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All animals constantly negotiate external with internal demands before and during

action selection. Energy homeostasis is a major internal factor biasing action selection.

For instance, in addition to physiologically regulating carbohydrate mobilization,

starvation-induced sugar shortage also biases action selection toward food-seeking

and food consumption behaviors (the counter-regulatory response). Biogenic amines

are often involved when such widespread behavioral biases need to be orchestrated.

In mammals, norepinephrine (noradrenalin) is involved in the counterregulatory response

to starvation-induced drops in glucose levels. The invertebrate homolog of noradrenalin,

octopamine (OA) and its precursor tyramine (TA) are neuromodulators operating in many

different neuronal and physiological processes. Tyrosine-ß-hydroxylase (tßh) mutants are

unable to convert TA into OA. We hypothesized that tßh mutant flies may be aberrant

in some or all of the counter-regulatory responses to starvation and that techniques

restoring gene function or amine signaling may elucidate potential mechanisms and

sites of action. Corroborating our hypothesis, starved mutants show a reduced sugar

response and their hemolymph sugar concentration is elevated compared to control flies.

When starved, they survive longer. Temporally controlled rescue experiments revealed

an action of the OA/TA-system during the sugar response, while spatially controlled

rescue experiments suggest actions also outside of the nervous system. Additionally,

the analysis of two OA- and four TA-receptor mutants suggests an involvement of both

receptor types in the animals’ physiological and neuronal response to starvation. These

results complement the investigations in Apis mellifera described in our companion paper

(Buckemüller et al., 2017).

Keywords: biogenic amines, starvation, starvation resistance, insects, proboscis extension response

INTRODUCTION

There may be more than just cultural value to the old German saying “grain tastes bitter for a
satiated mouse” (La Sala et al., 2013). Indeed, it is the state of an organism which determines
what, if any, effect external sensory stimuli will have on the nervous system. Whether this is the
satiation state of the mouse influencing taste receptors, or the feeding state of the leech which gates

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2017.00100
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2017.00100&domain=pdf&date_stamp=2018-01-15
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bjoern@brembs.net
http://orcid.org/0000-0001-7824-7650
http://orcid.org/0000-0001-5730-8848
http://orcid.org/0000-0002-3127-5520
https://doi.org/10.3389/fnsys.2017.00100
https://www.frontiersin.org/articles/10.3389/fnsys.2017.00100/full
http://loop.frontiersin.org/people/464328/overview
http://loop.frontiersin.org/people/343766/overview
http://loop.frontiersin.org/people/2299/overview
http://loop.frontiersin.org/people/453288/overview


Damrau et al. Octopamine and Starvation

mechanosensory stimuli (Gaudry and Kristan, 2009, 2010),
or the locomotor state of flies which adjusts the gain in
visual interneurons (Longden and Krapp, 2009; Chiappe et al.,
2010; Maimon et al., 2010; Suver et al., 2012; Tuthill et al.,
2014; van Breugel et al., 2014), sensory stimuli are rarely,
if ever, directly transformed into motor outputs. Instead, all
nervous systems seem to constantly balance external and internal
demands before they arrive at any given action (Heisenberg,
2009; Brembs, 2013, 2017; Pezzulo and Cisek, 2016). Biogenic
amines and neuropeptides have been shown to be crucially
involved in orchestrating the processes needed to find this
balance.

Starvation and satiation are obvious and experimentally
accessible states with immediate and easily recorded behavioral
consequences. In both mammals and insects, peptides (glucagon
and adipokinetic hormone, respectively) and catecholamines
(adrenaline and octopamine, respectively) have been shown
to mediate related roles in the counterregulatory response to
starvation (Bolli and Fanelli, 1999; Kim and Rulifson, 2004;
Grönke et al., 2007; Bharucha et al., 2008; Li et al., 2016; Yu
et al., 2016). Apparently, either similar mechanisms evolved in
response to similar challenges, or both systems evolved from a
common ancestor. This response includes various physiological
and metabolic modifications, which are orchestrated via the
different neuropeptides and biogenic amines.

Feeding-related behaviors constitute the behavioral aspect of
the counterregulatory response to starvation. In flies, general
activity and arousal is enhanced (Connolly, 1966; Bell et al.,
1985; Lee, 2004; Yang et al., 2015; Yu et al., 2016), arguably to
facilitate food discovery. Along the same veins, food sensitivity
is also increased (Moss and Dethier, 1983; Colomb et al., 2009),
correlated with an increase in sugar receptor neuron sensitivity
and gene expression (Amakawa, 2001; Meunier et al., 2007;
Nishimura et al., 2012). Several involved neuropeptides have
been identified (for a review see: Nässel and Winther, 2010).
In addition to neuropeptides, also here the catecholamines are
contributing to the processes triggered by starvation. Dopamine
(DA) is involved in mediating motivation signals (Krashes et al.,
2009) and modulating the starvation-induced sugar response
after short starvation periods (Inagaki et al., 2012), while
octopamine (OA) or its precursor tyramine (TA) have been
reported to promote feeding behaviors (Long and Murdock,
1983; Nisimura, 2005). Starvation may be conceived as a stressor
triggering catecholaminergic action. Indeed, different stressors
have been shown in different insects tomodify theOA/TA-system
by enhancing Tßh expression (Châtel et al., 2012), subsequently
increasing OA levels (Kononenko et al., 2009), which, in turn,
releases triglycerides and carbohydrates into the hemolymph
(Woodring et al., 1989).

The study of the role of biogenic amines in the
counterregulatory response to starvation is complicated by
the amines’ broad involvement in many physiological processes.
This promiscuity impedes the attribution of an aminergic
manipulation to a specific phenotype. In invertebrates, OA
and TA act as neurotransmitters, -hormones, and -modulators
on many, if not all, physiological processes (reviews: Roeder,
2005; Farooqui, 2012). These processes include, but are not

limited to, locomotion regulation (Saraswati et al., 2004; Brembs
et al., 2007), aggression (Baier et al., 2002; Hoyer et al., 2008;
Zhou et al., 2008), reaction to light (Gorostiza et al., 2016),
feeding behavior (Long and Murdock, 1983; Nisimura, 2005),
mobilization of energy metabolites (Mentel et al., 2003) and,
upstream of DA, appetitive olfactory learning (Hammer, 1993;
Schwaerzel et al., 2003; Burke et al., 2012; Liu et al., 2012).

Thus, while feeding behaviors and their interactions with the
state of the animal provide a technically accessible model to study
decision-making and action selection, the interrelation between
the consequences of starvation on motor control, motivation,
stress, and the metabolic state of the animal pose a formidable
experimental challenge, in particular in the interpretation of
the different phenotypes linked with biogenic amine disruption.
Leveraging the neurogenetic tools in Drosophila, we attempted
to understand how starvation influences the animal’s decision-
making with regard to feeding-related stimuli. Specifically,
we investigated the involvement of the OA/TA-system on
starvation-dependent modulation of sugar responsiveness and
metabolism. We asked whether the OA/TA-system was involved
in the physiological response to starvation or the neuronal
changes following starvation, and whether its neuronal action
was peripheral or central. Our results corroborate and extend
the previous findings on the promiscuous effects of these
biogenic amines and suggest that both OA and TA are involved
in most of the counterregulatory processes, which occur in
parallel.

METHODS

External Depositories
A formatted table of most reagents used in this study, including
fly stocks, is available at: https://doi.org/10.6084/m9.figshare.
5398600. The data and code for this paper are available at https://
doi.org/10.6084/m9.figshare.4663666. Protocol for carbohydrate
measurement is available on protocols.io: https://doi.org/10.
17504/protocols.io.dkn4vd.

Fly Stocks and Culture
tßhnM18 (Monastirioti et al., 1996; FBal0061578), oamb (Han
et al., 1996; oamb286 FBal0152344, oamb584 FBal0152335),
honoka (Kutsukake et al., 2000; Oct-TyrR, FBal0104701), hsp-
tßh (Schwaerzel et al., 2003; FBal0152162), and w+;;UAS-tßh
(Monastirioti, 2003; FBti0038601) and their control lines were
obtained from Henrike Scholz, Cologne; Hiromu Tanimoto,
Martinsried; Andreas Thum, Konstanz; and Amita Seghal, Chevy
Chase. TyrRf05682 (CG7431f05682, FBal0184987), TyrRII∆29

(CG16766, FBgn0038541) and TyrRII-TyrR∆124 were kindly
provided before publication by Edward Blumenthal, Milwaukee
(Zhang and Blumenthal, 2017). Receptor mutants (and the
respective control lines we obtained from the different labs) were
outcrossed for at least six generations into a CS background.
Flies were kept on standard cornmeal/molasses-food in a 12/12 h
light/dark cycle (light on at 8:00 h) at 60% relative humidity
and 25◦C except for hsp-tßh, which were raised at 18◦C without
humidity control and except for flies used in electrophysiological
experiments (see Electrophysiological recordings).
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Starvation Procedure
Newly hatched to 1-day-old flies were collected and transferred to
fresh food vials. The following day (between 16:00 and 19:00 h),
20 to 30 flies of mixed sexes were transferred into starvation
vials (68ml, Greiner bio-one, Frickenhausen, Germany) by a fly
aspirator. The starvation vial contained a cotton pad moistened
with 2.5 to 3ml of Evian R© water. If not otherwise indicated,
starvation was performed at 25◦C and 60% relative humidity and
lasted for 20 h. Note that starvation time at 18◦C was performed
for much longer time.

Survival Experiments
Newly hatched to 1 day-old flies were collected and transferred
to fresh food vials. The following day, flies were briefly CO2-
anesthetized and sorted by sex and genotype. At 17:00 h, around
35 female flies were transferred into a starvation vial (see
Starvation procedure). Dead flies were counted every 3 h and
not removed. Daily counting sessions were repeated from 9:00
to 18:00 h, until all flies were found dead.

Sugar Response Test
Newly hatched to 1 day-old flies were collected and transferred
to fresh food vials. The following day, they were starved as
described (see Starvation procedure). Four hours before the end
of the starvation period, female flies (if not stated otherwise)
were briefly immobilized by cold-anesthesia. Their head and
thorax were glued to a triangle-shaped copper hook (0.05mm in
diameter) using a UV sensitive glue (3M ESPE, Sinfony Indirect
Lab Composite, Minneapolis, USA). Animals were then kept
individually in small chambers [14mm in diameter × 28mm in
height, custom-made, (Brembs, 2008)] with ad libitum access to
water until the test.

Tests were performed between 12:00 and 16:00 h. Using
forceps, we transferred flies by their hook and fixed them to
a magnetic clamp, which was then attached to a rack. This
treatment established free movement of the flies’ tarsi and
proboscis and was a modication from a previously described PER
assay (Scheiner et al., 2004, 2014) derived from assays used in
other insects (Dethier, 1952; Page et al., 1998). A group of six
to eight flies was tested in parallel. A filter paper soaked with
sucrose solution was presented for 5 s to all six tarsi but not the
proboscis. Seven different, increasing concentrations (0, 0.1, 0.3,
0.6, 1, 3, and 30%, i.e., g per 100ml water) were presented in series
with an inter-stimulus interval of 80 s. The proboscis extension
response was recorded. Finally, the proboscis was stimulated
by 30% sucrose solution. Flies not responding to the proboscis
stimulation or responding to the first stimulation (water only)
were discarded from the analysis.

For the first sugar response rescue attempt (Figure 4A), flies
were raised and starved at 18◦C and put into an incubator
without humidity control and heated up to 37◦C for 30 to 45min.
After the heat shock, flies were kept in a 25◦C incubator with
humidity control for 3 h until testing. For the second rescue
attempt (Figure 4B), the first heat shock was given with the
beginning of starvation every 23 h for 45min until 1 day before
testing. Temperature between heat shocks was 18◦C.

Carbohydrate Measurement
Newly hatched to 1 day-old flies were collected and transferred
to fresh food vials. The following day at 17:00 h, 20 flies of
mixed sex were either transferred into starvation vials (see
Starvation procedure) or kept in the food vials. After 20 h,
approximately 40 female flies per group were cold-anesthetized,
pierced through the thorax by the tip of a dissecting needle
(0.5mm in diameter), and collected on ice within a sieve
composed of two tubes. The hemolymph was centrifuged out
of the fly into the bottom tube at 4◦C. 0.5 µl of the extracted
hemolymph was transferred by a capillary (0.5 µl, Hirschmann
Laborgeraete, Eberstadt, Germany) into 19.5 µl PBS (see https://
doi.org/10.17504/protocols.io.dkn4vd).

Trehalose and glucose content in the hemolymph were
measured according to the protocols provided by the
manufacturer (Sigma Aldrich, Seelze, Germany). Ten microliter
of the hemolymph-PBS mixture (or calibration solution) were
added to 30 µl citric acid buffer (135mM, pH 5.7 at 37◦C) and
10 µl of a trehalase enzyme solution (Sigma Aldrich, 3% in citric
acid buffer). After incubation overnight at 37◦C, 50 µl of Tris
buffer were added. 80 µl of the resulting solution were added
to 156.8 µl Glucose oxidase and 3.2 µl o-Dianisidine (Glucose
Assay Kit, Sigma Aldrich) and incubated for 30min at 37◦C.
Finally, 160 µl of 33% sulfuric acid were added. Absorbance
at 540 nm was measured for the resulting solution using a
nanoDrop R© (nanoDrop Technologies, Wilmington, USA)
spectrophotometer. Five samples were measured per solution.

Electrophysiological Recordings
Flies were raised on cornmeal-yeast-glucose-agar medium under
a 12/12 h light/dark cycle (lights on at 06:00 h) at 25◦C. Newly
hatched to 1 day old flies were collected and transferred into a
vial containing Kimwipe paper soaked with 100mM glucose for
1 to 2 days as previously described (Zhang et al., 2010). Starved
flies were kept in a vial containing Kimwipe paper soaked with
Evian R© water for 20 h before testing.

Electrophysiological recordings from l-type labellar
chemosensilla were done by the tip-recording method, as
previously described (Hodgson et al., 1955; Hiroi et al., 2002).
Briefly, the proboscis was fixed at the base of the labellum. A
glass capillary filled with Drosophila Ringer solution served
as an indifferent electrode. The 100mM sucrose solution for
stimulation contained 1mM KCl as electrolyte. The recorded
signals were digitized and analyzed using the custom software
dbWave (Marion-Poll, 1995, 1996). Action potentials were
detected by a visually-adjusted threshold set across the digitally
filtered signal. The total number of spikes within 1 s was counted.
Note that in the tip-recording assay, recording and stimulation
of the sensory neurons starts concomitantly.

Statistics
Figures and statistical analyses were performed in R using
different packages (Venables and Ripley, 2002; R Core Team,
2015; Therneau, 2015; Wickham, 2016; Wilke, 2016); data and
code are available https://doi.org/10.6084/m9.figshare.4663666.
If not stated otherwise, data are illustrated as boxplots
representing the median (line), the 25 and 75% quartiles (boxes),

Frontiers in Systems Neuroscience | www.frontiersin.org 3 January 2018 | Volume 11 | Article 100

https://doi.org/10.17504/protocols.io.dkn4vd
https://doi.org/10.17504/protocols.io.dkn4vd
https://doi.org/10.6084/m9.figshare.4663666
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Damrau et al. Octopamine and Starvation

the data within 1.5 times the interquartile range (whiskers), and
data outside that range (outliers, depicted as points). Colors were
chosen to be color-blind friendly, according to http://jfly.iam.u-
tokyo.ac.jp/color/.

The sugar response score was calculated as the sum of
all positive responses over the seven sucrose presentations
and therefore ranges from 0 to 7 (Total number of PER).
For survival measurement, we used Kaplan-Meier curves and
Cox proportional hazards regression model. For hemolymph
carbohydrate content, we used a paired Wilcoxon rank sum
test on the index of change in sugar content with starvation:
(SG_starved − SG_fed)/(SG_starved + SG_fed). Since one
calibration experiment (showing the absorbance of a standard
glucose/trehalose solution that was treated identically to
hemolymph) was performed each day, a paired test is sound.
In the 2 days with two measures per group, values were paired
following time of measurement.

The significance level of all statistical tests was set to 0.05, and
Bonferroni correction was applied where appropriate.

RESULTS

tβhnM18 Mutants in Starvation Induced
Phenotypes
We developed a new sugar response assay independent of the
flies’ locomotion, and which restrains their movements to less
than in a pipet tip (Scheiner et al., 2004). Flies were tethered
to a hook glued between head and thorax and tested for their
proboscis extension response to a serial dilution of sucrose after
20 h of starvation. The assay is quite sensitive, since we were able
to record a difference in the response of flies starved for 14 vs.
21 h (Damrau et al., 2014), as in the T-maze assay (Colomb et al.,
2009). Fed flies do not respond to tarsal stimulation, in contrast
to honeybees.

We tested females tßhnM18 mutant flies lacking OA and
accumulating TA (Monastirioti et al., 1996) in our assay. tßhnM18

mutant flies responded almost 40% less than their control (called
w+ because the mutant and the control lines have a wild-
type white gene, in contrast to the original mutant obtained
after P element excision, Figure 1A). The sum of all positive
responses over the 7 sucrose presentations was significantly
different (Figure 1B).

We then compared the change in carbohydrate contents
(trehalose plus glucose) in the hemolymph of starved and
fed flies. To this end, the hemolymph was extracted and
all glucose and trehalose was enzymatically converted into
spectrometrically measurable glucose. Carbohydrate content in
fed animals appeared very similar (Figure 2A, no statistics
performed). Because the variability in the score is partly due
to the inevitable differences in the manipulations from 1 day
to another, we evaluated the change in carbohydrate level after
starvation in a paired fashion. It was significantly smaller in
tßhnM18 mutants compared to wild-type controls (Figure 2B).

Finally, we recorded survival rate under starvation conditions
with ad libitum access to water. As expected from the smaller
decrease in their sugar content, tßhnM18 mutants survived longer

than wild-type controls (Figure 3). Our experiments show that
tßhnM18 mutants are less affected by starvation than wild-type
animals, suggesting a role for OA and/or TA in starvation
resistance and sugar response.

OA/TA Role in Sugar Response
In order to elucidate the temporal requirement of tßh activity
during starvation or during proboscis extension, we induced
ubiquitous, but temporally controlled, tßh expression in the
mutant background using the heat-inducible hsp-tßh construct.
To prevent tßh expression, flies were kept at 18◦C, and the
starvation time was increased to until the wild-type flies
responded to sugar stimulation in a similar way as after 25◦C
starvation (see materials and Methods and Figure 1). Driving
expression 3 h before the test partially rescued the mutant
phenotype (Figure 4A). In contrast, heat shocks throughout the
starvation period did not rescue the sugar response phenotype
(Figure 4B), suggesting an acute role of OA during the sugar
response test, independent of any OA/TA role in starvation
resistance.

Since OA is known to modulate different kinds of sensory
receptors in insects (Kass et al., 1988; Ramirez andOrchard, 1990;
Pophof, 2000), we tested a potential role of OA on gustatory
receptor sensitivity. We recorded the response of labellar sensilla
to 100mM sucrose in fed and starved flies by the tip-recording
method (Hodgson et al., 1955; Hiroi et al., 2002). The wild-type
strain serving as a control for our mutant does not show the
increase of spiking rate after starvation (Figure 5A), which we
see in other wild-type strains (Figure 5B) as previously reported
(Meunier et al., 2007; Inagaki et al., 2012; Nishimura et al.,
2012); and we found a decreased sensillar response to sucrose
stimulation after starvation in tßhnM18 mutants, compared to
starved wild-type controls and fed mutants (Figure 5A).

OA and TA can act both inside and outside of the
nervous system, functioning as either a neurotransmitter or a
neurohormone in insects (Cole et al., 2005). Thus, we explored
whether the sugar response phenotype of tßhmutants was a result
of alterations in neurons inside or outside of the brain or in non-
neuronal cells. To this end, we expressed Tßh in tßhnM18 mutant
males using different GAL4-lines.We found a significant increase
in sugar response compared to the respective mutant control
when we used the ubiquitous Actin-promoter to drive Gal4 in
all cells, the pan-neuronal nSyb-promoter, or the non-neuronal
Tdc1-GAL4 driver (Figure 6). In contrast, Tßh expression in
subsets of OA/TA-neurons, using either Tdc2- or NP7088-GAL4
did not significantly affect the mutants’ response (Figure 6), in
contrast to a previous report [NP7088-Gal4, (Scheiner et al.,
2014)]. These last two results also show that the UAS construct
alone is not sufficient to bring a rescue. These results indicate that
Tßh expression induced in neurons in the central nervous system
or in non-neuronal cells, respectively, is sufficient to enhance the
sugar responsiveness of tßhnM18 mutant flies.

OA/TA-Receptor Manipulations on Survival
and Sugar Responsiveness
Because the tßh mutation leads to increased TA and decreased
OA levels (Monastirioti et al., 1996), we performed additional
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FIGURE 1 | Reduced sugar response in tßhnM18 mutant flies compared to wild-type flies after 20 h of starvation. (A) Fraction of flies that responded to each

concentration of sucrose. (B) Total number of positive responses. Boxplots represent the median (bar), the 75- and 25%-quartiles (box) and data within 1.5 times the

interquartile range (whiskers). Data outside 1.5 times the interquartile range are considered as outliers (black dots). Numbers indicate sample size, asterisk denotes

significant difference between genotypes (Wilcoxon rank sum test, p = 1.8 × 10−12).

FIGURE 2 | Change in hemolymph glucose and trehalose after starvation is smaller in tßhnM18 mutants than in wild type. (A) Concentration of trehalose and glucose

in the hemolymph of fed and 20 h starved flies, which was calculated from absorbance at 540 nm compared to calibration solutions, is shown in boxplots. Numbers

indicate sample size. No statistical test was applied. (B) Index of the change (difference over the sum of the two numbers) in absorbance between the starved and the

fed fly, paired per day. Numbers indicate sample size, asterisk denotes significant difference between genotypes (paired Wilcoxon rank sum test, p = 0.03223).

experiments to disentangle the relative importance of each amine
in the regulation of survival and sugar response. We tested
mutants for several OA- and TA-receptors in our PER and
survival under starvation condition assays (Figure 7, Table 1).

The two TA-receptor mutants TyrRf05682 and honoka showed
a decreased sugar response and an increased survival comparable
to tßhnM18 mutants. In contrast, the double mutant TyrII-
TyrR∆124 showed an increase in survival but a normal sugar
response, while TyrRII∆29 shows normal survival but a decrease
in sugar response. Finally, oamb286 mutants lived longer than
their control, in contrast to a previously published report
(Schwaerzel et al., 2003; Erion et al., 2012), while the oamb584

allele showed no phenotype. The receptor mutant data suggest
that flies can exhibit a wild-type survival simultaneously with

a lower sugar response (TyrRII∆29), or a higher survival
simultaneously with a wild-type sugar response (oamb286, double
mutant TyrII-TyrR∆124), suggesting that starvation affects sugar
responsiveness and survival via different but amine-dependent
pathways.

DISCUSSION

We have used genetic alterations of OA and TA action to
elucidate the role of these amines in survival and sugar
responsiveness of fruit flies. Our data suggest complex, central
and peripheral actions of these amines on physiology and
behavior.
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We have shown that the tßh gene is involved in starvation-
induced survival and an increase in sugar response. The
phenotype was reported in females (Figure 1) and males

FIGURE 3 | Longer survival of tßhnM18 mutants under starvation conditions.

(A) Kaplan Meier survival curve for the two genotypes. We ran 16 experiments

with about 35 flies per vial. The difference between the curves was statistically

significant, while there was also an effect of the different trials (Cox proportional

hazards regression model, p = 0.029 for trials, p = 2 × 10−9 for genotypes).

(Figure 6), in three different genetic backgrounds (w+
and w−,tßhnM18; hs-tßh and w−,tßhnM18, UAS-tßh) and is
independent of the egg-retention phenotype (Partridge et al.,
1987), which is rescued in w−;tßhnM18;UAS-tßh control mutant
flies (Figure 6). It is interesting to see that the sugar response
phenotype appears to vanish with longer starvation periods (Yang
et al., 2015). The phenotype was not found in previous reports
focused on the learning phenotype of these flies (Schwaerzel
et al., 2003), possibly because the assay used was dependent on
locomotion, which is also affected in tßhnM18 mutants (Saraswati
et al., 2004; Fox, 2006; Koon et al., 2010). Complementary results
were obtained using a different approach inDrosophila (Scheiner
et al., 2014) and also in Apis mellifera (companion paper).

OA/TA and Starvation Resistance
Since sugar response is dependent on starvation (Colomb et al.,
2009), a decreased sugar response as found in tßhnM18 mutants
can be understood as resistance to the starvation treatment,
an hypothesis that our results appeared to confirm. Indeed, we
found that the levels of carbohydrates in the hemolymph of
tßhnM18 mutant flies are higher after starvation than in control
flies (Figure 2). Since trehalose constitutes the energy store of
a fly and its hemolymph concentration reflects starvation level
(Thompson, 2003; Isabel, 2004), it is reasonable to argue that the
mutant flies were affected less by the starvation treatment than
the controls, even though they were deprived of food for the
same amount of time. This interpretation is also supported by

FIGURE 4 | Effects of temporally controlled (ubiquitous) expression of Tßh in tßhnM18 mutant background on flies sugar response. (A) Temperature shift 3 h before the

test. Flies with a rescue construct showed an intermediate PER level, significantly different from both the mutant and the control flies, Wilcoxon rank sum test with

Bonferroni correction (uncorrected p = 0.00019). (B) Temperature shifts during the starvation period, but not immediately before the test. Flies with a rescue construct

behaved similarly as mutant flies. Total number of proboscis extension responses is represented in boxplots (see Figure 1). Numbers indicate sample size, asterisks

denote significant difference between groups (paired Wilcoxon rank sum test, p = 0.00041 and 0.00781).
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FIGURE 5 | Effect of starvation on taste neuron sensitivity: electrophysiological recording from different gustatory sensilla on the labellum. (A) In sated and starved

tßhnM18 mutants and their respective controls and (B) in sated and starved usual wild-type flies. Extracellular action potentials within 1 s after stimulation onset were

counted and plotted as boxplots. Numbers represent the sample size of the recorded sensilla, Different letters denote significant differences (paired Wilcoxon rank

sum test, (A): p = 0.037 and 0.048, with Bonferroni correction, (B): w1118 p = 0.03938, CS, p = 0.00174).

FIGURE 6 | Spatially controlled Tßh expression in tßhnM18 mutant background. Ubiquitous (actin), pan-neuronal (nSyb) and non-neuronal TDC (Tdc1) drivers

significantly increased sugar responsiveness. Neuronal TDC (tdc2) and OA (NP7088) specific drivers did not alter sugar responsiveness. Boxplots depict total number

of proboscis extensions in hemizygous mutant males with or without a UAS-tßh construct, and heterozygous for the Gal4 driver. Numbers indicate sample sizes,

asterisks denote significant difference between the mutant its respective rescue group (Wilcoxon rank sum test, Actin p = 0.01621, Tdc1 p = 0.02782, nSyb

p = 0.01341).

longer survival of tßhnM18 mutants under starvation conditions
[Figure 3, a result which was independently replicated (Scheiner
et al., 2014; Li et al., 2016): our experiments were carried out
before the ones cited]. Complementing our analysis in flies,
injection of the OA-receptor antagonist epinastine in honey
bees also prolonged survival (companion paper). Taken together,
these results suggest that the absence of OA-signaling saves the
mutant animal’s energy, making the animals less sensitive to
starvation, a conclusion in line with previous reports on the
role of OA in trigylceride (Woodring et al., 1989; Erion et al.,
2012) and carbohydrate (Blau et al., 1994; Park and Keeley, 1998)
metabolism. One potential explanation for the reduced energy
use may be a reduced locomotor activity in the mutant flies. We

have tested flies in Buridan’s paradigm (Colomb et al., 2012) and
found several alterations to the locomotor pattern of tßhnM18

mutant flies (Damrau et al. in preparation).

OA/TA and Sugar Responsiveness
While tßh is affecting starvation resistance, we asked whether
the gene could also have a role in the neuronal modifications
caused by starvation signals. Our results separate the starvation
resistance from the sugar responsiveness phenotype. The sugar
responsiveness phenotype is partially rescued by acute tßh
expression, while expression during the starvation period had no
effect (Figure 4). This suggests that the decrease of carbohydrate
levels is not the only tßh-dependent starvation-induced alteration
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FIGURE 7 | Starvation resistance and sugar responsiveness in TA- and OA-receptor mutants. Total number of proboscis extensions (A) and Kaplan Meier survival

curve (B, see Figure 3) in different female mutants and their respective control strains. See text for fly strain labels. The three different groups were tested

independently and are therefore statistically treated as different experiments. (A) Numbers indicate sample sizes, asterisks denote significant difference between the

mutant and its respective control group (Wilcoxon rank sum test, honoka p = 0.0117, Tyr p = 0.002911 and 0.007432). (B) 5 to 8 experiments were run per genotype,

with about 35 flies per vial. Cox proportional hazards regression model was used to test statistical differences between mutants and their control, (different: honoka

p = 1.4 × 10−14, TyrR,TyrII p = 10−5, TyrII p = 2.1 × 10−6, oamb286 p = 0.00029, not different: TyR p = 0.067, oamb584 p = 0.069, before bonferroni correction).

TABLE 1 | Summary of TA- and OA-receptor mutant phenotypes.

Survival Sugar response

TA-receptors TyrRf05682 ↑ ↓

TyrRII∆29 — ↓

TyrRII-TyrR∆124 ↑ —

honoka ↑ ↓

OA-receptors oamb286 ↑ —

oamb584 — —

Horizontal lines indicate no effect. Arrows indicate significant difference to respective

control and illustrate the trend of the data.

that leads to a normal sugar response. Indeed, the sensitivity
of the sugar-sensing neurons is affected by TA/OA imbalance
(Figure 5), but only after starvation. Interestingly, the control
w+ strain did not show the expected (Meunier et al., 2007;
Nishimura et al., 2012) increase in sensitivity after starvation
(Figure 5A), while more common wild-type strains showed
the increase in the same experiment (Figure 5B). Since the
w+ control flies did show an increase in their proboscis
extension response to sugar (Figure 1), there must be a
modulatory mechanism downstream of taste receptor activity.
Taken together, these data suggest that in addition to the internal
state that is altered by starvation, both sensory transduction
and the likelihood to extend the proboscis to the same sensory
information are modified by starvation.

Where Is the Site of OA/TA-Action?
In order to identify the cells contributing to starvation resistance
and sugar responsiveness, we expressed Tßh in different cells

inside or outside the nervous system in the mutant flies,
using the UAS/Gal4 system (Figure 6). The expected effect
of this manipulation is a production of OA and a decrease
in the concentration of TA in the affected cells. Ubiquitous
expression of Tßh with the actin-Gal4 driver does increase
the PER of starved flies. The non-neuronal Tdc1-GAL4-driver
drives expression in crop and hind gut tyraminergic cells (Cole
et al., 2005; Chintapalli et al., 2007; Blumenthal, 2009), that
normally do not produce OA, but only TA (Monastirioti et al.,
1995). Ectopic production of OA in these cells rescues the
sugar responsiveness phenotypes (Figure 6). Because ectopic OA
would lack necessary receptors, we tentatively interpret this result
as an effect of presumably reduced TA levels. However, the OA
produced might also be released into the hemolymph and taken
up by neurons, as is proposed to happen when feeding OA
(Schwaerzel et al., 2003; Scheiner et al., 2014). Interestingly, pan-
neuronal Tßh expression with nsyb-Gal4, but not expression
with drivers specifically labeling OA/TA neurons (tdc2-Gal4
and NP7088-Gal4), rescues the phenotype. These results suggest
that both neuronal and non-neuronal tissues are affecting the
starvation-induced increase in sugar responsiveness (and that
the two most commonly used OA/TA drivers remain suboptimal
tools to study OA action).

OA and TA Specificity
The TßH enzyme converts TA into OA such that tßhnM18

mutants not only lackOA but also accumulate TA. To disentangle
the roles of the two amines, we tested OA- or TA-receptor
mutants in two experiments: starvation resistance and sugar
responsiveness (Figure 7). Perhaps not surprisingly, given that
several processes appear to mediate both starvation-induced
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effects, we found the sugar responsiveness and the starvation
resistance phenotypes of the tested mutants to be separable: some
mutants exhibit a phenotype in none (oamb584), both (tßhnM18,
honoka), or in individual assays: only in starvation resistance
(oamb286, TyrII-TyrR∆124) or only in sugar responsiveness
(TyrR∆29). These results reinforce our previous conclusion that
starvation resistance and sugar responsiveness are not mediated
by the same OA/TA-cells and receptors, but by different sub-
populations. In addition, the data indicate that both OA and
TA play a role in starvation-induced sugar responsiveness. OA-
and TA-receptor mutants tend to perform similarly, suggesting
they may not be counteracting each other in this behavior, as
previously suggested for crawling behavior (Saraswati et al., 2004)
or for flight (Brembs et al., 2007).

CONCLUSIONS

Taken together with the experiments from our accompanying
paper (Buckemüller et al., 2017), our results suggest that
the OA/TA-system is involved in both the physiological and
the behavioral changes that follow starvation, and that these
changes are regulated independently. They also show that
the behavioral change is due not only to a modulation of
the taste neuron activity and to action of TA-specific cells

in peripheral, non-neuronal organs, but that a more central
effect is probably at play. Finally, these data as well as
others (in prep.) suggest that some aminergic pathways operate
in a dose-dependent manner and are therefore difficult to
dissect using standard transgenic or pharmacological rescue
approaches.
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