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Editorial on the Research Topic

Self-Organization in the Nervous System

“Self-organization is the spontaneous—often seemingly purposeful—formation of spatial,
temporal, spatiotemporal structures, or functions in systems composed of few or many
components. In physics, chemistry and biology self-organization occurs in open systems driven
away from thermal equilibrium” (Haken, Scholarpedia). The contributions in this special issue
aim to elucidate the role of self-organization in shaping the cognitive processes in the course of
development and throughout evolution, or “from paramecia to Einstein” (Torday and Miller). The
central question is: what self-organizing mechanisms in the human nervous system are common to
all forms of life, and what mechanisms (if any) are unique to the human species?

Over the last several decades, the problem of self-organization has been at the forefront of
research in biological and machine intelligence (Kohonen, 1989; Kauffman, 1993; Pribram, 1994,
1996, 1998; Kelso, 1997; Camazine et al., 2003; Zanette et al., 2004; Haken, 2010, 2012, and others).
The articles collected in this issue present recent findings (and ideas) from diverse perspectives
and address different facets of the problem. Two features of this collection might be of particular
interest to the reader: (i) the scope of discussion is broad, stretching from general thermodynamic
and information-theoretic principles to the expression of these principles in human cognition,
consciousness and understanding and (ii) many of the ideas speak to a unifying perspective outlined
below. In what follows, we will preview the collection of papers in this special issue and frame them
in terms of a unified approach to self organization—leaving the reader to judge the degree to which
subsequent articles are consistent with or contradict this framework.

Living organisms must regulate flows of energy and matter through their boundary surfaces
to underwrite their survival. Cognitive development is the product of progressive fine-tuning
(optimization) of regulatory mechanisms, under the dual criteria of minimizing surprise (Friston,
2010; Sengupta et al., 2013, 2016; Sengupta and Friston, 2017) and maximizing thermodynamic
efficiency (Yufik, 2002, 2013). The former implies reducing the likelihood of encountering
conditions impervious to regulation (e.g., inability to block inflows of destructive substances);
the latter implies maintaining net energy intakes above some survival thresholds. Energy is
expended in regulatory processes formed in the course of self-organization and predicated on
lowering thermodynamic entropy “on the inside” and transporting excessive entropy (heat) “to
the outside.” Efficient regulation requires mechanisms that necessarily incorporate models of the
system and its relation to environment (Conant and Ashby, 1970). Primitive animals possess small
repertoires of genetically fixed, rigidmodels, while—inmore advanced animals—the repertoires are
larger and their models become more flexible; i.e., amenable to experience-driven modifications.
Both the evolutionary and experience-driven modifications are forms of statistical learning:
models are sculpted by external feedback conveying statistical properties of the environment.
Human learning mechanisms, although built on the foundation of statistical learning, depart
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radically from conventional (e.g., machine) learning: the implicit
models become amenable to self-directed composition and
modification based on interoceptive, as opposed (or in addition)
to exteroceptive, feedback (Yufik, 1998). Interoceptive feedback
underlies the feeling of grasp, or understanding that accompanies
the organization of disparate “representations” into cohesive
structures amenable to further operations (mental modeling).
The work of mental modeling requires energy; consciousness is
co-extensive with deliberate (attentive, focused) application of
energy (“cognitive effort”) in carrying out that work. Learning
with understanding departs from statistical (machine) learning
in three ways: (i) mental models anticipate experiences, as
opposed to be shaped by them (e.g., the theory of relativity
originated in gedanken experiments); (ii) feedback conveys
properties of implicit models (coherence, simplicity, validation
opportunities the models afford, etc.) and (iii) manipulating
(executing or inverting) models enables efficient exchange
with the environment, under conditions with no precedents
(and thus no learnable statistical representation) (Yufik, 2013).
Regulation of this sort—based on statistical learning—faces a
challenging complexity. As the number of regulated variables
grows; energy demands can quickly become unsustainable. Using
self-organization to implement the process of “understanding”
(i.e., composing more general models) has the triple benefit of
minimizing surprise, while averting complexity and advancing
thermodynamic efficiency of regulatory processes into the
vicinity of theoretical limits.

Annila argues that the most fundamental function performed
by the nervous system is shared by all open systems and entails a
generation of entropy, by extracting high-grade free energy from
the environment and returning low-grade energy. As dictated
by the second law of thermodynamics, cognitive processes seek
out opportunities (paths) for consuming free energy in the least
time. Evolution obtains progressively more efficient mechanisms
for detecting and exploiting free energy deposits, culminating in
consciousness that emerges in systems pertaining to the ability to
“integrate various neural networks for coherent consumption of
free energy...” (Annila, this issue).

Street reviews discussions in the literature that examine
the tension between—and synthesis of—information-theoretic
and thermodynamics-motivated conceptualizations of brain
processes. Tensions are rooted in the theory of information,
designed to allow analysis of information transfer, irrespective
of the physical processes that mediate transfer. Synthesis
is necessitated by considerations of energy costs incurred
in neuronal signaling. A consensus is anticipated, within a
theoretical framework that views cognitive development as
self-organization in the nervous system—seeking to minimize
surprise, while incurring minimum energy costs.

Torday and Miller discuss the conceptual framework
needed for tracing evolution of the mammalian brain “from
paramecia to Einstein.” The framework encompasses three key
notions: (i) complex multicellular organisms share fundamental
organizational properties, with precursors in unicellular forms
of life, (ii) the most basic property is the ability to extract
energy from the environment and dissipate heat in a manner
enabling homeostasis and processing of information and (iii)

evolutionary improvements in homeostasis, self-maintenance
and information processing derive from increased cellular
collaboration (coherence). Within this framework, “life is
cognition at every scope and scale” and “any cognitive action
as a form of cellular coherence can be better understood as
both an information exchange and reciprocally then, as energy
conversion and transfer” (Torday and Miller).

Campbell argues that Darwinian evolution can be expressed
as a process of Bayesian updating. Conventionally, the ability to
draw inferences and update Bayesian models has been attributed
exclusively to (human) reasoning. The range of attribution
can be expanded to include all organisms, by assuming that
genotypes carry latent models of the environment receiving
varying expressions in the phenotype. On that view, genetically
transmitted models are the source of hypotheses (phenotype
variations) subjected to confirmation (survival) or rejection
(extinction) by the environment. Changes in the phenotype over
somatic time and the genotype over evolutionary time minimize
surprise thus increasing the likelihood of survival of individuals
and the species.

Kozma and Freeman analyze alternations between highly
organized (low entropy) and disorganized (high entropy)
neuronal activities induced by visual stimuli. In rabbits implanted
with ECoG arrays of electrodes fixed over the visual cortex,
presentations of stimuli were accompanied by metastable
patterns of synchronized activity—collapsing quickly into the
background activity upon cessation of the stimuli. The authors
define alternations betweenmetastable patterns and disorganized
firings as phase transitions and propose a “cinematic” theory of
perception; treating alternations that spread across the cortex
as successions of “frames” combined into perceptual units
(percepts). Synchronized neuronal populations are identified
with Hebbian assemblies, acting in a self-catalytic fashion:
Interactions between assemblies maintain the cortex in the
critical state, conducive to the emergence of organized (low
entropy) structures, such as Hebbian assemblies.

Stankovski et al. present novel findings concerning the
coherence of neuronal assemblies. Assemblies oscillate within
characteristic frequency intervals, with cross-frequency coupling
serving to integrate assemblies into functional networks that
span distant regions in the brain. In this study, cross-frequency
coupling functions were reconstructed from EEG recordings
from human subjects in the state of rest, with the eyes either open
or closed. They review early evidence that closing the eyes triggers
an increase in coupling strength. A novel method of analysis
then allows them to determine variations in coupling strength
across frequency ranges: crucially, they find that increases in
the strength of inter-assembly coupling are accompanied by
narrowing variation envelopes.

Tang et al. recorded experience-induced changes in the
connectivity of large-scale brain networks. Subjects were
resting in a state of “mindfulness,” under minimal exposure
to external stimuli. A comprehensive array of mathematical
analyses was applied to the fMRI data. The analyses reveal
statistically significant increases in connectivity between different
brain areas. Many earlier studies have demonstrated increased
connectivity in brain networks under external stimuli; however,
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according to this study, similar increases can be produced in the
course of internally-induced, restful states.

Werbos and Davis review progress to date in modeling
cognitive functions, focusing on the neural net model of learning
employing back-propagation algorithms. Neural nets represent
learning as the acquisition of desired mappings between input
vectors (environmental conditions) and output vectors (desired
responses), via iterative reduction of mapping errors. The
model posits successions of calculations propagating forward and
backward in the neuronal system, orchestrated by some global
clock. Empirical substantiations of this model have been scarce—
but new experimental findings and analysis are presented that
speak to its biological plausibility.

Perlovsky’s “physics in the mind” research program tries
to define the principles of cognition in a rigorous way (a la
Newtonian mechanics). Some principles are suggested including
mental modeling, vague representations, knowledge instinct,
dynamic logic and dual hierarchy. A mental model is the
basic functional unit of cognition, models are vague (lacking
detail), while sensory inputs are crisp (rich in detail). Acquiring
knowledge involves reconciling models and inputs in a process
driven by knowledge instinct and employing mechanisms of
dynamic logic. Model hierarchy has a counterpart in linguistic
hierarchy (hence, the dual hierarchy).

Newton analyzes composition of understanding and identifies
three constituents: (i) imagery, (ii) the state of mental tension
(surprise) caused by a novel situation and (iii) the state of
tension resolution, provided by having worked out responses
afforded by the situation. The feeling of having reached
understanding (Aha!) precedes response execution and thus
depends on factors other than external feedback (although
failures can restore tension). Execution involves some forms
of bodily activities; so “understanding” is anchored in the
mechanisms that control such activities. Understanding can then
expand via mapping new situations onto those that are already
understood.

Yufik and Friston suggest that the same self-organization
principle manifests in both the emergence of life and evolution
of regulatory mechanisms sustaining life: Regions (subnets)
in networks of interacting units (molecules, neurons) fold
into bounded structures stabilized by boundary processes.

Evolution expanded regulation mechanisms from conditioning
to anticipatory planning—that is accomplished via self-directed
composition and execution ofmental models. Hebbian assemblies
stabilized by boundary energy barriers (neuronal packets) are
produced by folding and phase transition in neuronal networks
and represent (model) persistent constellations of stimuli
(objects). Variations in packet responses (changes in the
composition of responding groups and the order of their
firing inside the packet) represent behavior. “Understanding”
accompanies the composition of models representing
behavior coordination (inter-object relations), as bi-directional
(reversible) mapping between packets. Such reversible mapping
underlies behavior prediction and explanation (retrodiction).
Coordination establishes thermodynamic equilibrium in the
volume of a model thus minimizing dissipation (costs) and
enabling reversible execution. Expanding models and exploring
new inputs necessary moves the system away from equilibrium.
Regulation via anticipation and explanation is a uniquely
human form of surprise minimization. The regulatory process
is supported by verbalization and imagery but is driven by
modeling. Arguably, mental modeling, i.e., coordination of
packets (mental objects) in the mental space builds on the
neuronal machinery engaged in coordinating limbs and objects
in the physical space.

This concludes our brief survey of the articles offered in
the special issue. To an outside observer, cars might appear to
have the purpose of seeking out gas stations and converting fuel
into heat and exhaust. A closer inspection will reveal intelligent
regulators inside the cars (i.e., you and me) concerned with
having enough fuel to reach the next station—and averting the
“surprise” of finding the fuel tank empty. Other concerns—that
contextualize this regulation—are the cost of fuel and the desire
to keep the car running for the greatest distance possible. In
the process, cars must maneuver in coordination with other
cars, traffic rules and terrain. Such self-motivated, self-evidencing
and self-regulated cars might be a plausible metaphor for minds
embedded in a self-organizing nervous system.
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