
ORIGINAL RESEARCH
published: 05 January 2016

doi: 10.3389/fnsys.2015.00178

Frontiers in Systems Neuroscience | www.frontiersin.org 1 January 2016 | Volume 9 | Article 178

Edited by:

Mikhail Lebedev,

Duke University, USA

Reviewed by:

Robert C. Cannon,

Textensor Limited, UK

Vladimir Y. Bondarenko,

Georgia State University, USA

*Correspondence:

Witali L. Dunin-Barkowski

wldbar@gmail.com

Received: 24 August 2015

Accepted: 04 December 2015

Published: 05 January 2016

Citation:

Solovyeva KP, Karandashev IM,

Zhavoronkov A and

Dunin-Barkowski WL (2016) Models of

Innate Neural Attractors and Their

Applications for Neural Information

Processing.

Front. Syst. Neurosci. 9:178.

doi: 10.3389/fnsys.2015.00178

Models of Innate Neural Attractors
and Their Applications for Neural
Information Processing

Ksenia P. Solovyeva 1, 2, Iakov M. Karandashev 1, 2, Alex Zhavoronkov 3 and

Witali L. Dunin-Barkowski 1, 2*

1Department of Neuroinformatics, Center for Optical Neural Technologies, Scientific Research Institute for System Analysis,

Russian Academy of Sciences, Moscow, Russia, 2 Laboratory of Functional Materials and Devices for Nanoelectronics,

Department of Nanometrology and Nanomaterials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,
3 Insilico Medicine, Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA

In this work we reveal and explore a new class of attractor neural networks, based

on inborn connections provided by model molecular markers, the molecular marker

based attractor neural networks (MMBANN). Each set of markers has a metric, which

is used to make connections between neurons containing the markers. We have

explored conditions for the existence of attractor states, critical relations between their

parameters and the spectrum of single neuron models, which can implement the

MMBANN. Besides, we describe functional models (perceptron and SOM), which obtain

significant advantages over the traditional implementation of these models, while using

MMBANN. In particular, a perceptron, based on MMBANN, gets specificity gain in orders

of error probabilities values, MMBANNSOMobtains real neurophysiological meaning, the

number of possible grandma cells increases 1000-fold with MMBANN. MMBANN have

sets of attractor states, which can serve as finite grids for representation of variables in

computations. These grids may show dimensions of d = 0, 1, 2,. . . . We work with static

and dynamic attractor neural networks of the dimensions d = 0 and 1. We also argue

that the number of dimensions which can be represented by attractors of activities of

neural networks with the number of elements N 104 does not exceed 8.=
Keywords: neural networks, bump attractor, Hopfield networks, innate connections, self-organizing mapping,

cortical column, dynamic attractor

INTRODUCTION

The idea of neural systems working as unification of many similar units (“hyper-columns”)
exists in neuroscience for years (Horton and Adams, 2005). There are several approaches to
understanding inner machinery of elementary neural networks. One approach involves revealing
of neural connections experimentally. This is usually performed by identification of all connections
in serial electron-microscopic slices of whole brain (Mikula et al., 2012). A recent molecular
engineering approach by Zador et al. (2012) appears to simplify the problem. Other approaches
try to match the observations with theory. One set of ideas theorized that most neural connections
are formed by associative memory processes (Pavlov, 1927; Hebb, 1949; Marr, 1969, 1971). The
most prominent is the notion of Marr’s collateral network (Marr, 1971), which has been later re-
discovered as the Hopfield network for associative memory (Hopfield, 1982). Network dynamics of
the latter (although only in the case of symmetrical connections, which seems to be hardly possible
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in live neural systems) could be described by a potential
energy function, which is minimized with the activity dynamics.
Attractor states of Hopfield networks are isolated from each
other. Continuous sets of attractor states present a completely
different problem. We consider that two states S1 and S2 are
connected, if ρ(S1, S2) ≤ 2 (ρ is Hamming distance). The
connected set of stable states can constitute a grid of states,
which can be used for representation in a brain of continuous
variables. We will refer to the attractors, which can be used
for the grids of the d-dimensional variables, as attractors with
dimension d. So, the set of isolated attractor points (the set
of stable states in the Hopfield network) has dimensionality
d = 0. In (Dunin-Barkowski, 1984, 1986; Dunin-Barkowski
and Osovets, 1995) the Hopfield-type neural networks, based on
“continuous” sets of vectors, were considered. They can represent
finite grids for one-dimensional variables (Dunina-Barkowska
and Dunin-Barkowski, 1993). Hard-wired networks (networks
with innate connections) with continuous attractors are known
since (Amari, 1977). Recently, it has been discovered in isolated
cortex slices experiments that many reverberating connections in
cortex are innate (Harris and Mrsic, 2013). Also, the theoretical
reasoning has been expressed that attractor neural networks
can be innate and formed in ontogenesis with help of special
molecular markers (Dunin-Barkowski, 2011a; Dunin-Barkowski
et al., 2011). In this work we will present the advantages of using
molecular marker based attractors for modeling basic types of
neural information processing with computational experiments
on attractors with dimensions d = 0 and 1. We will show the
robustness of zero dimensional attractors to noise, we will show
how can be visualized all states of preformed linear ring attractors
(d = 1), and we will then analyze how the dimensionality affects
the learning of an attractor network and present an extension
of Kohonen’s SOM. All the learning experiments will be done
with McCulloch–Pitts Neurons. Some of the experiments with
the activity dynamics in neural networks with innate connections
will be extended to Leaky Integrate and Fire Neurons to show that
the presented concept is not limited to one neuron model.

ATTRACTOR NEURAL NETWORKS

There are at least three general mechanisms for making attractor
neural networks. The first is the self-obvious method (Amari,
1977). Here, the neurons are considered to be located in physical
space and the connections are established in direct relation to the
distance between neurons.

The second mechanism uses Hebb modifiable synapses. For
d = 0, it was proposed in Marr (1971) and Hopfield (1982). For
d = 1, it was studied in Amari (1977). To make the neurons
of the network properly interconnected, they should be exposed
to the signals from the external world for a certain period of
time. This is provided by extensive scanning of the environment
by the animal hosting the neural network (Hopfield, 2010;
Samsonovich, 2014). In this “conditioning” process, the neurons,
which get similar information from the external world, are
often excited simultaneously. Due to Hebb-type learning rules,
they become connected. Thus, in associative neural networks,

the firing of each neuron is connected to the specific input
information by the inborn connections.

Here, we propose and explore the third mechanism. The idea
has been discussed earlier in Dunin-Barkowski (2011b). Our
approach makes use of the following considerations. There is
undisputed data showing that many inter-neuronal connections
are inborn (Perin et al., 2011; Harris and Mrsic, 2013). The
inborn attractor networks are obtained with help of connection
rules, enabling neural networks to have attractors with desired
properties.

In contrast to the attractor networks, based on Hebb synapses,
the attractor neural networks with inborn connections inside
them must tune their external connections to endow the neuron
firing with a certain sense. We consider concrete examples of
such processes later in the paper. In this paper, we deal with the
networks with inborn connections inside the network and restrict
analysis to the attractor dimensions d = 0 and 1.

Molecular Marker-Based Attractors, d = 0
Molecular markers can be used to get the matrix for the neural
network with M isolated (d = 0) attractor points. There are
M × L markers belonging to M classes with L elements in
each class. The distance between markers is 0 when markers
belong to the same class, and non-zero, say 2L, when markers
belong to different classes. The markers are distributed randomly
between the neurons so that each neuron gets q = (M × L)/N
markers, which all belong to different classes. For simplicity, we
consider only cases when q is an integer while generalization
to non-integer values of q is not difficult. Then, the neurons
i and j are connected with excitatory connections only if the
neurons contain markers of the same class. Contrary to the
method of the learned connections, this method does not specify
which concrete states belong to the attractor in advance. The
set of attractor states depends on results of random distribution
of markers between neurons. This connection rule provides
mutually excitatory connections between neurons that have the
same type of markers. This means that neurons with same type
of markers might persistently excite each other. The state of the
network when these L neurons are excited and the rest neurons
of the network are silent, presents an element of the set of the
neural network attractor states. This statement holds for each of
the M types of molecular markers. Therefore, the attractor for
the neural network in which neural interconnections are made
with molecular markers consists of M states, Sm, (m = 1,M)
of activity of the network of N neurons. This is true (with the
probability close to 1), while M does not exceed certain value,
which depends on N and L. When L is small compared to N,
the distance between any two states of the attractor is close to
the value 2L. The interconnection matrix consists of 1 and 0.
It is symmetric and has all zeros at the diagonal. The Hebb–
Hopfield method (Dunin-Barkowski and Osovets, 1995) and the
method of molecular markers result in the similar matrices. The
only difference is in our knowledge of attractor states. In the first
case, we initially select states of network activity which are to be
the attractor states. In the second case, we randomly distribute
markers between neurons while not knowing which neurons will
be active in that or any another attractor state of the network.
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More details on MMBAN with d = 0 are given in
Supplementary Materials 2 and 5.

Bump Attractors d = 1
The first neural network with a continuous one-dimensional
attractor has been was discovered by Amari (1977). He
considered a set of neurons located along a line with excitatory
local and inhibitory more distant connections (“Mexican hat”;
Amari, 1977). In this network, there are stable states of activity in
which neurons of a local group are active and the rest neurons are
inhibited. This type of attractor is known as a “bump” attractor, as
active vs. inactive neurons in the attractor state present a “bump”
on a line of neurons. These types of attractors exist in neural
networks of many types of neural models. For convenience, we
give the general definition of this phenomenon below.

Definition of Bump Attractor
Consider a network of N MCP (Supplementary Material 1)
neurons which are connected to each other. For handling the
neural network, it is substantial that each of the neurons has an
individual identity. Without loss of generality we can consider
that these identities are order numbers, from 1 through N,
each of which is permanently attached to a concrete neuron.
This attachment provides neurons with their “individual names.”
Ordering the neurons according to these numbers yields the basic
order of neurons. Sometimes, it is convenient to use altered order
numbers of the same neurons. A particular alternate enumeration
of neurons can be presented as the set {a(1), . . . , a(N)}, which
is a permutation of {1, . . . ,N}. The a(i) can be also considered
as a vector-function, i.e., a mapping of the set {1, . . . ,N} into
itself. Obviously, for N neurons there could be exactly N!
enumerations. The state of the network, in which L neurons are
permanently active and (N − L) neurons are permanently silent
we name an attractor state of the network. Note that for any
attractor state s = (s(1), . . . , s(N)); s(i) ∈ {0, 1}, with L excited
elements (s = 1) of any network, there exist such an enumeration
{a(1), . . . , a(N)} that s(a−1(L+ 1)) = . . . = s(a−1(L+ L)) = 1,
where a−1(i) is the reverse function to a(i). In other words,
for any attractor state of the neural network, there exist such
an enumeration of neurons with which all excited neurons are
numerated sequentially, starting with order number (L+ 1). This
fact is indeed trivial, but we need it for further formulation. Now,
we say that all attractor states of the network constitute the bump
attractor, if for each attractor states of the network there exists
such enumeration, as, that for the states si; (i = 0, . . . , 2L) keeps
correct that si(as(1+ i)) = si(a s(2+ i)) = . . . = s i(a s(L+ i)) = 1
and these (2L + 1)states are attractor states of the network. This
rather complicated definition can be clarified by the graphics of
Figure 1. The case of continuously-valued LIF (Leaky Integrate
and Fire) neurons is also shown here.

In Figure 1, states of individual neurons are plotted vs. their
order number. For the neural network with bump attractors, for
each attractor state there exists an enumeration with which there
are at least 2b + 1 attractor states b ∼ L/2, each of which starts
with excited neuron at order number i = L− q+ 1and continues
with excited neurons through the order number i = 2L− q, (q =
1, . . . , b). Thus, each of these 2b + 1 attractor states in this

FIGURE 1 | Schematic drawing of activity plots for the neural networks

with bump attractors. Abscissa—neuron order number, based on the

properly chosen enumeration of the neurons, ordinate—neuron firing

frequency for continuous-valued neuron model (thick line) and the activity state

(excited/silent—thin line) for MCP neuron model. Red and black lines refer to

the neighboring stable states of the network. It is also supposed that many

intermediate stable states (between the red and black states) of the same

“waveform” as the pictured states, fill the interval between them. The figure

visualizes the definition of bump attractors.

enumeration looks like a “bump” of L successive active neurons,
while the rest of neurons are silent. This definition is practically
trivial for the network, where all neurons constitute a ring of the
length N with excitatory connections between adjacent neurons.
In these rings, the number of attractor states (the “length” of the
ring of attractor states) coincides with the number of neurons
in the network N. Later in this paper we will demonstrate that
“the rings” of attractor states can be of the length kN, where 1 <

k < K(N), with k(N) linear growing with N with constant L. In
other words, the fact that a neural network has a bump attractor
means that the set of its attractor states can be presented as locally
linear in vicinity of each of its attractor states. To observe this
presentation, the appropriate enumeration of neurons should be
selected. In general case, the necessary enumeration depends on
the concrete state in vicinity of which we make observable the
local linear structure of the attractor. However, for some types of
bump attractors, there do exist enumerations which yield linear
representation for substantial part (1/R)-th of all attractor states;
R = 1, 2, 3, . . . depending on the case; (Dunin-Barkowski, 1986;
Dunin-Barkowski and Osovets, 1995). In this paper, we do not
consider bump attractors with dimensions d > 1. However, the
generalization of the bump attractor definitions to these cases can
be more or less straightforward.

The bumps can be either stationary for stationary attractor
states (Dunin-Barkowski and Osovets, 1995), or propagating
over the line of neurons in case of dynamic attractors (Dunin-
Barkowski, 1986; Dunin-Barkowski and Osovets, 1995). The
formal definition for dynamic bump attractors can be simply
obtained from definition of a static bump attractor. In the
case of a dynamic attractor, the velocity of propagation of
the bump over the line of neurons can vary, depending on
the excitatory or inhibitory background (Dunin-Barkowski,
1984; Dunin-Barkowski and Osovets, 1995; Grossberg and Pilly,
2014). The number of attractor states in bump attractors can
exceed the number of neurons (Dunin-Barkowski, 1984). The
properties of learned bump attractors, which emerge in process
of network connection forming after learning in the network
of activity patterns, are described elsewhere (Dunin-Barkowski,
1984; Dunin-Barkowski and Osovets, 1995). Next section deals
with inborn bump attractors.
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Pre-formed Attractors, d = 1
An inborn mechanism to obtain neural networks with d = 1
bump attractors has been proposed (Dunin-Barkowski, 2011b;
Dunin-Barkowski et al., 2011). Computational tests of these
mechanisms have been first tried in Solovyeva (2014). This
network consists of N interconnected binary neurons. Its state
is characterized by N-dimensional vector of “0” and “1.”
The interconnection matrix T (N × N) is formed with the
help of model molecular markers, as is described below. For
network dynamics computing we use the asynchronous random
dynamics, which is defined in Supplementary Material 1. The
general idea of molecular markers in this section and in Section
Molecular Marker-Based Attractors, d = 0 is similar, but
the details differ, and help in building a neural network with
attractors with d = 1, instead of d = 0.

Here, the model molecular markers µh; h = 1, . . . ,M are
considered to make a ring, so that the marker next to the marker
µM is µ1. For the distance between markers µi and µj, we take
Dij = min{|i − j|, (N − |i − j|)}. We assume M = kN, with
integer k. Then M markers are distributed between N neurons
randomly, providing each neuron an even number of markers,
k. Besides, for markers, which fall into one neuron, we demand
that the distance between the markers exceeds a fixed value, 1.
This process is schematized in Figure 2. Here, the resemblance
between the markers is denoted by the colors of the “molecular
markers.”

The distribution of markers in neurons is performed by
placing one marker at a time into one neuron with the help of
random number generation and necessary checks. This process
either yields a valid distribution of markers in a limited time,
or it does not. The larger the values of N and the smaller M
and 1 are, the sooner the distribution process is completed.
After completion, those neurons, which have markers with
distance <δ, establish excitatory connections with each other
with connection weight value of +1. The rest neurons are also
connected with inhibitory connections of the weight –σ . The
neurons are not connected to themselves. In the network, which
has been formed as described, there are stationary attractor states.
Several methods can be used to characterize the structure of

FIGURE 2 | Model molecular markers (left) and their random

distribution between neurons (right). The molecular markers are shown as

small colored circles. Distances between the markers are indicated as color

resemblance. Larger circles are the neurons, each of which gets two molecular

markers of substantially different colors. The inter-neuronal excitatory

connections are made between the neurons, which have markers of similar

colors.

the set of attractor states. The first one uses statistics of the
states, into which the network gets after transients (“relaxes”)
from randomly chosen states. It is well known that the network
with symmetric connections gets to attractor states in ∼lg(N)
time steps (Hopfield, 1982). The second method makes use of
“artificial” dynamics introduced into the neural network. In this
case, the neural threshold is made dependent on the integral
value of the recent activity of the neurons (Dunin-Barkowski and
Osovets, 1995). Due to the threshold accommodation, the activity
of neurons tends to shift from a current to an adjacent state. This
method enables the activity of the network to “slide” over any
connected chain of states which exists in the neural network. In
case of the closed (“circular”) chains, the activity can circulate
over the circles for an indefinitely long time. It should be stated
here that in this paper we are dealing with sets of markers and
sets of states, which compose rings. However, the ring structure
is used here only for convenience of avoiding setting of boundary
conditions in the beginning and the end of the chains of states or
markers.

Extension to Kohonen’s SOM
As has been stated in the beginning of Section Attractor
Neural Networks, the neural networks, which have inborn
inter-neuronal connections, must tune their external
connections to endow the neuron firing with certain sense.
Our approach is based on a natural extension of Kohonen’s
SOM approach (Kohonen, 1982) to neural networks, which have
one-dimensional attractor state.

The model consists of R-dimensional input space and a neural
network ofN neurons. For convenience, we consider that R input
“receptors” read out the cyclic input variable, ϕ, which might be
(for example) the animal’s head direction angle 0 ≤ φ ≤ 1; as ϕ

is cyclic, φ = 1 represents the same direction as φ = 0. At a given
value of angle ϕ, receptors, which are broadly tuned to this angle,
are excited. The tuning curve of each receptor is bell-shaped with
a definite width. The time is discrete. Values of the input variable
in successive moments of time are independent and randomly
selected.

In the naive system, all receptors are connected to all
neurons of the targeted neural network, and connection
weights are randomly chosen. The neural network consists of
N binary neurons with recurrent symmetric connections. In
computational experiments, two types of recurrent networks are
used. In the first series, we use the network described in Section
Pre-formed Attractors, d = 1 with k = 1. We will refer to such
type of networks as a networks with a full ring attractor. In the
second series, we use the network which has two independent
full ring attractors (Dunina-Barkowska and Dunin-Barkowski,
1993; Romani and Tsodyks, 2010). Such networks have two
independent (random in relation to each other) ring attractors
of length N each.

The learning process includes the following steps:

1. The value of the input variable is selected.
2. The receptors are excited according to their tuning curve,

yielding the R-dimensional input vector for the neural
network (no activity in the network).
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3. The neurons are activated due to input signals from the
receptors via the connection matrix.

4. In the series of iterations, the states of the neurons of the
network are updated, starting with the state, obtained at the
previous stage, in accordance to the neural network equations
for 20 units of time (no working receptor connections,
network activity turns to stable in 3–6 time steps).

5. The connections from receptors to the neurons are modified
and stages 1–5 are repeated.

The rule for modification of connections is following:

Wi: = Wi: + η · ((XVT)i: −Wi:) (1)

This expression means that i-th line of the R × N matrix W is
slightly turned (as scaled with a small parameter η) in direction
of the input vector, X, which has elicited the current state of the
network activity, V.

The modification of connections continues until it could be
obvious that the matrix W yields continuous mapping of the
variable, which is sampled by the receptors into the attractor
states of the neural network. This conclusion is made based on
a visual observation of the matrixW.

NUMERICAL EXPERIMENTS AND
RESULTS

Robustness to Noise, d = 0
In this experiment we observe effects of noise when input vectors
are randomly chosen. First, we construct the attractor neural
network with M “isolated” attractor points, as described in
Section Molecular Marker-Based Attractors, d = 0. Then, we
select and fix M random vectors in R-dimensional space. All
coordinates of vectors are selected randomly from the interval
[–1, 1]. Initial values of connections from input fibers to the
representing neural network are random. One by one, we feed
all selected random vectors to the input fibers and memorize the
states of the neural network to which network states converge

after starting from input from each selected input vector. The
set of the selected input vectors is further checked as follows.
If the newly fed preselected vector imposes convergence of the
neural network into the state, which has been already memorized
for a previously fed vector, we select a new random vector with
which the system converges to the previously non-“occupied”
attractor state. When the selection procedure is complete, each
of the attractor state has a corresponding to it random vector
in the input space. Afterwards, we feed the same input vectors
with noise added to the network. Figure 3A shows results of
tests of the network with the selected M vectors and with same
vectors with added noise. In this case, to each selected vector Vi

we added noise, i.e., the R-dimensional random vector ξ i, which
coordinates are random in the interval [−η, η], where η ∈ [0, 1]
is the noise amplitude. Two types of the network are compared.
One of them is the network with M (“isolated”) attractor points.
The other is the network of non-connected neurons. From those
“non-connected” neurons for the given input vector, L neurons,
which receive maximum excitation, are set excited.

For learning of connected and not-connected networks, the
modified Rosenblatt’s perceptron rule was applied. Perceptron
is a device, which for each of the selected vectors Xt calculates
values Ot :

Ot =
R

∑

i=1

w iX ti (2)

where wi are the tunable real-number-valued parameters of the
perceptron. The teacher compares the sign of Ot with yt . If they
coincide, the vector of wi remains the same. If they differ, the
vector of wi obtains the new value (Rosenblatt’s rule):

w = w+ Xty t (3)

The perceptron learning is fast. It is known that if this iterative
learning process converges to fixed values of wi the final state
is attained after only a few iteration steps (Rosenblatt, 1958).
We use a modified perceptron learning rule as described below.

FIGURE 3 | Noise dependence of “output error” of neural network responses. (A) Before learning; (B) After learning. Blue dots, attractor neural network; red

dots, not connected neurons. Note the huge difference of abscissa scales between (A) and (B). R = 100; N = 300; M = 100; L = 20. Note that before learning the

attractor neural network enhances the input error. That happens because noise might force neural network to get to other attractors than imposed by a noiseless

signal. The Figure demonstrates that the learned attractor network has strong noise tolerance.
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In each cycle of work of the system there are two phases of
functioning. In the first phase, the input vector Xt acts on all
neurons of the network, imposing a state of excitation on some
of them. L neurons, which get maximum excitation from the
input, are left excited at this phase. The second phase of the work
of the system is a relaxation of the system from its initial state,
to one of the attractor states of the network. Afterwards, the
connection weights of the neurons with the external fibers are
modified. For those neurons in which the initial states coincide
with the final states, no actions are undertaken. For neurons,
which initial state was 0 and final state 1, the Xt vector is added
to its external connections vector. For neurons, which initial
state was 1 and final state is 0, the Xt vector is subtracted from
its external connections vector. This procedure is repeated for
all input vectors Xt until matrix W keeps changing. In our
computations, the number of iterations in all cases was <50.

As can be seen from Figure 3B, learning dramatically changed
the noise dependence of the attractor neural network. After
learning, up to very large noise, neurons keep discharging with
the same pattern. The behavior of uncoupled neural network does
not substantially depend on learning (note huge scale difference
in abscissa of Figures 3A,B).

We explored this phenomenon in a wide range of parameters.
In all cases, qualitatively, the behavior was the same. Neural
networks with attractors demonstrate high tolerance to noise
(up to 50%), while uncoupled networks are not resistant to
noise. The revealed phenomenon, although transparent in its
mechanisms, clearly demonstrates salient advantages of attractor
neural networks with d = 0.

Preformed Attractors, d = 1, Visualization
of Ring Attractors
Figure 4 gives an example of activity in a neural network of 300
neurons, whose connections were made with a help of a ring
of 900 markers as described in Section Pre-formed Attractors,
d = 1. We introduced “artificial” dynamics in the network, as
described in Pre-formed Attractors, d = 1. The plot color codes
the distance (in configurational space) between the current state
of the network and the states in the past (above the mid-line)
and the future (below the mid-line). This method of visualization
of multidimensional processes, L-plot, was described in Dunin-
Barkowski et al. (2010).

The horizontal lines above and below the mid-line show that
the activity in the network is cyclic, with the period ofTnet = 1225
time steps. The periodicity of the neural network activity means
that there is a closed chain of attractor states in the network,
all of which are attended by the system in cyclic dynamics. The
period of the cyclic activity is determined by two factors: (a)
the number of states attended by the system, and (b) the rate
of threshold accommodation. The plots of Figure 5 are obtained
by averaging of the plot of Figure 4 over the horizontal axis.
Top and bottom graphics show the same data with different time
scales. At the top plot the main feature is presence of the central
“negative impulse” and its two symmetric replicas “in past and
future.” They simply reflect the (almost) periodic processes in
the neural network. At the bottom of Figure 5, one can see that

FIGURE 4 | Activity visualization (L-plot, see text for detail) in the

network with connections, based on the ring of markers.

N = 300,M = 900,1 = 80, δ = 12, σ = 3, mean value of L over the

observation period, L = 15. t and dt represent time (in time steps of modeling);

1θ = 0.1, τ= 200, θ0 = 0. Color of Figure’s points (color code is shown at the

right strip) indicates the distance between state vectors of the neural network

in different time moments, i.e., between the (N-dimensional) state vectors V (t)

and V (t+dt). The Figure shows that the states of the network are repeated with

the interval T = 1225.

FIGURE 5 | Average distance between the current state and past and

future states. Top and bottom differ in time scale. N = 300, M = 900,

Tnet = 1225. The Figure is obtained by averaging the data, plotted at Figure 4

over the horizontal axis. Ordinate—distance between the states of neural

network V (t) and V (t+1t), averaged over t-values of Figure 4. It is first obvious

that the “periodicity” of activity in the network is noisy: the distance minimums

at T = ±1225 are not zeros. It is also obvious that the dependence of distance

on time difference is linear, when distance is close to zero. This fact makes

well-defined the velocity of propagation at |1t|< 15. This fact enables

“counting the number of states,” which activity of the network attends over the

cycle of periodic activity, in this case M’ = 900.37 ≈ 900 = M.
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in the time segment −10 ≤ 1t ≤ 10 the derivative, dr/dt
is in fact constant, changing sign at t = 0. The important
fact is that the product of Tnet · (dr/dt) in this case is 1225 ·
1.47 = 1800.75, which practically coincides with the value 2M =
2 · 3N, the doubled number of markers, which were used for
forming connections in the network in this case. In other words,
this neural network has M attractor states that are connected
into the ring chain of states with a minimal distance Dmin = 2
between adjacent states. All of them can be visited sequentially
if neurons have the property of threshold accommodation. The
form of the curves at Figure 5 can be qualitatively explained.
First, we explain the initial linear growth of the distance from
the given state to the subsequent attractor states as a function of
time. The growth is due to the fact that all attractor states have
the same value of L (the number of “ones” in state vector), and
the activity sequentially runs over all attractor states. The plot in
fact means that activity propagates in the ring of attractor states
with the same local properties, as activity propagates over a line
of neurons.

As this linear increase of r continues almost until r = 2L,
a slight distortion of linearity can be seen close to the value
r = 2L. The distortion is due to the noisy influence of the
remote parts of the ring of attractor states onto the interstate
distance. Afterwards, the distance remains equal to 2L (which
would be exactly the same as in case of activity propagation in a
linear chain of neurons). However, the distance drops to another
level, D, when the number of the states, passed by the network
activity, from the reference state approaches1. In computational
experiment, we have D = 29.06. Theoretical estimates yield the
following expression for D (Supplementary Material 3):

D ≈ 2L

(

1−
(r − 1)L

M

)

(4)

for L = 15, k = 3,M = 90 (Equation 4) givesD ≈ 29.06, in good
accordance with the experiment.

Another way of activity visualization in this type of neural
networks is presented in Figure 6. Here, abscissa gives the order
number of the specially selectedM neuron states. Each of them
includes L excited neurons, which contain markers with order
numbers i, i + 1, i + 2, . . . , i + L − 1, with i = 1, . . . ,M.
Ordinates give discrete time, which increases from top to bottom.
The color of the point (i, t) at this plot gives the distance between
the current state s(t) of the neural network and the state s(i) as
defined above. Figure 6 shows that, in fact, the network states
“slide” over the set of the selected states. The plot of the type of
Figure 6 is characteristic for the computational experiments with
sufficiently small value of k = M/N. For larger values of k the
picture of activity propagation is different.

Activity of Neural Networks for Different
Values of k
We studied effect of k on network activity. With larger k, the
neural network activity display can show the pattern given in
Figure 7. It can be seen that for N = 300, there exists a critical
value k = kc, such that forM < kc ·N the network activity follows
the pattern displayed at Figure 6. For the larger k, the pattern

FIGURE 6 | Time plot of distances between the current activity state

and candidate activity states, enumerated by the marker order number.

One horizontal line corresponds to one time moment. Abscissa—network

state order number; ordinate—time. Color code for each point of each line

shows how close is activity of the network to the state, which order number is

at the abscissa. N = 300,M = 600,D = 80, δ = 12, σ = 3, other parameters

are the same, as in Figure 4. The Figure demonstrates that the activity of the

network in fact attends the candidate states, enumerated at the abscissa.

changes. Screening of the parameter values in computational
experiments yields the dependence of kc on N (Figure 8). It
is practically linear. An analysis gives the following expression
(Supplementary Material 4):

kc(N,1, δ, L) =
N

2δ L
√
N

(5)

Correction factor L
√
N in the denominator is between 1.0 and 2.0

for L ≥ 20 and N ≤ 105. The correspondence between theory
and computational experiment is fair.

SOM Type Learning in Static Bump
Attractors
With the learning procedures described in Section Bump
Attractors d = 1, we demonstrate here results of the
computational experiments. Figures 9A,B show connection
matrices before beginning and after completing the learning
process. In the initial state, the matrix presents a randommosaic.
It should be noted that the order numbers of receptors are
given according to the variable values to which the receptors are
tuned. Figure 9B shows the fact that learningW implements the
continuous mapping of the sampled variable into attractor states
of the neural network. Figures 9C,D show the results of testing
the learned system. The test consisted of sequential presentation
to the system of ϕ-values in the range [0, 1] with 0.001 steps.
With each ϕ-value, the neural network relaxed for 20 steps of
time (to ensure that all transients are over) to an attractor state.
In Figure 9C the final state of the network for each ϕ-value is
represented by a line with light blue points for active neurons of
the final state and dark blue points for the silent neurons. It can be
seen that the sequential test of a 1000 values of ϕ in the learned
system yields activation of the sequential attractor states of the
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FIGURE 7 | Activity display for the neural networks formed with different values of k. Notations are the same as in Figure 6. N = 300,D = 80, δ = 12, σ = 3,

Other parameters are the same, as in Figure 4. Top: k = 6, in this case the activity runs in cycles over all k · N attractor states (not shown); bottom left, k = 7; bottom

right, k = 8. Note that for large k the activity jumps between points of attractor significant distances. Each leap of activity is accompanied with change of direction of

wave propagation of the ring of attractor states (the incline of blue lines at the figures switches from negative to positive and vice versa after each leap. The number of

jumps for the fixed time period increases with values of k. The figure illustrates the method of obtaining data for the Figure 8.

neural network. Figure 9D shows this result rather differently.
Here, the inner circle of the figure represents the ϕ-values. The
outer circle represents the order number of the neural network
states, to which the activity of the neural network converges
when it is activated with the concrete ϕ-value. The latter are
connected to the former with thin lines. This form of the graphic
display of the mapping of the input variable ϕ-onto the states of
the neural network activity shows more detail than the method
in Figure 9C. In particular, it can be seen that there are some
deflections from the linear relations between the ϕ-values and the
attractor states.

Figure 10 shows results of learning for the case when the
neural network has two independent full ring attractors. The
inter-neuronal connections are formed with help of two sets
of molecular markers. Each set has N elements with circular
topology. Both sets are distributed randomly between the
neurons so that each neuron gets one marker from each set. The
excitatory connections are made between neurons which have
markers (of either type) with distances less than δ. Figures 10A,B
give two views of the neural network interconnection matrix.
These views are obtained with two different enumerations of the
neural network neurons. The two enumerations correspond to
two different sets of markers. The views seem to be identical,
but they are in fact completely different in their fine details.

FIGURE 8 | The dependence of kc on the number of neurons in the

neural network N. D = 80, δ = 12, σ = 3; a line is a least square match of the

computational experiment data.

Figures 10C,D give two looks at the matrix W between the
receptors and the neural network after learning. For the neurons,
the enumerations of Figures 10A,B are used for Figures 10C,D.
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FIGURE 9 | The self-organization of mapping from receptors to the attractor network. (A) Initial state of the matrix of the connections between the receptors

and neurons of the attractor network. The value of matrix elements is color-coded. (B) The same matrix after completion of self-organization. (C) States of the network

to which the activity of the network converges when the parameter of input signal takes 1000 sequential values in interval [0, 1.0]; abscissa—order # of neurons,

ordinate—values of the parameter; light or dark blue colors denote excited or silent neurons. (D) Schematic mapping of the input signals to the states of the network.

Inner circle, input signal parameter; outer circle, the attractor state order #; blue lines connect input signal representation points with the attractor points, to which

neural network activity converges with the given input. The Figure demonstrates feasibility of SOM with neural attractors.

The first view shows that the learning has provided mapping
of the variable ϕ onto one of the ring attractors of the neural
network. Which of the two attractors finally “accepts mapping”
depends on the random initial conditions.

Leaky Integrate and Fire Model
In this section, we compare the computed behavior of the neural
networks of McCulloch–Pitts neurons described in previous
sections with the behavior of the networks of Leaky Integrate-and
Fire (LIF) impulse neurons.

Figure 11 shows the activity dynamics in the network of LIF
neurons. The excitatory neural network connections are made
with the help of molecular markers, similar to the technique
used with MCP neurons whose activity is shown in Figure 7. The
inhibitory neurons get excitatory connections from all excitatory
neurons, and they send their connections back to all excitatory
neurons. In Figure 11, the color code of the pixels indicates
the sum of the membrane potentials of the neurons in each of
the M standard neuron sets (SNS) (def. below). The horizontal
coordinate is the order number of the SNS, while the vertical
coordinate indicates time. The standard neuron sets are those,

which include the neurons with the markers (j−L/2), (j−L/2+
1), . . . , j, (j + 1), . . . , (j + L/2), for j = 1, . . . ,M, where L = δ.
The neurons have an accommodation property. Due to modeled
calcium currents, the threshold of the neurons depends on their
recent activity. Figure 11 clearly shows that the activity of the
network slides with time over the ring of the SNS.

Dynamical Neural Attractors
In Sections Pre-formed Attractors, d = 1 (pre-formed
bump attractors) and SOM Type Learning in Static Bump
Attractors we studied the structure of neural attractors with
help of auxiliary dynamics, adding accommodation to neural
properties. The dynamical properties of the neural networks
can be set by appropriate learning (Dunin-Barkowski, 1984,
1986; Dunin-Barkowski and Osovets, 1995) or by forming
of the connections (Stringer et al., 2002). The dynamical
properties of the network can be also obtained with the help of
molecular markers, if connection forming rules are asymmetric.
In simulations, connection rules in the network were analogous
to the connection rules in Section Pre-formed Attractors, d = 1.
However, connected with excitatory connections were made only
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FIGURE 10 | SOM with two possible attractors for mapping input

signals. (A,B) are two views of neural network interconnection matrix T in the

first in the second enumerations (the dimensions of the figures are N × N; the

connection weight is color-coded: dark blue, −10; light blue, 1; yellow 2. (C,D)

the connection matrix W after completion of learning, (C) neurons are

numerated in the first enumeration; (D) neurons are numerated in the second

enumeration. The number of neurons N = 300, the number of receptors R =
300. The Figure demonstrates that of two existing circular bump attractors,

which exist in the neural network, the SOM process “selects” only one to use

for mapping of the input signals.

from neurons with larger order numbers of markers to the
neurons with smaller order numbers, up to number difference
of L/2. Figure 12 demonstrates activity of such a type of neural
network. The period of the activity in this case depends on
threshold control and can be varied in some range [the early
example of such a control is given in Figure 1 of Dunin-
Barkowski (1986)].

It should be emphasized that the pattern of the activity of the
neural network in Figure 12 gives a clear picture of propagation
of a wave in excitable media (Wiener and Rosenblueth, 1946).
In Figure 12B one can see that the excitation wave form is
asymmetric. Note that the upper-left edge of the excited area
at Figure 12B (the front edge of excitation wave) looks more
straight and sharp than the lower-right edge (the tail of the wave),
alike, say, a wave of flame in the field of dry grass. However,
in this case, physically, there is no excitable media. The wave
propagates, in fact, in the configurational space of the neural
network. The existence of such kind of waves was also observed
in (Dunin-Barkowski, 1984).

DISCUSSIONS

Dimensions
Continuing the ideas of Section Preformed Attractors, d = 1,
Visualization of Ring Attractors it is worth to make a note on

FIGURE 11 | Raster of activity for LIF bump attractor. Horizontal

line—order number of the molecular markers. Vertical—time (s), from top to

bottom. The color of the dots codes the sum of membrane potentials of the

neurons, which contains markers with order markers from [x − L/2] to

[x + L/2], x = 1, . . . , M. LIF neural network with accommodation

(Supplementary Material A1.3), τCa = 0.1 c, N = 600,M = 1200, L = 30. The

figure looks like Figure 6. Alike the latter, it means, that the neural network

activity of the neural network with one-dimensional attractor “rolls over” the

candidate states in course of artificial dynamics (in this case, due to Ca++

entering into the neuron in connection with excitation impulses). The difference

between Figure 4 and this figure is in the criterion of activity presence in a

particular state (see the text for detail).

properties of attractor networks with d > 1. In particular, it can
be argued that the dimensionality of a reliable attractor neural
network with a good resolution is hardly possible for d > 4; in
any case, it can be shown that it cannot exceed the value d = 8.

Let us have a preformed continuous bump attractor of
dimensionality d with d-cube grid, constructed with of d-
dimensional analogs of the molecular-marker method (see
Section Pre-formed Attractors, d = 1). In this case, each neuron
gets kmarkers.With help of eachmarker, the neuron is connected
with (2δ)d neurons (the volume of the d-dimensional neuronal
neighborhood). So, each neuron has (2δ)d · k connections. This
number must be less than the number of neurons: (2δ)d · k < N.
Let l be a number of discrete elements for each dimension. Each
element should be presented as a separate attractor state of the
network. So, we have ld ≤ N2/L, or d ≤ log(N2/L)/ log(l). The
estimate of maximal value of d can be obtained in the following
way. First, note that this estimate at fixed N increases with the
decrease of L and l. For the number of neurons in the range
N = 10000 ÷ 50000 (the usually supposed number of neurons
in one cortical column in human brain), we get d = 7 ÷ 8 for
l = 10, L = 10 and d = 3 ÷ 4 for l = 100, L = 100. In this
paper, we have studied only the cases of d = 0 and 1.

Two Layers Perceptron Implemented with
Isolated Points Attractor
In Sections Molecular Marker-based Attractors, d = 0 and
Robustness to Noise, d = 0 we have introduced and
explored neural networks with inborn point attractors (d =
0). Properties of these attractor neural networks are similar
to properties of Hopfield networks. We have revealed the
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FIGURE 12 | Activity propagation in LIF dynamic neural network. Notations as in Figure 11. (B) presents the rectangular inlet of (A). Asymmetric excitatory

connections between neurons: from neurons with larger marker order numbers backwards. N = 600, M = 1200, L = 30. The figure gives an example of a wave,

which moves over the states of activity of the neural network with asymmetric connections.

functionally important properties of these attractors. When
we have constructed a perceptron, i.e., the neural network,
which detects specific patterns, it occurred that attractor-based
perceptrons substantially surpass neuron-based perceptron’s
error tolerance (see Figure 3B).

Molecular Marker Based Neural Network
with 1-d Bump Attractor
In this paper we have developed a physiologically plausible
mechanism to make connections in the network to have in
it a “long” one-dimensional attractor, i.e., the attractor with
the number of states, exceeding the number of neurons in the
network. We have demonstrated examples of such networks,
obtained in computational experiments. Our examples can
serve as templates for interpretation of neurophysiological
experiments, as one-dimensional neuron attractors are often
supposed to be present in different brain structures. For
the experimental verification purposes we have proposed two
methods for visualization of neural attractor activity. The
methods were tested on data of computational experiments and
might be used for physiological experiments.

Extension of Kohonen’s SOM
We explored the bump attractor-based SOM, similar to
Kohonen’s original construction [preliminary results were
published earlier (Solovyeva, 2013)]. The construction
demonstrates a series of considerable distinctions from the
original Kohonen’s paradigm. First of all, it is more likely to be
implemented in a real brain than the original construction of
Kohonen, as Kohonen’s chains and grids (Kohonen, 1982) have
no analogs in real neural systems. Second, the neural activity
regenerative processes in bump attractor network provides the
natural neighborhood of the attractor states by the mere nature
of the bump attractor. Indeed the neighborhood of a given
state consists of the states, which are close to a given state by
Hamming metrics. In the Kohonen’s SOM, the neighborhoods of
the nodes are defined forcefully.

Thus, computational experiments on the learning of neural
networks with bump attractors to respond to external signals
have demonstrated that SOM-like mechanisms can be efficient
for representation of continuous variables in realistic neuronal
systems.

Neural Building Blocks
It was believed for a long time that neural information processing
and neural control is based on a set of “principles of neural
organization,” just as the artificial information and control
machines use standard operations and standard circuits (Hebb,
1949; Brindley, 1969; Dunin-Barkowski, 1971a,b; Ito, 2012).
There is a hope that the number of such concrete circuit
principles is, although large, is not huge (say, <1000). One of
the ways to complete the “brain reverse engineering” (Stevens,
1985) is to reveal these principles, one by one, in order to obtain
a complete set of them (Dunin-Barkowski, 2011b). The bump
attractor neural structures (with d = 0 and 1) and their versions
definitely constitute a part of this set of principles (Knierim and
Zhang, 2012). In this paper, we have presented only fragments
of the future detailed description of the ways of functioning and
functions of bump attractors. There is still a long way to go until
discovery of new principles and for this knowledge to be applied
in future artificial mind systems.

The Clock-Brain Machinery
We hope that hereby we have demonstrated that the simple
operation of switching on of stable static or dynamic recurrent
states, provided by inborn neuronal connections, can serve as
a basic computational operation of the neural systems in many
cases. In this capacity, the equal utility might be assumed for the
neural networks with attractor dimensions d = 0, 1, . . . ,≤ 8.
However, it is possible that the case of d = 1 is in fact special and
might be considered a basis for a large class of interdependent
constructions which enable the effective functioning of the
neuronal systems. On one hand, such a conclusion might
be based on the fact that multi-dimensionality can be often
considered a Cartesian product of the appropriate number
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of one-dimensional constructions. On the other hand, there
emerges a new class of structures in neuronal systems that is
based on the networks with d = 1. We would propose to name
this class “The Clock-Brain Machinery.” What does this mean?
It would be relevant to recollect the remark of Masao Ito (Ito,
2012) that states that the purpose of understanding concrete
human-mademechanisms in the long history of their existence in
human culture has been, in essence, for disassembling and further
successful reassembling of these mechanisms. For centuries,
the most sophisticated of them were the mechanical clocks.
Ito expresses the opinion that the likely considerations should
be used for analysis of the brain machinery. This note might
be treated as allegory, but there are arguably more concrete
elements in it as well. We suppose that the dynamic ring
attractor neural network (Figure 12) can serve as a basic block
of the realistic clock metaphor. One should also bear in mind
that static attractor one-dimensional structures can be easily
transformed into dynamic one-dimensional attractor structures
(Dunin-Barkowski and Osovets, 1995; Hopfield, 2010) with
switching on of the Ca++-dependent potassium channels. The
complete cycle of activity in the network of the type of Figure 12
resembles the full turn of a clock’s gear wheel. The activity
of different cyclic networks can be easily connected, yielding
a structure resembling the gear-wheeled clock mechanism. Of
course, it should be taken into consideration that specific states
of neural “gear wheels” can have different meanings. Of course,
the clock-wise picture of the brain machinery doesn’t pretend
to present all of a real brain’s processes, but it might yield
a convenient framework for getting more details of the brain
function.

CONCLUSION

In this paper we extend our work on attractor based neural
networks. Special attention is paid here to aspects of neural
dynamics insufficiently highlighted beforehand. In this paper, we
have demonstrated that robustly functioning neural networks of
N neurons can have M = k · N attractor states, where k =
1 ÷ 1000. On the other hand, there is a possibility, that the value
of k as low as 10−2–10−4. For example, it is believed that the
typical “grandma neuron” is definitely a representative of a sub-
network, containing Ngrandma = 102 − 104 neurons (Quiroga
et al., 2013). The latter assumption cannot be overturned. If the
neurons, which take part in one “grandma” representation are
not used for other purposes, then we get the very low estimate
of k = 1/Ngrandma. As a result, one of the main problems in
experimental and theoretical neural studies is to understand if
neuronal elements in brain are used to represent only unique

external events, or if they can be used in combinations, so
that different combinations of active neurons can represent
different external events. The fact of the existence of remapping
in the hippocampus (Fyhn et al., 2007) shows that at least
in some neural structures, the combinations are used. For the
attractor neural networks, we have considered in a general
form the networks whose set of attractor states might represent
finite grids for discrete and continuous variables. This treating
naturally leads us to notions of neural networks with attractor

dimensions d = 0, 1, 2, etc. We give simple calculations,
showing that for biological neural networks d is (fussy) limited,
d =≤∼ 8.

Further, we consider a method (“molecular markers”) for
forming inborn connections in neural networks, which provide
neural networks with attractor dimensions d = 0.1. The k-value
in the cases we have considered is in the range k = 1÷ 1000. The
elaboration of inborn neural networks with attractor dimensions
d > 1 is an interesting problem for future works. Also, we note
that the activity of neural networks with inborn attractors can
obtain meaning due to inborn or learned forming of connections
of a concrete neural network with other neural structures. In
pursuing this idea, we showed our results for the cases of d =
0 (two-layer perceptrons) and d = 1 (Kohonen’s SOM, based
on one-dimensional attractor states). The last part of our paper
demonstrates that the results, obtained with McCulloch–Pitts
neural model, have direct analogies to the networks of impulse
neurons of the LIF type. There is no reason to assume that it
doesn’t hold true for more detailed physiological neural models.
This model may find applications in many areas including deep
neural nets for image, text and voice recognition, autonomous
driving and drug discovery and drug repurposing and provide
a theoretical base for further research in applying biological
principles to machine learning.
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