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Functional connectivity MRI (fcMRI) has become instrumental in facilitating research

of human brain network organization in terms of coincident interactions between

positive and negative synchronizations of large-scale neuronal systems. Although there

is a common agreement concerning the interpretation of positive couplings between

brain areas, a major debate has been made in disentangling the nature of negative

connectivity patterns in terms of its emergence in several methodological approaches

and its significance/meaning in specific neuropsychiatric diseases. It is still not clear

what information the functional negative correlations or connectivity provides or how they

relate to the positive connectivity. Through implementing stepwise functional connectivity

(SFC) analysis and studying the causality of functional topological patterns, this study

aims to shed light on the relationship between positive and negative connectivity in the

human brain functional connectome. We found that the strength of negative correlations

between voxel-pairs relates to their positive connectivity path-length. More importantly,

our study describes how the spatio-temporal patterns of positive connectivity explain the

evolving changes of negative connectivity over time, but not the other way around. This

finding suggests that positive and negative connectivity do not display equivalent forces

but shows that the positive connectivity has a dominant role in the overall human brain

functional connectome. This phenomenon provides novel insights about the nature of

positive and negative correlations in fcMRI and will potentially help new developments

for neuroimaging biomarkers.

Keywords: functional connectivity MRI, positive connectivity, negative connectivity, stepwise functional

connectivity, topological causality

INTRODUCTION

Functional connectivity MRI (fcMRI) is a powerful approach to investigate how areas of the
human brain oscillate over time as a proxy of large-scale neuronal networks. Among several
analytical approaches, a common fcMRI framework uses linear regressions to calculate couplings
of spontaneous fluctuations of low frequency blood-oxygen-level-dependent (BOLD) signals
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between brain regions (Biswal et al., 1995). These signals can be
mathematically transformed into graphs, where sets of nodes and
edges/connections reflect linear correlations (Biswal et al., 1995;
Hutchison et al., 2013), and whose arrangements define network
features of the human brain. The combination of fcMRI with
subsequent graph theoretical analyses has provided researchers
with novel information about imaging biomarkers related to the
(re)organization of cortical circuits in normal and in clinical
conditions, such as neurodegenerative diseases (Hampel et al.,
2010; Zhou et al., 2010; Albert et al., 2011; Prvulovic et al., 2011;
Sepulcre et al., 2013, 2016).

Early descriptions of fcMRI patterns found that intrinsic brain
activity can be classified as positive and negative connectivity
depending on BOLD temporal relationships and the associated
pairwise correlation values (Biswal et al., 1995; Fox et al., 2005).
In this context, researchers have conceptualized the human brain
as a functional system in which correlated and anti-correlated
interactions evolve in time to form the basis of cognition and
behavior (Fox et al., 2005). However, while the interpretation
of positive correlations has been more intuitive, the nature
and understanding of the negative correlations has created a
passionate debate (Fox et al., 2007; Liang et al., 2012). It is well
known that some fcMRI preprocessing pipelines may introduce
an artificial increment of negative correlations that bias the
analysis toward the anti-correlation effect (Weissenbacher et al.,
2009) due to the regression of the mean brain (global) signal
in order to diminish common sources of noise in all the voxels
(Liu et al., 2017). Although this phenomenon does not question
the existence of negative correlations per se, it gives rise to
suspicions about the relevance of some findings involving anti-
correlations, particularly when characterizing clinical population
features. In addition, other groups have suggested that negative
correlations should not be taken as real competing force on
the functional brain but as an epiphenomenon of the network
distance topology (Chen et al., 2011). For instance, if a pair of
nodes in the brain network are distantly connected with many
“relay stations” in the middle, then transmitting information
from one to the other undergoes various disturbances such
as noise and attenuation, that drives a functional delay/lag,
resulting in a negative correlation between them. In this sense,
the shortest path length along positive connections may explain
the emergence of a negative correlation value between two brain
regions in a more parsimonious manner, as previously suggested
(Sporns et al., 2002; Achard, 2006; Chen et al., 2011). In summary,
the understanding of negative connectivity in fcMRI remains
somewhat enigmatic. Uncovering its nature is a pertinent task
that will help researchers to comprehend functional connectivity
findings and will impact in our future discoveries of clinical
biomarkers.

In this study, we aim to investigate the relationship of positive
and negative connectivity in fcMRI in order to elucidate their
spatial-temporal interactions. As brain connectivity patterns are
dynamic, and the structure of positive and negative network
connections both evolve over time, we studied the temporal
cortical changes of brain connectivity to evaluate the causal
dependencies of positive and negative connections inside the
network structure. We hypothesized that the dynamic changes

of connectivity patterns will show the underlying nature of the
positive and negative connectivity relationship. If negatives are
true opposing forces, it is expected that, for instance, positive
correlations will not explain the appearance in time of the
negative ones, thus, a scenario in which sometimes positives
will influence or induce negatives and other sometimes negatives
will create changes in positives (evenly-explained outcome).
Alternatively, if either positive or negative connectivity have a
predominant role in the overall network dynamics, it is expected
that one will induce the emergence of the other (positive-
explaining-negative or negative-explaining-positive outcomes).

METHODS

Overview
Figure 1 shows the major sections of our working pipeline. (1)
First, we used a sliding window approach (Leonardi and Van De
Ville, 2015) and stepwise functional connectivity analysis (SFC)
(Sepulcre et al., 2012) to investigate [and confirm previously
reported findings (Chen et al., 2011)] the potential relationship
between the connectivity distance and strength of negative
correlation between pairs of brain regions. All connectivity
relationships between optimal step distances and topological
patterns were evaluated at the voxel-wise level. (2) Second, we
used an overlapping sliding window approach (Hutchison et al.,
2013; Allen et al., 2014; Leonardi and Van De Ville, 2015), voxel-
wise Euclidean-distance-based causality analysis to investigate
the temporal dependencies between the dynamic changes of the
positive and negative connectivity cortical patterns.

Participants
Fifth-one healthy subjects from Brain Genomic Superstruct
Project (Holmes et al., 2015) were included in the study. A
set of 11 subjects (age 37.8 ± 13.6; 5 male and 6 female) was
used as the discovery dataset and an additional 40 individuals
from an independent dataset (age 32.9 ±11.7; 20 male and 20
female) was used as a replication dataset. Harvard University and
Partners Healthcare institutional review boards (IRBs) approved
the Brain Genomic Superstruct Project study. Participants
provided written informed consent in accordance with Helsinki
Declaration and guidelines set by IRBs of Harvard University or
Partners Healthcare.

Imaging Acquisition Procedures and
Functional Connectivity Preprocessing
Subjects were scanned on a 3 Tesla (ACHIEVA 3.0T TX,
Philips) MRI scanner using an 8-channel phased-array head coil.
High-resolution 3D T1-weighted magnetization prepared rapid
acquisition gradient echo (T1W 3D TFE SENSE) images were
acquired for anatomic reference (TR = 7.6ms, TE = 3.5ms, FA
= 7 u, 1.0mm isotropic voxels). Functional data was acquired
in 3 runs using an echo planar imaging (EPI) pulse sequence
sensitive to BOLD contrast (TR = 3,000ms, TE = 30ms, FA =

90 u, 3.0mm isotropic voxels), each run lasted 6min 12 s (hence
producing 124 time-points or observations per run). In both runs
the subjects were asked to lie still with their eyes open. Subject’s
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FIGURE 1 | Diagram of the neuroimaging-processing pipeline in one subject. (A) Functional magnetic resonance images (fMRI) were transformed into functional

connectivity processed BOLD signals (top-left). Using an overlapping sliding window approach (top-left; 15 time-points, 1 time-point lag), functional connectivity

processed BOLD signals of voxels were used to create network association matrices based on Pearson R (Fisher transformed) correlations (top-right). (B) Network

association matrices (M) were the input for two distinctive analytical strategies: (1) stepwise functional connectivity analysis (SFC) to compute optimal distances of the

network (bottom-left) and (2) Granger causality analysis of Euclidian distance similarities over time (bottom-right). SFC analysis diagram represents the SFC matrices of

positive correlations with the corresponding step distances from 2 to 7 in each network configuration (T1, T2 … T106) (bottom-left). Before the Granger causality

analysis, each sliding window association matrix was separated into positive and negative correlations. (C) Then, each node-based network of positive or negative

connections (rows or columns in the positive or negative association matrices; also known as star network) were used to compute the Euclidean distance E, where

lower values represent a similar topology between networks and higher different topology between networks (displayed in similar or different colors). Euclidean

distances between consecutive pairs of network configurations were computed within positive (bottom-right, left matrix in C) or negative connectivity (bottom-right,

right matrix in C), resulting in two matrices containing Euclidean distances of 1,902 voxels by 105 network transition pairs. Finally, a Granger test is applied to the

Euclidean distance of positive and negative connectivity time transitions (red lines in Euclidean distance matrices; bottom-right) to determinate if positive-over-negative

or negative-over-positive connectivity changes dominate network landscape. In (D) transitions from positive to negative connectivity are displayed for illustration

purposes. Assuming a theoretical BOLD time series (red wave), it is possible to observe the arise of negative correlations due to specific lags and graph connectivity

distances.
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head was fixed as much as possible using a pillow and foams, and
earplugs were provided to reduce the scanner noise.

The fMRI BOLD (blood oxygen level-dependent) signal
was optimally preprocessed for our r-fcMRI analysis according
to Biswal et al. (1995). An optimized functional connectivity
magnetic resonance imaging (fcMRI) protocol (Van Dijk et al.,
2010), extending the approach developed by Biswal et al., was
used in the preprocessing steps (DPABI/DPARSF toolbox). We
used SPM12 (Wellcome Department of Cognitive Neurology,
University College of London, London, UK, http://www.fil.ion.
ucl.ac.uk/spm) for imaging preprocessing and normalization of
the anatomical T1-weighted MRI images. The original fMRI data
first went through typical steps such as the removal of the first
four volumes, motion correction and normalization to the MNI
atlas space. We applied a band-pass filtering (0.01–0.08Hz) to
diminish the effect of low-frequency drift and high-frequency
noise and a scrubbing of image volumes with excess head
motion [frame displacement >0.5mm (Jenkinson et al., 2002)]
through interpolation to transform fMRI data into desired r-
fcMRI data. It has been previously reported that the global signal
regression may induce artificial negative correlations (Murphy
et al., 2009; Saad et al., 2012), thus, given the focus of our work
in understanding positive and negative functional connectivity,
we did not regress out the global signal but the averaged signal
from ventricle and white matter and 24 head motion parameters.
Finally, the data was down-sampled at 8mm isotropic voxel
size to study the high dimensional data without computational
limitations. Please note that this work was performed at the
voxel-level. Thus, brain regions are equivalent to individual
voxels. All our analyses were conducted on Matlab R2015b
(Mathworks Inc., Natick, MA).

Sliding Window Approach
Conventional fcMRI approaches derive connectivity information
from the whole length of the BOLD time series and results in a
stationary, time-averaged brain network graph. However, brain
network dynamic changes occur at many temporal scales and
other strategies have been used to take full advantage of the
temporal information contained in the fcMRI data. The sliding-
window approach extracts the dynamic interactions between
brain areas by using a time moving-window along the BOLD
time-series (Hutchison et al., 2013; Allen et al., 2014; Leonardi
and Van De Ville, 2015). Following that strategy, we use an
overlapping time-moving window w[t]i of length 15 on the time
series (15 time-points per window, corresponding to 45 s) to
calculate Pearson’s cross-correlations (R) (Figure 1A):

w[t]i =

{

1, (i− 1) n+ 1 ≤ t ≤ (i− 1) n+m
0, otherwise

Where i denotes the sliding window position, t states the specific
time point, n, being the sliding offset, indicates how many time
points the window has shifted along the time axis, andm specifies
the window size. For example, if the offset n= 1, then time points
1–15 will be included in the window. Shorter window length
might provide higher temporal resolution of transient changes,
but will lack precision to estimate correlation coefficients. On the

contrary, longer window length might improve precision, but the
result will tend toward the time-averaged solution (Hutchison
et al., 2013). Our overlapping criterion was to let n increments
1 at a time, in order to obtain smooth transitions between
network states. We used a brain gray matter mask (at MNI space)
containing 1,902 voxels to extract the BOLD time series (120
time-points per run) and applied the above-mentioned sliding
window approach. This step generated 106 dynamical functional
connectivity matrices per run, each 1,902× 1,902 in size. Finally,
we applied a Fisher transformation to all correlation coefficients
of association matrices for variance stabilization (Fisher, 1915).

Stepwise Functional Connectivity Analysis
As previously reported, the strength of negative correlations
between a pair of brain network nodes–or brain voxels in
this study- may relate to their link-step distance (also known
as path-length or network geodesic distance). In order to
confirm this hypothesis, first, we used stepwise functional
connectivity analysis (Sepulcre et al., 2012) to compute the
optimal (or minimal) distance between node pairs in all
dynamical functional connectivity graphs separately per subject
(Figure 1B). Particularly, for given nodes i and j and step
distance l, we calculated the weighted degree of SFC as the
weight of positive paths (paths with a positive Fisher transformed
correlation value) connecting i and j that have length l. In this
sense, a larger SFC degree under the step distance l indicates
a main connection stream, while a smaller degree means less
connectivity paths. Importantly, the original description of SFC
analysis was developed using seeds of interest and binary data to
reveal connectivity transitions across specific systems (Sepulcre
et al., 2012). Here, we did not use any seed or region of interest
but computed the SFC for all possible voxels in the brain in
weighted data (non-binary). Each SFC matrix Al of size m-by-m
can be recursively represented as follows:

Al

(

i, j
)

=







A
(

i, j
)

,∧l = 1
m
∑

k=1

Al−1

(

i, k
)

A
(

k, j
)

,∧l ≥ 2

Here Al is the functional connectivity matrix having the step
distance of l, and A is the correlation matrix after the sliding
window approach and Fisher transformation. Since we were
interested in investigating how the negative strength between
pairs relates to their link-step distances of positive correlation
sign, the step distance of 1 can be excluded from the SFC
analysis because, by definition, a pair of nodes in step one (direct
connectivity) cannot display a simultaneous negative correlation
value if it has a positive connection already. Therefore, we
calculated SFC from step distance 2–7 (based on the stable
state of functional connectivity data (Sepulcre et al., 2012), step
7 is the maximum step distance or longest path that can be
found). This step generated six SFC matrices (one for each
distance) × 106 time frames per run (Figure 1B). Then, for each
connectivity step, we normalized all SFC matrices between 0
and 1 (each SFC value minus the minimum SFC value divided
by the maximum SFC value minus the minimum SFC value).
This step does not change the final distribution of values but
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makes them comparable across all step distances. Then, we
compared all normalized SFC matrices element-wise, found the
maximum corresponding SFC degree value, and assigned their
corresponding distance step matrix that belongs to as the optimal
distance (OD in equation) value (from 2 to 7).

OD
(

i, j
)

= argmaxl Al(i, j)

Later, we investigate the association between the average optimal
distance values and average negative correlation values of all pair
of nodes across all time points.

Cortical Spatial Similarity and Dynamic
Topological Causality
The general aim of this study was to investigate the phenomenon
of negative connectivity and its significance in the network
structure of fcMRI data. If negative and positive connections
represent opposing forces of equal dominance in brain graphs,
it is expected that at times, one may control the other, but neither
will consistently predict their appearance across time. On the
contrary, if positive and negative connectivity produce temporal
dependencies between each other, the dynamic changes of one
of them will significantly create dynamic connectivity changes
in the other one. Thus, assessing the spatial-temporal causality
between configurations of the positive and negative networks
is key to understand functional network arrangements in the
human brain. In order to accomplish this aim, we first developed
a strategy to detect the temporal transitions of the positive and
negative networks in the cortical mantle. We split each of the
original dynamical functional connectivity matrices into two
matrices, one containing the positive connections and the other
one containing the negative connections (Figure 1C). Then, we
used Euclidean distance to identify the similarity or dissimilarity
of network configuration over time between each consecutive
pair of networks at the node level (see cortical maps in
Figure 1C). That is, we computed the Euclidean distance between
pairs of networks across time by taking into account, separately,
the positive or negative connectivity patterns of each node. Thus,
for each node/voxel in the human brain, we obtained its network
similarity scores over time for both the negative- and positive-
based connectivity networks (Euclidean distance matrices of
positive and negative connectivity transitions; Figure 1C). Each
node’s temporal Euclidean distance between two consecutive
network configurations t1 and t2 is defined by the following
equation:

Di,t1t2 =

√

√

√

√

n
∑

j=1

(

rt1 (i, j)− rt2 (i, j)
)2

Where D is the Euclidean distance, n is the total number of
nodes considered, rit1 and rit2 represents the R values that
node has with another node, in two consecutive time points.
For each voxel, we calculated the temporal Euclidean distance
fluctuations of both the network of positive and negative
connectivity separately. Larger Dmeans the node is experiencing
dramatic change in its self-network structure or connectivity

pattern, and smaller D indicates minor transitions between
two time points. Thus, the fluctuation of Euclidean similarity
scores across time helps us to apprehend how each node’s
network structure resembles itself over time. More importantly,
it provides means to compare transitions states of networks
at the voxel-level, and study the causal inferences between
them.

Finally, we applied a Granger causality analysis (Granger,
1969) to the network similarity scores across all Euclidean
distance changes to investigate temporal causalities between the
positive and negative connectivity networks (Euclidean distance
matrices of positive and negative connectivity transitions;
Figure 1C). Our Granger causality analysis is based on linear
regression assumptions (Roebroeck et al., 2005) (Granger
causality open-source code can be found at http://www.
mathworks.com/matlabcentral/fileexchange/25467-granger-
causality-test). We used the two Euclidean distance transition
series of the positive and negative connectivity as the input
and hypothesis testing values (F-statistics) as the output. Of
note, we did not use Granger causality to test the temporal
relationships between BOLD signal fluctuations directly, but
rather to investigate the cortical topological transitions (or
Euclidean distances between network configurations) that
positive and negative correlation networks develop over time
and how they affect each other (positive-explaining-negative,
negative-explaining-positive, or evenly-explained in the case of
none significant findings). Specifically, if adding past values of
Euclidean distances X (rather than simply using the past values
of Euclidean distances Y) better predicts the current values of
Euclidean distances Y, then it implies that Euclidean distances X
is series Y’s granger cause. The hypothesis of “X causing Y” can
be formally described as a regression model:

y (t) =

p
∑

m=1

amy (t −m) +

q
∑

n=1

bnx (t − n) + ε + c

where the first item measures the effect of past self-values, the
second item measure the effect of past cause values, and the
third and forth items are the error and a constant. We used a
Bayesian criterion (http://www.mathworks.com/matlabcentral/
fileexchange/25467-granger-causality-test) to identify the
optimal lag between the two connectivity cortical transitions
(from 1 to 5 consecutive network topologies in the cerebral
cortex). We assessed two voxel-level statistical thresholds, (1) an
α-level <0.05, and (2) false discovery rate (FDR) at a q-level of
0.05 to all F-statistic values.

Visualization
For visualization purposes, we used the F-statistic values
from our two testing hypotheses (positive-explaining-negative
and negative-explaining-positive) and performed a subtraction
between cortical maps at the voxel-level in order to highlight their
spatial predominance. We used Caret software (PALS surface
(PALS-B12) (Van Essen, 2005); interpolated algorithm and
multi-fiducial mapping) as the final cortical space visualization
tool.
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RESULTS

Correlation Strength and Path-Length Are
Related in Positive and Negative
Connectivity
We found that the strength of negative connectivity between pair
of nodes directly relates to their path-length through positive
connections (Figure 2). The average optimal distance ranges
from 2 to 5 steps. Thus, we observed a decreasing relationship
between the average negative R-values and the SFC optimal
distance, in which strong negative correlations (r > −0.35) relate
to large connectivity routes through positive connections along
the functional connectivity matrix. This result confirms that both
connectivity types have an interdependent nature regarding the
overall network topology complex. However, this finding does
not provide insights about whether one type of connectivity
causes the other, or if one has a leading role in the dynamic
functional connectivity changes.

Dynamic Connectivity Patterns of Positive
Connections Predicts Negative
Connections
The dynamic transitions of connectivity over time showed
that positive connectivity significantly precedes the appearance
of new negative connectivity configurations (Figure 3A). We
found that the vast majority of the human brain displays this
predominant causality pattern, particularly primary cortices such
as visual, auditory and somatomotor cortex, and temporal,
frontal midline or perisylvian areas. Similar findings were
obtained by using different statistical strategies (Figure 3AI, p <

FIGURE 2 | Relationship between stepwise functional connectivity (SFC)

optimal distance and average negative correlations in the discovery dataset.

X-axis represents the SFC optimal distance for all positive connections. X-axis

represents the average negative correlation value. Error bars indicate the

standard deviation across all subjects. Of note, line graph starts in two steps

-as negative R-values are incomputable if a positive functional connectivity is

already established.

0.05, discovery dataset; Figure 3AII, FDR-corrected, discovery
dataset; Figure 3AIII, p < 0.05, replication dataset; Figure 3B,
FDR-corrected, replication dataset).

DISCUSSION

In the past there have been various efforts trying to
better understand negative connectivity fcMRI data. Our
understandings of negative correlations have evolved over the
recent years, from concerns about possibly being induced by
preprocessing steps (Murphy et al., 2009) to enthusiasms about
its potential as disease biomarker (Whitfield-Gabrieli and Ford,
2012). However, several groups have suggested that negative
connectivity may be an emergence phenomenon in the fcMRI
data, in which they do not represent a true competing force
against the positive connectivity but a result of the network
complexity organization. For instance, Chen et al. support
that negative connectivity may be just the result of long path-
lengths between brain regions (Chen et al., 2011), a finding
that is confirmed in the present study. Murphy et al. suggest
a mechanism whereby artifactual anti-correlations could arise
after global regression from a delay correlation between systems
(Murphy et al., 2009). Moreover, Goelman et al. used both
human and rodent data to assess the effect that time-lag has on
positive correlations and negative correlations, and used cerebral
blood volume and flow to explain the potential emergence of
negative correlations (Goelman et al., 2014).

The human brain is constantly engaged in multi-scaled and
synchronized neuronal couplings. fcMRI is used as a proxy
to understand these neuronal couplings at the large-scale and
network level. Although positive and negative connectivity has
been described with fcMRI, researchers are still wondering
whether they are truly opposite forces or whether they have to
be considered signals of equal value to investigate the human
brain functional connectome. It seems natural that positive
couplings between cortical regions arise to support local and
distant communications (Sepulcre et al., 2010; Cabral et al.,
2011). However, at present, we do not know whether positive and
negative connectivity are mutually necessary for this function.
For instance, from a parsimonious viewpoint, it is possible to
support that simple de-synchronization phenomenon among
positively connected regions may be sufficient to discontinue
functional connections, making unnecessary the existence of
negative forces. In the past, many research groups have reported
significant associations between negative connectivity and a
wide range of behavioral, neuropsychological and clinical scores,
particularly related to neuropsychiatric disorders. However,
these findings, along with related interpretations, have been
described without a solid knowledge about the nature of the
negative connectivity and its relationship with the positive
ones. To clarify this point, in this study, we proposed a new
strategy to elucidate not just the network distance relationships
-which does not resolve the main uncertainties about the
nature of negative connectivity- but to reveal the dynamic and
causal dependencies of positive and negative connectivity in
the human brain. First, we found that negative correlations
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FIGURE 3 | Cortical Maps of Granger causality between positive and negative network configurations (via Euclidean distance similarities) over time in the discovery

and replication datasets. Cortical maps show the Granger causality findings from two testing hypotheses (positive-explaining-negative and

negative-explaining-positive connectivity) in three statistical conditions (I) no statistical threshold, (II) p-value <0.05, and (III) p-value corrected by an FDR approach

with q level at 0.05. Color scale shows the subtraction of F-statistics with a normalized intensity of positive and negative values using a 0–98% transformation.

between brain voxels are indeed related to their distance in
the graph structure. Stronger negative correlations between
nodes correspond to longer SFC optimal distance on the
positive paths, acknowledging that negative correlation may
arise due to an epiphenomenon of functional connections
when taking into account the whole complexity of the graph.
But more importantly, using Granger causality analysis on
the evolving positive and negative connectivity patterns, we
discovered that each node’s positive connectivity changes precede
negative connectivity changes in a higher degree that the reverse
pattern. As shown in the cortical visualization (see Figure 3 and

Supplementary Figure 1), this is a voxel-wise and brain-wide
phenomenon, which occurs, particularly, in primary regions such
as auditory, somatomotor, and visual areas. Thus, it is possible
to speculate that regions with strong connectivity of the positive
sign, such as those involved in primary regions, may be more
prominent in predicting their topology changes over time due
to its highly-local organized connectivity patterns. On contrast,
regions with moderate or low levels of positive correlations
may be more predispose to switch between synchronized and
de-synchronized relationships with other brain regions, making
them more unpredictable to drive future connectivity. Of note,
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negative connectivity, regardless of their theoretical strength,
only marginally predicts the topology of positive connections.

In conclusion, the findings of our study extend our
interpretation of negative connectivity in fcMRI data. They
support that a positive-explaining-negative connectivity is the
most relevant scenario to explain the interactions between
these two hallmarks in fcMRI. Moreover, it favors the idea
of choosing positive connectivity alone as selection criteria in
fcMRI approaches, as they have a primary and central role
in the overall organization of functional connectivity brain
graphs. Finally, we believe that the concept of relative distance
of connectivity between nodes, rather than just positive and
negative connectivity, should be taken into account as a better
proxy for network relationships. Further work will lie in the
area of interaction of positive/negative networks during task
state, as well as its clinical application regarding neuropsychiatric
disorders in order to fully characterize the positive and negative
network interactions.
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