partialized cross-spectrum can be obtained
as follows. Starting from the full cross-spectral density matrix,

S (ω)=


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we can partialize for the linear contributions from signals z1-zn
to the cross spectrum between signal x and y as follows:
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Spike-Field Coherence
With invasive electrophysiological signals, it is possible to
record action potentials from single neurons and/or clusters
of neurons (sometimes referred to as multiunit activity). In
this situation, it can be informative to examine how ongoing
oscillations in the simultaneously recorded LFP or EEG are
related to the spikes. To this end, spikes from a given unit
can be represented as a time series of ones and zeros, at the
same sampling rate as the continuous LFP/EEG signals (note
that it is possible to represent the spikes as a vector of spike
times—this can sometimes lead to a sparser representation
of the data). Once a suitable representation of the spikes is
chosen, we can compute any of the above-mentioned metrics
of synchronization between spikes and fields, and indeed also
between different spike trains. This can often reveal significant
modulation of spike timing relative to field oscillations (e.g.,
significant spike-field coherence), which can also be sensitive
to task variables (e.g., Fries et al., 2001; Gregoriou et al.,
2009). Spike-field analysis comes with its own host of caveats
and challenges, which are beyond the scope of this review
(interested readers can refer to Vinck et al., 2012; Ray,
2015).

QUANTIFICATION OF FREQUENCY
RESOLVED, DIRECTED INTERACTIONS
WITH GRANGER CAUSALITY

So far, we have reviewed connectivity metrics that at best infer
directionality of interactions based on the sign of the phase
difference of the band-limited oscillatory signal components. Yet,
the practical applicability of these techniques is limited to cases

where there is a consistently time-lagged and predominantly uni-
directional interaction. Granger causality and related metrics are
capable of quantifying bi-directional interactions and provides
two estimates of directed connectivity for a given signal pair,
quantifying separately the directed influence of signal x on signal
y, and the directed influence of signal y on signal x. Originally,
the concept of Granger causality was applied to time series
data in the field of economics (Granger, 1969), and extension
of the concept to the frequency domain representation of time
series was formulated by Geweke (1982). Although excellent
introductory texts exist that explain the concept of frequency
domain Granger causality and their application to neuroscience
data (Ding et al., 2006), we briefly review the essential concepts
in some detail in the Appendix (Supplementary Material). At this
point, we restrict ourselves to the necessary essentials.

Time Domain Formulation
In essence, Granger causality represents the result of a model
comparison. It is rooted in the autoregressive (AR) modeling
framework, where future values of time series are modeled as a
weighted combination of past values of time series. Specifically,
the quality of an AR-model can be quantified by the variance
of the model’s residuals, and Granger causality is defined as the
natural logarithm of a ratio of residual variances, obtained from
two different AR-models. One of these models reflect a univariate
AR-model, where values of time series x are predicted as a
weighted combination of past values of time series x. The other
model is a bivariate AR-model, where the values of time series x
are predicted not only based on past values of x, but also based on
past values of another time series y.A substantial reduction of the
variance of the residuals comparing the univariate model to the
bivariate model implies that the inclusion of information about
the past values of signal y in the prediction of signal x (above
and beyond inclusion of only past values of signal x) leads to a
better model for time series x. In these cases, the variance ratio
is larger than 1, which leads to a Granger causality value that is
larger than 0, signal y is said to Granger cause signal x (Granger,
1969; Ding et al., 2006; Bressler and Seth, 2011). Applying the
same logic but now building autoregressive models to predict
signal y will yield an estimate of Granger causality from signal
x to y.

Frequency Domain Formulation
The concept of Granger causality can also be operationalized
in the frequency domain (Geweke, 1982). We refer the
interested reader to the Appendix (Supplementary Material
and the references mentioned therein) for more details.
Here, it is sufficient to state that computation of Granger
causality in the frequency domain requires the estimation of
two quantities: the spectral transfer matrix (H(ω)), which is
frequency dependent, and the covariance of the AR-model’s
residuals (6). The following fundamental identity holds:
H(ω)6H(ω)∗ = S(ω), with S(ω) being the cross-spectral
density matrix for signal pair x, y at frequency ω. In other
words, the conjugate-symmetric cross-spectral density can be
obtained by sandwiching the covariance matrix of the residuals
between the spectral transfer matrix. From the cross-spectrum,

Frontiers in Systems Neuroscience | www.frontiersin.org 8 January 2016 | Volume 9 | Article 175

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Bastos and Schoffelen Functional Connectivity Analysis Tutorial

the spectral transfer matrix and the residuals’ covariance matrix,
the frequency-dependent Granger causality can be computed as
follows:

GCx→y(ω) = ln
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

Syy(ω)
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2







Relationship Between Frequency Domain
Granger Causality and Coherence
Just as in the time domain formulation of Granger causality, it is
possible to define a measure of total interdependence, based on
the cross-spectral density estimates [more details are provided in
the Appendix (Supplementary Material)]:

GCx,y(ω) = − ln

(

1−

∣
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∣

2

Sxx (ω) Syy (ω)

)

The fraction between the brackets is equivalent to the squared
coherence coefficient, as shown in an earlier section. In
other words, there is a one-to-one relationship between the
coherence coefficient and the total interdependence. In analogy
to the time domain formulation, the frequency specific total
interdependence can be written as a sum of three quantities:
GCx,y(ω) = GCx→y(ω) + GCy→x(ω) + GCx·y(ω), where the
instantaneous causality term is defined as:
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This latter term reflects the part of the total interdependence
that cannot be accounted for by time-lagged (phase-shifted)
interactions between signals x and y, reflecting instantaneous
common input from latent sources. Note that in the case of zero-
phase lag synchronization the instantaneous causality term is not
necessarily larger relative to the causal terms. Specifically, in a
system with bidirectional interactions, where the magnitude and
phase delay of the transfer function are approximately equal in
both directions (i.e., from x to y, and from y to x), the cross-
spectral densitymatrix can report strong synchronization at zero-
phase delay that is nonetheless brought about by strong time-
delayed causal interactions in both directions. Note, however,
that theoretical work points out that zero-lag phase coupling is
much more likely to occur in the presence of a dynamic relay
through a third source, which gives common input to stabilize
phase relations across the network at zero-lag (Vicente et al.,
2008). Practically, this situation can be distinguished from a
purely bi-directional interaction only if the two nodes with zero-
lag synchronization were observed simultaneously with the third
node that may (or may not) provide common inputs. More
details on this scenario and how to detect it in physiological data
are provided in the section “The common input problem.”

Non-Parametric vs. Parametric
Computation of Granger Causality
Granger causality in the frequency domain can be calculated with
parametric methods (with auto-regressive models, as discussed,
left half of Figure 4) or with non-parametric methods (with
Fourier or wavelet-based methods). These approaches differ in
how the covariance of the residuals and the transfer matrices are
computed (see the right half of Figure 4). The non-parametric
approach is based on the fact that the cross-spectral density
matrix for a given frequency is equal to the model’s residuals
covariance matrix sandwiched between the transfer matrix for
that frequency, as outlined above:

S(ω) = H(ω)6H∗(ω).

Starting from the cross-spectral density matrix (and thus going
into the opposite direction) it is possible to factorize the cross-
spectral density matrix into a “noise” covariance matrix and
spectral transfer matrix by applying spectral matrix factorization
(Wilson, 1972)—which provides the necessary ingredients for
calculating Granger causality (see Equation 4, Dhamala et al.,
2008). It has been shown that parametric and non-parametric
estimation of Granger causality yield very comparable results,
particularly in well-behaved simulated data (Dhamala et al.,
2008).

The main advantage in calculating Granger causality using
this non-parametric technique is that it does not require the
determination of the model order for the autoregressive model.
The particular choice of the appropriate model order can
be problematic, because it can vary depending on subject,
experimental task, quality and complexity of the data, and
model estimation technique that is used (Kaminski and Liang,
2005; Barnett and Seth, 2011). In contrast, the non-parametric
estimation of Granger causality utilizes data points from the

FIGURE 4 | Data processing pipeline for the computation of Granger

causality, using the parametric or non-parametric approach.
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entire frequency axis, the number of which is essentially
determined by the number of samples in the data window that
is used for the analysis.

In comparison to the parametric estimation technique, the
non-parametric spectral factorization approach requires more
data and a smooth shape of the cross-spectral density (i.e.,
no sharp peaks as a function of frequency) to converge to a
stable result. This can be seen most acutely when attempting
to compute Granger causality from single trials. Although both
parametric and non-parametric techniques can be used for
single-trial estimates of directed connectivity, it appears that
parametric estimates are more sensitive than non-parametric
estimates, especially when the model order is known (Brovelli,
2012; Richter et al., 2015).

Bivariate vs. Multivariate Spectral
Decomposition
It is relevant to note that, in multichannel recordings, the spectral
transfer matrix can be obtained in two ways, irrespective of
whether it is computed from a fitted autoregressive model,
or through factorization of a non-parametric spectral density
estimate. One can either fit a full multivariate model (or
equivalently, do a multivariate spectral decomposition), where
all channels are taken into account, or one can do the analysis
for each channel pair separately. The latter approach typically
yields more stable results (e.g., because it involves the fitting of
fewer parameters), but the advantage of the former approach is
that information from all channels is taken into account when
estimating the interaction terms between any pair of sources.
In this way, one could try and distinguish direct from indirect
interactions, using an extended formulation of Granger causality,
called partial Granger causality (Guo et al., 2008), or conditional
Granger causality (Ding et al., 2006; Wen et al., 2013). Also,
the multivariate approach yields a spectral transfer matrix that
can be used to compute a set of connectivity metrics, which
are related to Granger causality. These metrics are the directed
transfer function (DTF) with its related metrics (Kamiñski and
Blinowska, 1991), and partial directed coherence (PDC) with its
related metrics (Baccalá and Sameshima, 2001). These quantities
are normalized between 0 and 1, where the normalization factor
is either defined as the sum along the rows of the spectral transfer
matrix (for DTF), or as the sum along the columns of the inverse
of the spectral transfer matrix (for PDC). By consequence of these
normalizations, DTF from signal y to x reflects causal inflow from
y to x as a ratio of the total inflow into signal x, while in its original
formulation PDC from signal y to signal x reflects the causal
outflow from y to x as a ratio of the total outflow from signal y.
These measures, and their derivatives, along with motivations for
preferring one over the other metric, are discussed in more detail
in for example (Blinowska, 2011).

LIMITATIONS AND COMMON PROBLEMS
OF FUNCTIONAL CONNECTIVITY
METHODS

The following section outlines some issues that warrant caution
with respect to the interpretation of the estimated connectivity.

The core issue at stake is whether the estimate of the connectivity
(or the estimate of the difference in connectivity between
experimental conditions) reflects a genuine effect in terms of
(a change in) neuronal interactions. As we will illustrate by
means of simple simulations, there are various situations that
cause non-zero estimates of connectivity in the absence of true
neuronal interactions. Themain cause of these spurious estimates
of connectivity is the fact that in MEG/EEG/LFP recordings
the signals that are used for the connectivity estimate always to
some extent reflect a (sometimes poorly) known mixture of a
signal-of-interest (which is the activity of a neuronal population
that we are interested in) and signals-of-no-interest (which we
will call noise in the remainder of this paper). Another cause
of spurious estimates is more related to interpretation of the
observed connectivity patterns. This relates to the fact that it is
impossible to state whether an observed connection is a direct
connection, or whether this connection is mediated through an
unobserved connection.

In what follows, we describe five common practical issues that
warrant caution with respect to the interpretation of connectivity
estimates. We illustrate these problems using simple simulations
that are based on MATLAB-code and the FieldTrip toolbox,
allowing the interested reader to get some hands-on insight
into these important issues. The code has been tested on
MATLAB 2013a/b and 2014a/b, using Fieldtrip version “fieldtrip-
20150816.” The first three problems (the common reference
problem, the volume conduction/field spread problem, and the
SNR problem) are a consequence of the fact that the measured
signals are always a mixture of signal-of-interest and noise, and
the 4th is the problem of unobserved common input. The 5th
problem is caused by unequal numbers of epochs or observation
periods used to compute metrics of functional connectivity when
making comparisons between conditions or across subjects.

THE COMMON REFERENCE PROBLEM

In LFP or EEG recordings, spurious functional connectivity
estimates can result from the usage of a common reference
channel. This problem is depicted graphically in Figure 5A.
Imagine two recorded time series, data 1 and data 2. Each
of these signals reflects the difference of the electric potential
measured at the location of the electrode and at the location
of the reference electrode. If the same reference electrode
is used for both electrodes that are subsequently used for
the connectivity estimation, the fluctuations in the electric
potential at the reference location will be reflected in both
time series, yielding spurious correlations at a zero time lag.
Any connectivity metric that is sensitive to correlations at a
zero time lag will in part be spurious. The extent to which
the estimated connectivity is spurious depends on the relative
strength of the potential fluctuations at the recording and
reference sites. Obviously, the large majority of EEG and LFP
recordings use a single reference electrode in the hardware. The
following simulation illustrates the effect of a common reference
electrode. We will simulate 30–60Hz oscillatory activity in
two neuronal sources, and this activity is measured by two
electrodes that share a common reference electrode (which
is also assumed to have an oscillatory component). We will

Frontiers in Systems Neuroscience | www.frontiersin.org 10 January 2016 | Volume 9 | Article 175

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Bastos and Schoffelen Functional Connectivity Analysis Tutorial

A B C

FIGURE 5 | Illustration of different referencing schemes and how each effects the calculation of coherence with and without true neuronal coupling.

(A) The case of unipolar recordings, which introduce spurious coherence values in the absence of coherence. (B) The bipolar derivation technique, which largely

resolves the common reference problem. (C) The separate reference scheme, which also is not sensitive to common reference problems.

estimate the coherence between the measured signals, in the
presence and in the absence of coupling between the underlying
sources.

In this simulation, we have assumed a generative model
consisting of a linear mixture between various sources that
each have an oscillatory component in the 30–60Hz range.
Independent sources are projected directly to the relevant
data, denoted by arrows between e.g., source 1 and data 1
in Figure 5A. The common reference is treated as a shared
signal that is projected with equal weight to each data channel
(note the arrows between R and each of the data channels in
Figure 5). Coupling between sources is simulated as a shared
signal that is projected into each source in some mixture,
specified in the script (sim_commonreference.pdf ). Using this
generative model, it is evident that when no real coupling is
present between source 1 and source 2, there is significant
artifactual coherence between data 1 and data 2, due to the
common reference (Figure 5A, red trace). This is a problem,
because in the absence of any underlying neuronal interaction,
any connectivity estimate should be close to zero. When real
coupling is introduced between source 1 and source 2, as one
can see in Figure 5A, the coherence between data 1 and data
2 increases—this reflects the presence of both the common
reference and real coupling. This simulation was performed
assuming strong coupling between the sources. In the presence
of weak coupling, the artifactual coherence may sometimes
predominate—and obscure—the real coherence caused by true
interactions.

One solution to the problem is to record additional channels
and perform bipolar derivation to remove the common reference,
and then calculate connectivity between locally-rereferenced
bipolar derivations that do not share a common unipolar channel
(Figure 5B). This procedure has for instance been applied in
Bollimunta et al. (2009) and in Bosman et al. (2012), and relies
on two assumptions: first, that the reference is equally present in
the unipolar channels that will be subtracted, and second, that
each of the unipolar channels reflects a different mixture of the
underlying neuronal sources—otherwise, the same logic behind
eliminating the common reference through bipolar derivation
would also result in a cancelation of the neuronal signal. For
a more rigorous discussion of the bipolar derivation procedure
and its applications to neural data, see Trongnetrpunya et al. this
issue. In Figure 5B each unipolar channel is depicted as reflecting
the activity of an independent source, but each unipolar channel
could also reflect a mixture of underlying sources, and the
same logic would apply. In this scenario, the bipolar derivation
removes the common reference (see the equation in Figure 5B),
and the resulting bipolar signal is a subtraction of two local source
activities. When coherence is now calculated directly between
bipolar site 1 and bipolar site 2, it is not biased by the common
reference, as shown in the lower panel of Figure 5B: when no
coupling is present between the sources, coherence is close to
zero (how close will depend on how many trials have gone into
the analysis and the resulting bias—see section on the sample size
bias), but in the presence of coupling, coherence reaches a value
of 0.5.
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A second possible solution to this problem is shown in
Figure 5C, which is to separately reference each channel.
In this case (lower panel of Figure 5C), there is again no
artifactual coherence component. Therefore, while the separate
referencing scheme does present a solution in principle, it
may not be practical for large-scale, high density recordings.
The simulations above can be realized by running the code in
script sim_commonreference.pdf. Note that in these simulations,
the reference was also assumed to have an oscillatory 30–
60Hz component—however, if the reference consisted of white
noise, or a mixture of white and colored noise, and coherence
were calculated between channels which both had a common
reference, then the respective coherence spectrum would reflect
whatever the underlying spectral shape of the reference was—due
to its instantaneous mixture into both channels.

THE VOLUME CONDUCTION/FIELD
SPREAD PROBLEM

Another important issue in the quantification and interpretation
of neuronal interactions, particularly when the estimates
are based on non-invasive recordings, is caused by volume
conduction. Strictly speaking, volume conduction refers to the
currents flowing in the tissues surrounding active neuronal
sources. Colloquially it has been adopted as a term to reflect
more generally the phenomenon of the spatial spread of
electromagnetic fields, which cause one recording channel or
sensor to pick up the activity of multiple neuronal sources.
In the case of magnetic field recordings it is sometimes more
aptly referred to as field spread. At its worst, field spread can
create purely artifactual coherence or phase-locking, meaning
that the presence of functional connectivity between two signals
would indicate not the presence of a true neuronal interaction,
but instead the presence of activity from the same underlying
source at the two channels. An important property of volume
conduction and field spread, at least in the frequency range that
is relevant for neuroscience, is that its effects are instantaneous.
That is, if a dominant rhythmic neuronal source is visible at two
sensors at once, the phase observed at these sensors is the same
(or at a difference of 180◦, when each of the sensors “sees” an
opposite pole of the dipole). This property of instantaneity can be
exploited to use connectivity measures that discard contributions
of 0 (or 180) degrees phase differences. This will be explained in
more detail below.

When considering the different electrophysiological recording
techniques, field spread is considered the least problematic in
invasive recordings. Spiking activity of individual neurons is by
definition very focal spatially, and volume currents associated
with this spiking can only be picked up at a distance of a few
tens or hundreds of microns. Therefore, for the quantification
of spike-spike or spike-field interactions, field (Kajikawa and
Schroeder, 2011) spread is hardly an issue. In the interpretation
of synchronization estimated between two LFP signals, volume
conduction needs to be taken into account. The reason is that
the local field potentials may reflect volume currents propagating
over larger distances, exceeding 1 cm (Kajikawa and Schroeder,

2011). Field spread is by far the most problematic when
performing non-invasive measurements, because of the large
distance between the sensors and the neural sources, and because
of the spatial blurring effect of the skull on the electric potential
distribution on the scalp with EEG (Nunez et al., 1997, 1999;
Srinivasan et al., 2007; Winter et al., 2007; Schoffelen and Gross,
2009). By consequence, a single underlying neuronal source will
be seen at multiple EEG or MEG sensors—causing spurious
correlation values between the sensors.

In the presence of field spread any given source is “visible”
on multiple sensors/electrodes at once, and several strategies
may be employed to alleviate the adverse effects of field spread.
The first strategy attempts to “unmix” the measured signals to
derive an estimate of the underlying sources. In the context of
EEG/MEG recordings one should think of the application of
source reconstruction algorithms (Schoffelen and Gross, 2009).
In the context of LFP recordings one should think of the
application of a re-referencing scheme, using for example a
local bipolar derivation (as reviewed in the previous section),
or estimating the current source density. The second strategy
relates to the use of well-controlled experimental contrasts.
The assumption here is that volume conduction affects the
connectivity estimates in a similar way in both conditions, and
subtraction will effectively get rid of the spurious estimates.
A third strategy, as already mentioned above, would be to
use connectivity metrics that capitalize on the out-of-phase
interaction, discarding the interactions that are at a phase
difference of 0 (or 180◦). Examples of these metrics are the
imaginary part of the coherency, the (weighted) phase lag index,
or the phase slope index. At the expense of not being able to
detect true interactions occurring at near zero-phase difference,
these metrics at least provide an account of true (phase-lagged)
interactions between signal components. Unfortunately, neither
the application of source reconstruction techniques (which
moreover add a level of complexity to the analysis of the data),
nor the use of experimental contrasts or phase-lagged interaction
measures will fully mitigate the effects of volume conduction.
This has been described in more detail elsewhere (Schoffelen and
Gross, 2009).

The script sim_volumeconduction.pdf illustrates some of the
issues mentioned above, as well as the approaches that partially
overcome them. The general approach in this set of simulations
is that a set of signals is simulated at 50 “measurement locations”
(MEG/EEG channels, or at “virtual electrodes”). Each of the
signals consists of a mixture (due to field spread) of the activity
of the underlying sources. The source activity time courses
are generated by means of a generative autoregressive model.
The source-to-signal mixing matrix was defined as a spatial
convolution of the original source activations with a 31-point
Hanning window. In other words we can consider the signals to
consist of a weighted combination of the original source and the
15 most nearby sources on either side, with a spatial leakage that
is dependent on the distance.

Figure 6A shows connectivity matrices for all sensor pairs,
and the source signals were constructed such that none of
the underlying sources were interacting (i.e., there were no
cross-terms in the autoregressive model coefficients). The noise
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FIGURE 6 | Effects of field spread on the estimation of connectivity. (A) In absence of connectivity, field spread leads to spurious coherence (left panel), while

the imaginary part of coherency mitigates this effect (right panel). (B) In the presence of time-lagged interactions, “seed blur” caused by field spread leads to only a

“shoulder” in the coherence, and not to a distant peak (top right panel). The imaginary part of coherency correctly identifies a distant peak (middle right panel). Bottom

panels: the distant coherence peak is revealed when taking the difference (blue line) between the connected (black line) and unconnected (red line) situations. (C)

Spurious differential effects show up both in the coherence (top panels) and in the imaginary part of coherency (bottom panels) when the SNR changes from one

condition to another. (D) Spurious differential effects show up both in the coherence (top panels) and in the imaginary part of coherency (bottom panels) when the

amplitude of one of the active sources changes from one condition to another.

covariance matrix had only non-zero values on the diagonal,
with large values for the 16th and the 35th source. The panel
on the left, displaying coherence, illustrates the seed blur as
a consequence of the field spread. Each row (column) in the
matrix reflects the coherence with respect to a specific seed sensor
(indexed by the row number). The points closer to the diagonal
are the locations that suffer most from this leakage. It can be
seen that the seed blur is considerable, even if the signal is low
(outside the two “active” points indicated with the white circles).
Also, in the presence of a signal (i.e., when seeding from the
“active” locations), the seed blur is spatially more widespread.
The panel on the right shows the imaginary part of coherency,

and demonstrates that (1) this quantity is low in the absence of
time-lagged interactions and (2) that the seed blur is abolished.
Figure 6B shows a simulation where the 16th and 35th source
were actually “connected” with a non-zero time lag. The panels
on the left show the coherence matrix, the imaginary part of the
coherency, and the difference between the top left subpanels in b
and a. The panels on the right display the connectivity in one of
the rows in thesematrices (indicated with the dotted white line on
the left), reflecting the connectivity seeded from the 16th source.
The bottom right subpanel in Figure 6B shows the coherence
from the top left subpanel in Figure 6B in black, the coherence
from the top left subpanel in a in red, and their difference in
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blue. So far, these simulations demonstrate in a very simplified
scenario the effects of field spread, as well as the remedial effects
provided by subtracting two conditions with different levels of
connectivity between the active sources, or by focusing on the
time-lagged component of the connectivity.

Real experimental data, however, is hardly ever as well-
behaved as the simulated data presented above. The following
provides some non-exhaustive examples of cases where the
remedial strategies may yield results that can be wrongly
interpreted. Figure 6C shows a situation where a true connection
exists between the 16th and the 35th source, which doesn’t
change in strength from one condition to another. In one of
the conditions an additional source is active (at location 27),
which is not connected to any of the other sources. The difference
maps, however, show quite some spatial structure, which is
due to the differential effects exerted by the field spread on
the connectivity estimates. For example, seeding from the 11th
source using coherence as a connectivity metric yields a spurious
non-zero difference around the 25th source. This is shown in
the right panel of Figure 6C, where the individual conditions’
seed-based connectivity estimates are displayed as red and black
lines, and their difference is displayed in blue. Likewise, seeding
from the 22nd source using the imaginary part of coherency
yields a spurious non-zero difference around the 28th source.
The implication of this is that differences in the activity in the
contributing sources can yield spurious differences in estimated
connectivity. One could argue that an appropriate seed selection
would have prevented this erroneous interpretation. Had we
focused on the active sources to begin with, the problemmay have
been less severe. Although there may be some truth in this, in
practice it is often difficult to select the proper seeds a priori, for
example because the relevant sources are not necessarily the ones
that have the highest amplitude, and even if the seed locations
are appropriately selected, spurious connectivity can still
arise.

This is illustrated in Figure 6D, where two conditions are
compared, with unchanging connectivity between the activated
sources (16 and 35), but with a change in power for one of
them. The panels on the right show the seeded connectivity
(from source 16) for the condition with low (red lines) and high
(black lines) power for source 35, as well as their difference (blue
lines).

The difficulty of interpreting connectivity estimates due to
field spread, as described above, can also be problematic for
a correct inference of directed connectivity, e.g., by means of
Granger causality, or related quantities. The reason for this is that
the linearmixing of the source signals due to the field spread leads
to signal to noise ratio differences between channels (discussed
more in the next section), and inaccuracies in the estimation of
the spectral transfer matrix and the noise covariance. Although
some simulation work indicates that the true underlying network
connectivity may be recovered by applying a renormalized
version of PDC (Elsegai et al., 2015), Vinck et al. (2015)
showed that instantaneous mixing is problematic for an accurate
reconstruction of Granger causality. These authors propose to
use a heuristic based on the investigation of the instantaneous
interaction between signals in relation to their time-delayed

interactions, in order to discard or accept the estimated directed
connectivity to be trustworthy.

THE SIGNAL-TO-NOISE RATIO PROBLEM

Another issue that leads to interpretational problems of estimated
connectivity is what we call here the SNR problem. In some way
this problem is related to the field spread problem discussed
above, since its underlying cause is the fact that the measured
signals contain a poorly known mixture of signal-of-interest,
and “noise.” Some consequences of this have already been
illustrated to some extent above, where the comparison between
conditions leads to spurious differences in connectivity, due
to differences in SNR across conditions. Apart from posing
a problem for correctly inferring a difference in connectivity
across conditions, SNR differences can also be problematic when
inferring differences in directional interactions between sources.
It should be noted that this problem can also arise in the absence
of volume conduction (e.g., when computing connectivity from
locally-rereferenced LFP recordings), and therefore we believe
that this problem merits a separate discussion. The core issue
here is that spurious directional connectivity estimates can be
obtained from two signals that have each been observed with
different amounts of signal and noise. Such a situation can
for instance arise when across LFP recording sites there are
differences in sensor noise (e.g., due to differences in amplifier
characteristics), or differences in distance to the active sources
of interest, causing a difference in signal strength. While this is
a problematic issue for many metrics of directed connectivity,
in this section we focus specifically on how estimates of
Granger causality can be corrupted by differences in SNR
between signals. We illustrate the issue by presenting some
simulations, which can be realized by running the code in script
sim_signaltonoise.pdf.

To understand why differences in SNR are likely to be
problematic for the estimation of Granger causality, it is
useful to remember that one variable has a Granger causal
influence to another if the past of one time series can enhance
predictions about another. In general, this approach will work
to detect true connectivity, however, when applied to noisy
data, this definition of causality based on prediction can lead
to unexpected consequences. Imagine a situation shown in
Figure 7A: variables x1and x2 are generated by an auto-regressive
process that is a function of their own past at time lags 1
and 2 (the auto terms), and also a function of the past of
the other variable (the cross terms), also at time lag 1 and
2. Crucially, the auto-regressive coefficients of both the auto-
terms and the cross terms are identical, and the variance of
the innovations (ε1, ε2) of both processes are also identical,
meaning that the two variables influence each other with equal
strength. Therefore, by construction, Granger causality from
x1 to x2 should be identical compared to Granger causality
from x2 to x1. This is indeed the case when the outputs of
such a generative process are observed without measurement
noise, illustrated in Figures 7B–D. In this case, as expected, both
variables have nearly identical power spectra peaking at 40Hz
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A

B C D

E F G

FIGURE 7 | A simulation of the signal to noise ratio problem. (A) Two nodes interact bidirectionally with equal connectivity strengths in the two directions, and

the data is observed without (case 1) or with (case 2) measurement noise. (B) Power for case 1, (C) Coherence for case 1 and 2, and (D) Granger causality estimates

for case 1. (E) Power, (F) Granger causality estimates for case 2. (G) Granger causality estimates after time-reversing the data produced by case 2.

(Figure 7B), have a coherence spectrum that also peaks at 40Hz
(Figure 7C), and have approximately equal Granger causality
at 40Hz in both directions (Figure 7D). Note that the slight
difference in Granger causality from x1 to x2 vs. x2 to x1 is
due to estimation error, which approaches zero as the number
of realizations of the model and subsequent observations are
repeated.

Now let us consider case 2, where we observe the same system,
but in the presence of noisy measurements. In this case, white
noise is added to x1, but not to x2. The first result of this
manipulation is that the power spectrum of x1 is shifted upward
(Figure 7E), a result of adding power at all frequencies (i.e., white
noise) to that channel. The coherence between the channels is
also modulated by this manipulation, shown in Figure 7C, with a
reduction in coherence at a broad range of frequencies when extra
noise is present. When looking at the Granger causal estimates,
shown in Figure 7F, we observe an asymmetric relationship,
where x2 has a stronger Granger causal influence on x1 than x1 on
x2. This is the consequence of the fact that the additional noise on
x1 has weakened its predictive power of x2, causing an apparent
asymmetry in the directionality. Note that this asymmetry is

exactly in line with the definition of Granger causality based on
a log ratio of prediction errors (comparing the univariate to the
bivariate model), and in that sense it is not “wrong.” However,
this does lead to a divergence between “Granger causality” and
what we as experimentalists would like to infer as “true causality,”
where we would like to infer a dominant direction of information
flow from an asymmetry in Granger causal estimates.

These simulations depict the “worst case scenario,” when a
massive difference in SNR exists between channels (SNR of x1
was 1, SNR of x2 was maximal because there was no noise
added). Asymmetries in Granger causality that are driven by
SNR differences have been defined by Haufe et al. as “weak
asymmetries,” as opposed to “strong asymmetries” caused by
true time-lagged, causal relationships (Haufe et al., 2012). In
order to be able to make a distinction between weak and strong
asymmetries in the interpretation of the estimated Granger
causality, Haufe et al. suggest to investigate Granger causality
after time-reversal of the signals. The underlying rationale
is that time-reversal causes a flip in the dominant direction
of interaction only in the presence of strong asymmetries,
because the time-reversal operation does not affect the SNR
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of the individual signals (the AR coefficients of the auto-
terms in the univariate AR-models are the same in the
forward and backward time directions, and therefore the power
spectrum and “self-prediction” is insensitive to time reversal),
and thus, will not affect differences in directional interactions
if these are caused by weak asymmetries. The time-reversed
Granger causality computed from the data we simulated earlier
is shown in Figure 7G. Evidently, time-reversal reveals that
the dominant Granger causal direction (x2 to x1) remains
unchanged, indicative of a weak asymmetry. On the other hand,
when actual strong asymmetries underlie a directional difference
in Granger causality, time-reversed testing would lead to a
change in causal flow in the time-reversed compared to normal
directions. In the simulations depicted in Figure 8, a strong
asymmetry is created, which is a unidirectional flow from x2 to
x1, leading to an asymmetric Granger causality in the appropriate
direction (Figure 8D). When the signals are time-reversed, the
directionality of Granger causality also flips (Figure 8E), as
expected. Therefore, in practice, spurious directional differences
in Granger causality that are caused only by differences in
SNR may in principle be diagnosed with reversed Granger
testing, which strongly reduces the false positive rate of detecting
spurious Granger causality, also in the presence of linear mixing
(Haufe et al., 2012; Vinck et al., 2015).

Of course, whenever possible, the SNR problem should be
addressed at the experimental level, where care should be
taken to minimize noise and ensure that SNR is equalized as
much as possible over channels. For example, with EEG or
invasive LFP recordings, impedances can be equated as much
as possible prior to data recordings, and sensors should be
positioned in order to maximize SNR. However, this may not
be always possible in practice, for instance in non-invasive
recordings (field spread), or due to intrinsic differences in activity
of the underlying sources. In such cases, one could resort to
stratification techniques (Bosman et al., 2012) where across
conditions, the distributional properties of signal power are
made as similar as possible, by means of trial subsampling.
Alternatively, it has been suggested to use analytic approaches

to correct for measurement noise post-hoc. For example, some
authors have proposed algorithms to separate signal and noise
components in recorded signals using state-space modeling
(Nalatore et al., 2007; Sommerlade et al., 2015). This approach
assumes that observed time-series represent a combination of
the signals-of-interest (modeled as an auto-regressive model) and
some amount of superimposed noise, and aims at separating
these two quantities. In simulations with uncorrelated, Gaussian
noise, this approach largely corrects the problem, yielding
Granger causality estimates that are not contaminated by noise.
Yet another approach is to use Dynamic Causal Models (DCM),
where the generative model is an actual biophysically plausible
neuronal model, rather than an autoregressive description of
time series (Bastos et al., 2015a). Within the DCM framework,
it is possible to make a distinction between the dynamics of the
underlying biophysical process (the activation and interaction
of the underlying neuronal groups) and the measurements that
are made of these processes. Therefore, both correlated and
uncorrelated observation noise can be taken into account, and
consequently connectivity estimates are more robust to changes
in SNR (Friston et al., 2014).

THE COMMON INPUT PROBLEM

Another interpretational problem in making inferences about
estimated interactions from measured data is the difficulty
in distinguishing direct from indirect interactions. In other
words, if a functional interaction between a pair of signals is
detected, this could be caused by common input from a third
source, that has not been taken into account. For example,
consider the generative model shown in Figure 9A. We used
a generative autoregressive model to simulate a connectivity
structure between three source (x1, x2, and x3), where x1 and
x2 are not directly connected, but receive common input from
x3 at time lags 1 and 2. As a consequence of the common
input, there will be shared variance between signals x1 and x2.
Figure 9B shows the respective coherence spectra for case 1.
Note the clear peak in the coherence spectrum between x1 and

A

B C D E

FIGURE 8 | Time reversed Granger testing reveals the presence of strong asymmetries. (A) An auto-regressive model specifying a unidirectional system in

which x2 influences x1 at lags 1 and 2. (B) Power, (C) Coherence, and (D) Granger causality estimates for the forward time direction. (E) Granger causality estimates

for the reversed time direction. Note that power and coherence remain the same when estimated from data in either the forward or reversed time directions.
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FIGURE 9 | A simulation of the common input problem. (A) The auto-regressive form of a model that simulates common input from x3 to x1 and x2. (B) spurious

coherence between x1 and x2 caused by common input. Imaginary coherence (green) and partial coherence (purple) are close to zero, indicating an interaction that is

both instantaneous and mediated (by x3), respectively. (C) Granger causal estimates detect the common input as distinct from directed interactions between x1 and

x2 (which are near zero). (D–F) When time-lagged common input from x3 is present and only x1 and x2 are observed, the data will appear to reflect a time-lagged

interaction. This situation can only be interpreted correctly by recording the common driver (G,H), and applying partial coherence (H) or multivariate Granger

causality (I).

x2 at 40Hz (blue trace). If we were to interpret this coherence
spectrum as evidence of a direct neuronal interaction, it would
be a spurious inference. Therefore, to aid in the interpretation of
this coherence spectrum, we need to explicitly consider whether
the shared variance that causes the observed coherence is due to
common input. If we observe all three nodes, this can be done
by considering coherence between x1and x2 after partializing
out the contribution of x3(magenta trace in Figure 9B), which
reports substantially reduced coherence values between x1and
x2, indicative of shared variance (coherence) due to common
input. Another metric to look at in this case would be the
imaginary part of coherency (green trace), which is also close

to zero, indicating that shared variance between x1 and x2
can be accounted for entirely by the zero-lag component, as
could be expected by field spread or, in this case, by common
input that arrives simultaneously and at the same lags at x1and
x2.

We can also examine whether the shared variance between
x1and x2 is due to effects of their direct interaction or common
input by computing Granger causality. Figure 9C shows the
Granger causality estimates between x1, x2, and x3 based on
a multivariate decomposition of the spectral density matrix,
i.e., observing all three nodes. By decomposing the undirected
connectivity into directed connectivity using Granger causality,
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only connections with true underlying coupling (connections
x3 x1 and x3 x2) survive, and the spurious connections
(x1 x2 and x2 x1) are suppressed, because the shared variance
is absorbed by their instantaneous interactions which are not part
of a causal (lagged) interaction. This would also be a situation
where conditional or partial Granger causality would be useful
for diagnosing the true underlying connectivity between x1, x2,
and x3. These simulations can be realized by running the code in
script sim_commoninput.pdf.

Note that we have assumed that the common input is provided
with equal coupling strength, at the same time delay, and that
recordings are performed with an equal signal to noise ratio.
In real data, as these assumptions are progressively violated, the
estimates of Granger causality will also start to reflect spurious
directional coupling. This is because changes in any of these
parameters will affect how well the variance in one node can
predict variance in other nodes and therefore change Granger
causality values, as demonstrated in the section on signal to
noise ratio. This can be especially problematic if one has not
recorded from the node providing common input. This situation
is simulated in the next example (case 2, Figure 9D), where x3
provides time-lagged common input by influencing x1 at lag 1
and x2 at lag 2. Coherence and Granger causality, computed after
observing only x1and x2 are shown in Figures 9E,F. Coherence
shows a strong coupling, which is phase-delayed due to the time
lag offset in the common drive (the imaginary part of coherency,
the green trace, reports almost identical values as ordinary
coherence). This situation results in a significantly asymmetric
Granger causality metric, with the x1 x2 influence dominant
over the x2 x1influence (case 3, Figure 9G). In this particular
example, the only way to correctly infer the true connectivity
structure would be to observe all three nodes and perform
multivariate Granger causality (Figures 9G–I). Figure 9H shows
that there exists strong coherence between all three nodes, even
though the coherence between x1and x2 is a result of (time-
lagged) common input. This can again be detected by performing
partial coherence (Figure 9H, magenta trace) which removes
the linear contribution of x3 onto the coherence between x1
and x2 (driving it close to zero). Furthermore, multivariate

Granger causality (Figure 9I) correctly decomposes the true
causal structure.

For networks with more than three nodes, there has been
some progress toward inferring true network causality even in
the presence of unobserved time-lagged common inputs. In
particular, Elsegai and colleagues develop a technique based on
renormalized PDC together with sub-network analysis, although
the method can only resolve the correct connectivity in a
subset of possible interactions (Elsegai et al., 2015). Therefore,
common inputs can still lead to spurious inference, and currently
the only guaranteed way to overcome this problem is by
directly measuring nodes that could putatively provide common
input.

THE SAMPLE SIZE BIAS PROBLEM

Sample size bias can be a problem when connectivity measures
are being compared between two or more conditions where the
number of observations used to compute connectivity is different
between the conditions. In general, measures of connectivity
(with a few exceptions, such as PPC) are often biased quantities,
where under the null hypothesis of no connectivity the estimates
will deviate from zero. One of the reasons for this is that many
of these metrics reflect the magnitude of a vector quantity,
which always has a positive value, which is just a different way
of stating that the expected value will never be zero (except
in highly contrived scenarios such as Figure 3C). The amount
of bias is often dependent on the sample size: the smaller the
sample size, the larger the bias. The consequence of this is
that, in the comparison of connectivity metrics estimated from
samples with different numbers of observations, there may be a
tendency to overestimate the connectivity in the condition with
the smallest sample size. Also, more importantly, even in the
absence of true interactions, non-zero difference may be found
and reported.

In order to obtain estimates of phase synchronization using
non-parametric spectral estimation techniques, a necessary step
is to take a vector summation operation which is then normalized
by the total number of trials. When fewer trials are used to

A B C

FIGURE 10 | Sample size bias for coherence and Granger causality estimates. (A–C) For each respective metric, simulations based on 5, 10, 50, 100, and

500 trials were run, and coherence (A), Granger causality (B), and PPC (C) were calculated. Each panel reflects the average ± 1 standard deviation across 100

realizations.
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estimate the phase consistency, even in the absence of phase
synchrony, these vectors can all align in the same direction
more easily (thereby summing to a non-zero coherence value)
compared to when many trials are used. This bias is shown
in Figure 10A (derived from the script sim_samplesizebias.pdf ),
where 100 simulations of a simple auto-regressive model were
realized, after calculating coherence based on 5, 10, 50, 100, and
500 trials. Estimating coherence based on lower trial numbers
yields an average coherence value, which is substantially higher
and also more variable over different estimates compared with
higher trial counts. Figure 10B shows the same simulation
but using Granger causality as connectivity measure. This
shows that measures like coherence, PLV, and Granger causality
are positively biased when estimated using non-parametric
techniques, and this fact should be taken into account for a
proper inference. To estimate how much bias is present in a
given estimate, one can create a reference distribution by re-
arranging data segments and destroying the temporal alignment
between channels. This would preserve the power spectrum of
each signal but should force the cross terms of the cross spectrum
to approach zero. After repeating the procedure of temporal
re-alignment and connectivity estimation, one can compare
the empirically observed connectivity estimate to the reference
distribution and determine an appropriate level of significance.
To estimate the absolute value of a connectivity metric like
Granger causality, one can subtract the estimated bias to obtain
a de-biased estimate (Barnett and Seth, 2014). Note that this
approach is only successful in eliminating the sample-size bias
associated with connectivity estimates. Other phenomena that
inflate the connectivity estimates such as field spread are not
properly taken into account by trial-shuffling procedures and
must be dealt with in other ways.

Several approaches can be taken to account for the sample
size bias. In some experimental situations, where the number of
observations per condition is more or less balanced by design
(but in practice turns out to be different, e.g., after artifact
rejection), one strategy could be to equate the number of
trials across conditions to be compared by randomly deleting
observations from the condition with higher trial numbers until
the trial numbers are equated. This approach is ideally embedded
in a bootstrap procedure, where the random deletion of trials
is repeated multiple times, to obtain a more robust estimate.
In addition, for some metrics (for instance for coherence)
analytic estimates of the bias can be computed and applied
(Bokil et al., 2007). For coherence this usually goes hand in
hand with a variance stabilizing Z-transform, which has the
added advantage to facilitate a meaningful group statistical
inference. Another possibility is to account for the different
sample size bias within the inferential statistical framework,
using a non-parametric statistical test (Maris et al., 2007).
Or, in the specific case of coherence, one can consider the
distributional properties and do parametric statistical inference
using a jackknife procedure (Bokil et al., 2007). Alternatively,
one could use a metric for detecting synchronization which
is inherently unbiased, such as PPC (see Figure 10C). Finally,
one could also estimate the bias associated with any particular
measure of functional connectivity (for example, by shuffling the

trial sequence of one channel relative to others, and calculating
the metric of functional connectivity), and then subtract away
this estimate of bias from the empirically observed connectivity
value.

CONCLUSION

In this paper, we have presented a non-exhaustive review of
different methods currently used to quantify rhythmic functional
connectivity. We described a taxonomy to emphasize how the
methods are related to one another. For some of the most
commonly used metrics, we also described the intuition behind
them and some of the mathematical formulation. This was meant
to demystify what data features are reflected in these connectivity
metrics and how they are computed. Next we presented some
important issues that may confound a correct interpretation of
the connectivity, estimated from electrophysiological recordings.
The description of these issues was accompanied by a series of
simple simulations.

We hope that these simulations have impressed upon the
reader that a naïve application of connectivity analysis to
observed electrophysiological time series data can result in a
myriad of spurious inferences. The simulations presented in
this manuscript were meant to illustrate some of the most
common cases where interpretational difficulties await the
eager experimental scientist. These include problems associated
with use of a common reference, the presence of volume
conduction/field spread, differences in signal to noise ratio,
observed or unobserved common inputs, and bias related to
differences in sample size. In addition, by making available the
MATLAB scripts that were used to perform the simulations,
we hope that readers are encouraged run these simulations
themselves, and that they will not shy away from changing
the parameters in the scripts to explore in more detail the
ramifications of these potential interpretational confounds. Also,
the scripts can be used as a controlled environment where
different solutions to these confounds can be developed and
explored before they are applied on real data.

Where possible, we illustrated potential solutions to the
interpretational pitfalls that we have explored. For the common
reference problem, we discussed how local referencing via bipolar
derivation or current source density estimation can be effective
at removing common signal components. Another possible
approach is to use a metric which explicitly discards the zero
lag component of the interaction. Next, we discussed how the
volume conduction/field spread problem can be approached
in three distinct ways: by source reconstruction or local re-
referencing, via the use of experimental contrasts (which makes
the sometimes invalid assumption that volume conduction effects
are constant between conditions), or by using methods that are
insensitive to volume conduction such as the imaginary part
of coherency. Field spread also affects the estimates of directed
functional connectivity. Currently, there is no guaranteed
method to discard volume conduction effects in this case. One
way to protect against false positive inferences is to investigate
the instantaneous interaction to determine whether field spread
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effects are too large to warrant an analysis (Vinck et al., 2015).
Another possibility in principle is to include volume conduction
within the estimation framework of Granger causality, which
would require further development of model-based approaches
to connectivity estimation.

The problem of a different signal to noise ratio across channels
was discussed in the light of the potential misinterpretation of
the dominant direction of interaction using directed connectivity
estimates, in particular Granger causality. We illustrated a test
based on time-reversed Granger causality (Haufe et al., 2012)
to determine whether Granger causal asymmetries are due to
strong vs. weak asymmetries in the data. In addition, we pointed
out novel approaches that are based on state-space modeling
and DCM, which explicitly consider the separate contribution of
signal and noise to the estimated connectivity.

The problem of common input was also discussed, which
is particularly relevant when researchers want to make claims
with respect to whether the interaction between two neuronal
groups is direct, or mediated by a third source. In general it
is impossible to distinguish direct from indirect interactions
if not all nodes of the functionally connected network are
sampled. The problem is not a theoretical one. For instance, there
is increasing evidence that some cortico-cortical interactions
are mediated by the thalamus (Sherman and Guillery, 2011).
Using LFP recordings from the thalamus and two cortical areas
(V4 and TEO) Saalmann and colleagues showed that alpha-
band cortico-cortical coherence between V4 and TEO was
almost entirely eliminated after conditioning on the thalamic
drive (Saalmann et al., 2012). The problem of common
input can be theoretically dealt with by actually recording
from the nodes that potentially provide common input, and
by calculating a multivariate decomposition and conditional
Granger causality or partial coherence. In practice this solution
may not always be feasible due to limitations in the experimental
set up. Yet, over the past years much progress has been
made in increasing the coverage of neuroscience methods.
For example, single cell resolution and close to full brain
sampling can now be accomplished in the neonatal zebrafish,
using Calcium imaging (Ahrens et al., 2013). In addition,
methods that allow for significant brain coverage and dense
spatial sampling of LFP and spiking activity are now becoming
increasingly available in both animals (Rubehn et al., 2009;
Salazar et al., 2012; Berényi et al., 2014; Schwarz et al., 2014;
Lewis et al., 2015) as well as human patients undergoing
neurosurgical treatments (Chang, 2015; Khodagholy et al.,
2015).

Finally, we discussed the effect of sample size bias in
connectivity estimates. This problem can be dealt with by
equalizing sample sizes between conditions or subjects, by using
statistical methods that explicitly take the sample size bias into
account, or by using connectivity methods which do not suffer
from sample size bias (PPC or debiased methods).

These simulations were implemented using the Fieldtrip
Toolbox (Oostenveld et al., 2011). We note that other

toolboxes are also available for estimation of functional
connectivity data, most notably EEGLAB and the SIFT
toolbox (Delorme et al., 2011), the MVGC toolbox (Barnett
and Seth, 2014), the Hermes toolbox (Niso et al., 2013),
the TRENTOOL toolbox (Lindner et al., 2011) for transfer
entropy calculation, and the Chronux toolbox (Mitra and
Bokil, 2008). Many of these tools are open source, and benefit
from a wide community of users and contributors, which
help to improve the tools and contribute to a larger-scale
adoption.

We end by emphasizing that the difficulties we have noted
do not preclude a meaningful analysis of connectivity in
electrophysiological data, even when some of these issues are
present. One relevant aspect that briefly needs to be mentioned
is that the appropriate use of an inferential statistical procedure
is a crucial step in the application of connectivity estimation
techniques to neuroscience data, and in the correct interpretation
of the results. Statistical tests are used to both establish
significance of connectivity (against the null hypothesis of no
significant coupling) as well as to establish significant changes
in coupling between conditions (against the null hypothesis of
no significant changes). This is typically done within a non-
parametric statistical testing framework (Maris et al., 2007)
and/or using bootstrap sampling and trial-reshuffling (see
Methods Section in Bastos et al., 2015b). Yet, a statistical
procedure used inappropriately may still lead to an over-
interpretation of results (e.g., inferring significant coherence
when it is actually artifactual or inferring a difference in
interaction in the presence of differences in signal to noise ratio
across conditions). We hope that the explicit discussion of the
interpretational issues described in this review raises awareness
in the wider neuroscientific community. At the same time, new
methods are being continuously developed to address these
problems. Overall, one can be optimistic for the future as better
data, more nuanced hypotheses and experiments, and improved
analysis tools continue to provide new insights into the brain’s
dynamic connectivity.
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