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How does the human brain rapidly process incoming information in working memory?
In growing divergence from a single-region focus on the prefrontal cortex (PFC), recent
work argues for emphasis on how distributed neural networks are rapidly coordinated
in support of this central neurocognitive function. Previously, we showed that working
memory for everyday “what,” “where,” and “when” associations depends on multiplexed
oscillatory systems, in which signals of different frequencies simultaneously link the PFC
to parieto-occipital and medial temporal regions, pointing to a complex web of sub-
second, bidirectional interactions. Here, we used direct brain recordings to delineate
the frontoparietal oscillatory correlates of working memory with high spatiotemporal
precision. Seven intracranial patients with electrodes simultaneously localized to
prefrontal and parietal cortices performed a visuospatial working memory task that
operationalizes the types of identity and spatiotemporal information we encounter every
day. First, task-induced oscillations in the same delta-theta (2–7 Hz) and alpha-beta
(9–24 Hz) frequency ranges previously identified using scalp electroencephalography
(EEG) carried information about the contents of working memory. Second, maintenance
was linked to directional connectivity from the parietal cortex to the PFC. However,
presentation of the test prompt to cue identity, spatial, or temporal information changed
delta-theta coordination from a unidirectional, parietal-led system to a bidirectional,
frontoparietal system. Third, the processing of spatiotemporal information was more
bidirectional in the delta-theta range than was the processing of identity information,
where alpha-beta connectivity did not exhibit sensitivity to the contents of working
memory. These findings implicate a bidirectional delta-theta mechanism for frontoparietal
control over the contents of working memory.
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INTRODUCTION

The ability to maintain and manipulate information in working memory provides the
neurobiological infrastructure for thinking and complex cognition. For 80 years, dominant
views of working memory have emphasized the key role of the prefrontal cortex (PFC; Szczepanski
and Knight, 2014). However, we previously demonstrated that working memory for everyday

Frontiers in Systems Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 65

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2018.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2018.00065&domain=pdf&date_stamp=2019-01-08
https://www.frontiersin.org/articles/10.3389/fnsys.2018.00065/full
https://www.frontiersin.org/articles/10.3389/fnsys.2018.00065/full
https://www.frontiersin.org/articles/10.3389/fnsys.2018.00065/full
https://loop.frontiersin.org/people/67910/overview
https://loop.frontiersin.org/people/654413/overview
https://loop.frontiersin.org/people/142946/overview
https://loop.frontiersin.org/people/271/overview
https://creativecommons.org/licenses/by/4.0/
mailto:eljohnson@berkeley.edu
https://doi.org/10.3389/fnsys.2018.00065
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Johnson et al. Frontoparietal Rhythms for Working Memory

associations depends on frequency multiplexing between
prefrontal and parieto-occipital regions (Johnson et al., 2017).
Delta-theta (2–7 Hz) rhythms were observed in the PFC →
parieto-occipital direction in response to a shift in task demands
imposed by retrocuing identity, spatial, or temporal information
from working memory stores. This oscillatory response was
attenuated in individuals with focal lesions to the lateral PFC,
resulting in a mean decrease of 8% in task accuracy. In contrast,
parallel alpha-beta (9–24 Hz) rhythms were observed in the
parieto-occipital→ PFC direction, and were neither responsive
to shifts in task demands nor affected by PFC lesions, revealing
an oscillatory response that was independent of the PFC. These
findings challenge dominant models of working memory which
attribute function to PFC-dependent systems (Goldman-Rakic,
1995; Miller and Cohen, 2001; Curtis and D’Esposito, 2003;
Müller and Knight, 2006; Lara and Wallis, 2014; Sreenivasan
et al., 2014; Szczepanski and Knight, 2014; D’Esposito and Postle,
2015; Eriksson et al., 2015), and instead support a model of
network-wide frontoparietal control (Wager and Smith, 2003;
Duncan, 2010, 2013; Niendam et al., 2012; Cole et al., 2013;
Ester et al., 2015, 2016; Sadaghiani and Kleinschmidt, 2016;
Christophel et al., 2017).

The frontoparietal network is posited to govern the
cascade of attentional processes that underlie complex cognitive
functions and fluid intelligence (Duncan, 2010, 2013; Stoewer
et al., 2010), including but not limited to working memory.
This proposal draws evidence from studies showing flexible
coding of task-specific events within prefrontal and parietal
regions (Fusi et al., 2016; Stokes et al., 2017), including
rapid, task-relevant changes in broadband gamma and higher-
frequency power spectra in humans (Guillem et al., 1996; Miller
et al., 2014) and single-unit activity in macaques (Balaguer-
Ballester et al., 2011; Rigotti et al., 2013; Stokes et al., 2013).
Moreover, evidence for these regions acting in concert comes
from studies showing robust long-range anatomical tracts
between frontal and parietal regions (Goldman-Rakic, 1988;
Selemon and Goldman-Rakic, 1988; Cavada and Goldman-
Rakic, 1989; Cabeza et al., 2008), as well as functional
MRI studies showing that frontoparietal network connectivity
is more sensitive to the demands imposed by a given
cognitive task than that of other functional networks (Niendam
et al., 2012; Cole et al., 2013). Finally, studies conducted in
macaques indicate that the strength of frontoparietal network
oscillatory synchrony carries information about items stored
in working memory (Salazar et al., 2012; Dotson et al., 2014;
Antzoulatos and Miller, 2016; Jacob et al., 2018). However,
the oscillatory mechanisms of frontoparietal control over
the contents of working memory are largely unexplored in
humans.

The purpose of this study was to investigate how the
frontoparietal network supports the flexible coding of task-
specific, ecologically valid events in humans. Simultaneous
prefrontal and parietal recordings were obtained directly from
the cortices of seven young adults while they performed a
visuospatial working memory task that operationalizes the
types of associations we encounter every day. Each trial was
comprised of five phases: pretrial, encoding, pre-cue delay

(‘‘maintenance’’), post-cue delay (‘‘processing’’), and response
(Figure 1A; Johnson et al., 2017, 2018). Following the pretrial
central fixation and start screen, two common shapes were
presented sequentially in a top/bottom spatial orientation. A test
cue was then presented mid-delay to retroactively cue specific
information about the items being maintained in working
memory: SAME (identities; Figure 1A, top), TOP/BOTTOM
[spatial relations (bottom)], or FIRST/SECOND [temporal
relations (bottom)]. This critical manipulation permitted
us to examine how working memory unfolded over time
as task demands shifted within a trial (i.e., maintenance
vs. processing), and compare activity during the selection
of identity vs. spatial or temporal information between
trials. Because the maintenance of information about shape
identity was common to all trials (Manohar et al., 2017),
identity trials provided an exemplary control condition against
which to contrast working memory for spatial and temporal
information.

We hypothesized that delta-theta oscillations would: (1) be
responsive to within-trial shifts in working memory demands,
replicating previous work using this task (Johnson et al., 2017,
2018); and (2) differ between trials as a function of the specific
information being selected in working memory. Further, if
frontoparietal delta-theta oscillations support the flexible coding
of task-specific events, then these rhythms will exhibit sensitivity
to both within- and between-trial shifts in working memory
task demands (Duncan, 2010, 2013). The use of intracranial
electroencephalography (iEEG/ECoG) recordings provided a
method to assess the per-trial spatial distribution of local
and directional delta-theta effects (Johnson and Knight, 2015;
Parvizi and Kastner, 2018), and—importantly—test alternative
outcomes outside the delta-theta frequency range.

MATERIALS AND METHODS

Subjects
We report data from seven adults, mean± SD: 25.4± 3.3 years of
age (four males), who were undergoing intracranial monitoring
as part of seizure management. Electrodes were implanted solely
on the clinical needs of each patient, and we selected datasets
for inclusion via off-site review of individual neuroanatomical
coverage. These datasets were collected at 4 sites: University of
California (UC), Irvine, Hospital (three subjects with subdural
and/or stereotactic implants); California Pacific Medical Center
(CPMC; two subjects with subdural implants); UC San Francisco,
Hospital (one subject with subdural implants); or Oslo University
Hospital (one subject with stereotactic implants). This study
was approved by and carried out in accordance with the
recommendations of the Institutional Review Board of UC
Berkeley, CPMC, UC San Francisco, or Regional Committee for
Medical Ethics, Region South. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Behavioral Task
Working memory was tested in a single-trial task paradigm that
has been used previously to study neural networks in patient
samples (Figure 1A; Johnson et al., 2017, 2018). After each 1-s
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FIGURE 1 | Working memory task design and behavior. (A) Single-trial working memory task design. Following a 1-s pretrial fixation interval (−250 to −50 ms
pretrial epoch used as baseline), subjects were directed to focus on either IDENTITY or RELATION information. Then, two common shapes were presented for
200 ms each in a specific spatiotemporal configuration (i.e., top/bottom spatial and first/second temporal positions). After a 900- or 1,150-ms jittered pre-cue fixation
delay (“maintenance”), the test cue appeared (i.e., one word presented on screen for 800 ms), followed by a post-cue fixation delay of the same length
(“processing”). Working memory was tested in a two-alternative forced choice test (0.5 chance rate). In the identity test (top), subjects indicated whether the pair was
the SAME pair they just studied (correct response in this example: no). In the spatiotemporal relation test (bottom), subjects indicated which shape fit the
TOP/BOTTOM spatial or FIRST/SECOND temporal relation cue (correct response for cue TOP or SECOND: circle). (B) Mean and per-subject task accuracy (top)
and response time (RTs; bottom). ∗Significant result; error bars, SEM; S, subject; orange, spatial trials; blue, identity trials; pink, temporal trials.

pretrial fixation interval, a starting screen (800 ms) indicated
whether the upcoming pair of stimuli would be tested for
IDENTITY or spatiotemporal RELATION information. Then,
following a 100-ms central fixation, two common-shape stimuli
were presented for 200 ms each in a specific spatiotemporal
configuration (i.e., top/bottom spatial and first/second temporal
positions). The test cue was presented (800 ms) after a 900- or
1,150-ms delay interval to elicit information-specific selection
mechanisms during a second delay interval of the same length.
The length of the delays was randomly jittered to preclude
anticipatory mechanisms. Then, two shapes were presented on
the horizontal axis and subjects responded in a two-alternative
forced choice test, resulting in a 0.5 chance rate. In the identity
test, subjects indicated whether the pair was the SAME pair
they just studied; half of the pairs show two old shapes (‘‘yes’’)
and half the pairs show one old shape and one new shape
(‘‘no’’), using the up and down arrow keys. In the spatial relation
test, subjects indicated which shape had been on the TOP or
BOTTOM, and in the temporal relation test, which shape had
been presented FIRST or SECOND, using the left and right
arrow keys.

The task was fully counterbalanced with 120 trials divided
evenly between identity, spatial, and temporal conditions,
chosen randomly from a pool of 150 trials with unique
stimuli. An experimenter went through the experimental task
instructions and a set of six practice trials with each subject,
who was permitted to repeat the practice trials by request. All
subjects completed the working memory task. The task was
programmed in E-Prime Professional 2.0 (Psychology Software
Tools, Pittsburgh, PA, USA).

Accuracy and correct-trial response time (RT) data were
submitted to logit and linear mixed-effects models, respectively,
with three condition fixed effects and seven subject random
effects (Cramer et al., 2015). In the case of a significant outcome,
post hoc testing was repeated between each pair of conditions.

Electrode Localization
Electrodes were localized for each subject based on individual
anatomy (Table 1), and then transferred into standardMNI space
for presentation across subjects (Figures 2A, 3A). Affine point-
based registration was used to co-register post-implantation
computed tomography (CT) coordinates to the pre-operative
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TABLE 1 | Individual electrode coverage.

Total electrodes Electrodes analyzed Hemisphere

S1 72 PFC: 21 L + R
Parietal: 2 L + R

S2 96 PFC: 24 L + R
Parietal: 8 L + R

S3 256 PFC: 54 R
Parietal: 14 R

S4 116 PFC: 12 L + R
Parietal: 10 R

S5 172 PFC: 10 L
Parietal: 16 L

S6 108 PFC: 8 L
Parietal: 4 L

S7 101 PFC: 4 L
Parietal: 5 L

S, subject; L, left; R, right.

magnetic resonance (MR) images using the FieldTrip toolbox
(Oostenveld et al., 2011; Stolk et al., 2018) for MATLAB
(MathWorks, Inc., Natick, MA, USA). Subjects were selected
based on electrode placement covering both lateral prefrontal
and parietal cortices.

Data Acquisition and Preprocessing
UC Irvine data were acquired using a Nihon Kohden recording
system, sampled at 5 or 10 kHz and resampled offline to
1 kHz. CPMC data were acquired using a Nihon Kohden
recording system, sampled at 1 kHz. UC San Francisco data
were acquired using a Tucker Davis Technologies recording
system, sampled at 1.526 kHz and resampled offline to
1 kHz. Oslo data were acquired using a Nicolet (NicOne)
recording system, sampled at 512 Hz. As described below,
spectral decomposition was performed up to 40 Hz, and
so 512 Hz is well over the minimum Nyquist frequency
(2 cycles/frequency = 80 Hz) required for analysis. Preprocessing
routines were performed using the FieldTrip (Oostenveld et al.,
2011) and EEGLAB (Delorme and Makeig, 2004) toolboxes for
MATLAB.

Raw electrophysiology data traces were manually inspected
under the supervision of a neurologist (RTK), who was blinded to
electrode locations and experimental task parameters. Channels
and epochs displaying epileptiform activity or artifactual signal
(from poor contact, machine noise, etc.), and those placed
on tissue that was later resected were excluded from analysis.
Remaining channels were filtered with 1-Hz high-pass and
200-Hz low-pass (165-Hz for Oslo data) finite impulse response
filters and demeaned, and 60-Hz line noise harmonics (50-Hz
for Oslo data) were removed using discrete Fourier transform.
We re-inspected the filtered data to mark any channels or
epochs containing residual artifacts for exclusion. Then, every
artifact-free electrode within the prefrontal or parietal cortex
was re-referenced to the next adjacent electrode, spaced at 4,
5, or 10 mm within that region, using bipolar montages to
create virtual electrodes with minimized contamination from
volume conduction (Shirhatti et al., 2016; Trongnetrpunya
et al., 2016). The final dataset contained 192 virtual electrodes,
range (mean) per subject: 4–54 (19) PFC, 2–16 (8) parietal

cortex; see Table 1 for per-subject electrode localization
information.

We then epoched the continuous data into trials with 1-s
buffers (i.e., first stimulus onset −1 s to response screen onset
+1 s) and excluded trials overlapping with epochs that had
been marked as noisy during inspection, and again manually
re-inspected the data to reject any trials with residual noise. The
final dataset included an average of 96 correct trials per subject,
mean ± SD (range) trials: 32 ± 3 (26–35) identity, 33 ± 4
(27–39) spatial relation, 31± 6 (20–39) temporal relation. There
were too few incorrect trials for meaningful electrophysiological
data analysis, mean ± SD (range) trials: 17 ± 8 (4–25) per
subject. Finally, the data were epoched into three segments per
trial for analysis (see Figure 1A): (1) 200-ms pretrial baseline
interval extending from 250 ms to 50 ms before the start screen;
(2) 900-ms pre-cue delay interval extending from the offset of the
second stimulus (‘‘maintenance’’); and (3) 900-ms post-cue delay
interval extending from the offset of the test cue (‘‘processing’’).
The post-cue processing interval is the critical analysis interval
because the subject was actively processing either identity, spatial,
or temporal information in working memory (Figure 1A). As
described below, the processing interval was analyzed separately
for event-related potentials (ERPs), task-induced power, and
directional connectivity.

Event-Related Potentials
The correct-trial 200-ms pretrial baseline and 900-ms post-cue
processing data segments were zero-padded to 7,500 ms to
minimize filtering-induced edge artifacts and passed through a
30-Hz low-pass finite impulse response filter (Johnson et al.,
2017, 2018). Task-induced ERPs were computed over the
processing interval by absolute baseline-correcting the outputs
on the temporal mean of the pretrial baseline (i.e., post-cue
processing—pretrial mean).

The outputs were tested per-subject for condition differences
between identity and spatial/temporal trials over the processing
interval. Within-subjects statistical testing employed a Monte
Carlo method (1,000 iterations) with cluster-based maximum
correction for multiple comparisons (Maris and Oostenveld,
2007). An independent-samples t-test was used to identify
clusters of contiguous data points showing a difference between
conditions, thresholded at 0.05, two-tailed, and then the
t-statistics were summed over all data points per cluster to
calculate cluster size. Effects were clustered on the basis of
spatial (i.e., neighboring electrodes) and temporal adjacency.
Then, condition labels were randomly shuffled and the same
clustering procedure was applied 1,000 times to create a normal
distribution of null effects. Observed clusters were considered
significant if fewer than 5% of randomizations yielded a larger
effect (i.e., cluster-corrected α = 0.05). Statistical testing was
performed using FieldTrip functions in MATLAB (Oostenveld
et al., 2011).

Spectral Decomposition
Time-frequency representations of power were computed on
the correct-trial 200-ms pretrial baseline and 900-ms post-cue
processing data segments. Data segments were zero-padded to
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7,500 ms and time-frequency representations were computed
using an adaptive, frequency-dependent sliding window of
3 cycles’ length (∆t = 3/f ) for frequencies from 2 Hz to 40 Hz
(1-Hz steps, 2-Hz bandwidth). The time windows were advanced
in steps of 10 ms and the data in each window were multiplied
with a Hanning taper before calculating power using fast Fourier
transforms. For a similar approach, see Johnson et al. (2017).

Task-induced power was analyzed per subject and trial using
a statistical bootstrapping procedure. Baseline power values were
pooled into a single time-series for each channel and frequency,
from which we randomly selected and averaged r data points
(r = number of trials in that subject’s dataset). This step was
repeated 1,000 times to create normal distributions of electrode
and frequency-resolved pretrial baseline data. Delay raw power
data were z-scored on the pretrial baseline distributions to assess
the significance of task-induced effects. For a similar approach,
see Flinker et al. (2015); Johnson et al. (2017) and Johnson et al.
(2018).

Within-subjects statistical testing of condition differences
between identity and spatial/temporal trials was equivalent to
that for ERPs, with clustering on the electrode, time, and
frequency dimensions.

Directional Connectivity
Directional connectivity was computed on the correct-trial
900-ms pre-cue maintenance and post-cue processing data
segments between signals across each PFC-parietal cortex
electrode pair within the same hemisphere using the Phase
Slope Index (PSI; Nolte et al., 2008). The PSI metric tracks
whether the slope of the phase lag between A and B electrode
pairs is consistent across several adjacent frequency bins.
Positive PSI indicates that electrode A leads electrode B,
negative PSI indicates the reverse, and zero PSI indicates
either zero or an evenly balanced lead/lag relationship between
electrodes.

Task-Induced PSI
The raw trial-wise mean for correct-trial data segments was first
subtracted from each raw correct-trial data segment. Spectral
representations were then computed from the outputs using the
same parameters described above, but over the full delay interval
(i.e., not time-resolved). Importantly, the Hanning taper reduces
spectral leakage and allows us to keep the bandwidth constant
for computation of PSI. Cross-spectral density was calculated
between the complex Fourier outputs, from which PSI was
computed separately for the delta-theta (2–7 Hz) and alpha-beta
(9–24 Hz) bands (Johnson et al., 2017).

Per-subject statistical analysis of PSI was performed for the
delay intervals by standardizing the outputs against frequency-
shuffled surrogate distributions via bootstrapping. At each
electrode pair and frequency point, we randomly shuffled the
frequencies in one signal and re-computed PSI 1,000 times to
create normal distributions of electrode-pair and frequency-
resolved null PSI data. Raw PSI outputs were z-scored on the
null distributions to correct for any spurious results and assess
the significance of directional effects. PFC leads were defined as
PSI z > 1.96 and parietal leads as z < −1.96 (i.e., α = 0.05);

for a similar approach, see Johnson et al., 2017, 2018. PSI data
were visualized topographically using the BrainNet Viewer for
MATLAB (Xia et al., 2013).

The outputs were submitted to group statistical testing using
linear mixed-effects models with 2 task-interval fixed effects
(i.e., maintenance vs. processing), and seven subjects and 1,129
electrode pairs as random effects (Johnson et al., 2018).

Time-Resolved PSI
We recomputed time-resolved PSI (10-ms resolution) on the
post-cue processing data segments, per condition, for all pairs of
electrodes that exhibited significant directionality (PSI |z|> 1.96)
over the whole processing interval (Johnson et al., 2018). Spectral
decomposition, PSI computation, and per-subject statistical
bootstrapping analysis were otherwise identical. By including
only directional electrode pairs, this step ensures that the
interpretation of output PSI values close to zero (i.e., |z| < 1.96,
p > 0.05) would be unambiguous—that is, evidence of evenly
balanced lead/lag relationships rather than zero relationship.

The outputs were submitted to group-level statistical testing
by sliding the linear mixed-effects model across timepoints.
At each 10-ms timepoint, there were two condition fixed
effects (identity vs. spatial/temporal), and seven subject and
1,008 (in delta-theta models) or 984 (alpha-beta models)
electrode-pair random effects. The outputs were corrected for
multiple comparisons on the time dimension using the false
discovery rate (FDR) threshold of 0.05. Significant differences
were considered sustained if they persisted for at least 100 ms at
the FDR-corrected threshold (e.g., Flinker et al., 2015; Foo et al.,
2016).

Data Availability
The data and custom-built MATLAB codes that support
the current findings are deposited to the University of
California, Berkeley, Collaborative Research in Computational
Neuroscience database1.

RESULTS

Behavior
We confirmed that all subjects were proficient at the task
(accuracy range 0.63–0.98, chance 0.5; Figure 1B, top), and then
submitted the accuracy and RT data tomixed-effects models with
three condition fixed effects and seven subject random effects.
There was a significant effect of condition on RT (F(1,19) > 6.50,
p < 0.02, d > 1.47; Figure 1B, bottom), but no effect on accuracy
(p > 0.50). Post hoc testing revealed that RTs were longer on
identity than spatial (F(1,12) > 13.78, p < 3× 10−3, d = 2.14) and
temporal (F(1,12) > 10.95, p < 7 × 10−3, d = 1.91) trials, with no
difference between spatial and temporal trials (p > 0.22).

Cortical Representations
All frontoparietal electrodes (n = 192) were submitted to analyses
of ERPs and task-induced power, and the outputs were tested
per subject for condition differences between identity and

1http://crcns.org
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spatial/temporal trials (see Figure 1A) using non-parametric
statistics with cluster-based correction for multiple comparisons
(Maris and Oostenveld, 2007). We investigated working memory
for space and time by comparing spectral activity during the
selection of an item in space or time to the ongoing maintenance
of item identity (i.e., spatial/temporal > identity effects; Johnson
et al., 2018). We further considered sensitivity to task difficulty
in cases where those subjects who exhibited both increased
RTs and decreased accuracy on identity trials also exhibited
identity > spatial/temporal spectral effects.

ERPs
ERPs were quantified (1–30 Hz bandpass) over the 200-ms
pretrial baseline and 900-ms post-cue processing intervals for
correct trials (see Figure 1A), and then processing outputs
were absolute baseline-corrected on the temporal mean of the
pretrial baseline. Cluster-based permutation testing of identity vs.
spatial/temporal trials indicated that ERPs did not differ between
conditions in any subject (all p > 0.10), ensuring that spectral
condition effects were not due to exogenous activity from ERPs
(Johnson et al., 2018).

Spectral Effects
We then examined the spatio-spectral distributions of condition
effects. Time-frequency representations of power were quantified
from 2 Hz to 40 Hz (1-Hz steps, 2-Hz bandwidth) for the
pretrial baseline and post-cue processing intervals for correct
trials, and then processing outputs were standardized on the
pretrial baseline via statistical bootstrapping (Flinker et al., 2015;
Johnson et al., 2017, 2018).

Per-subject cluster-based permutation testing revealed that
information about the contents of working memory was
distributed throughout the frontoparietal network (all p < 0.04,
cluster-corrected), with the majority of frontoparietal sites
exhibiting sensitivity to working memory for spatiotemporal
relationships between 2 Hz and 40 Hz. In the contrast between
identity and spatial trials (Figure 2), 5/7 (71%) subjects showed
significant spatial > identity effects (mean ± SD: 54 ± 22%
of electrodes/subject) and 2/7 (29%) showed identity > spatial
effects (36 ± 12% of electrodes/subject). In the contrast between
identity and temporal trials (Figure 3), 4/7 (57%) subjects
showed significant temporal > identity effects (68 ± 30% of
electrodes/subject) and 2/7 (29%) showed identity > temporal
effects (37± 10% of electrodes/subject). Importantly, the subjects
who exhibited significant identity > spatial/temporal effects
were the same subjects who exhibited both increased RTs and
decreased accuracy on identity trials, suggesting that sparsely
distributed frontoparietal sites are sensitive to task difficulty.

To examine the spectral components of working memory
for space, we utilized the per-subject cluster-thresholded mask
to index the power data points that showed significant
spatial > identity processing and then averaged them across
all electrodes per subject (Figure 2B, left). We repeated
this procedure to examine the spectral components for time
(temporal > identity processing; Figure 3B, left), as well as
difficulty (identity > spatial/temporal processing; Figures 2B,
3B, right). Statistically significant effects were most prominent at

FIGURE 2 | Spatial processing power effects. (A) Reconstruction of
frontoparietal electrode coverage for all subjects. Electrodes are color-coded
according to the results of the per-subject contrast between identity and
spatial trials: orange, spatial > identity; blue, identity > spatial; black, no
effect. All effects are significant at the cluster-corrected threshold of 0.05.
(B) Mean and per-subject time-frequency representations of significant
t-statistics (cluster-corrected mask applied) for the electrodes indicated in (A).
The black lines to the right of the means indicate the spectral density of the
corresponding time-frequency representations (i.e., mean significant t-values
per frequency). Frequencies range from 2 Hz to 40 Hz in linearly-spaced steps
of 1 Hz. T-statistics are normalized according to the maximum value of each
plot (scale: −1 to +1) and color-coded by the direction of effects: cooler,
identity > spatial; warmer, spatial > identity. S, subject.

lower frequencies, regardless of the exact contrast. Specifically,
information about the contents of working memory appeared
to be carried at distinct delta-theta (2–7 Hz) and alpha-beta
(9–24Hz) frequency ranges. These are the same frequency ranges
previously identified as prefrontal- vs. parieto-occipital-led using
scalp EEG on the same working memory task (Johnson et al.,
2017).

Directional Connectivity
PSI (Nolte et al., 2008) was computed between signals across each
PFC-parietal cortex pair within the same hemisphere (n = 1,129)
separately for the delta-theta (2–7 Hz) and alpha-beta (9–24 Hz)
frequency ranges. PSI was first computed over the full 900-ms
pre-cue maintenance and post-cue processing intervals (see
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FIGURE 3 | Temporal processing power effects. (A) Reconstruction of
frontoparietal electrode coverage for all subjects. Electrodes are color-coded
according to the results of the per-subject contrast between identity and
temporal trials: pink, temporal > identity; blue, identity > temporal; black, no
effect. All effects are significant at the cluster-corrected threshold of 0.05.
(B) Mean and per-subject time-frequency representations of significant
t-statistics (cluster-corrected mask applied) for the electrodes indicated in (A).
The black lines to the right of the means indicate the spectral density of the
corresponding time-frequency representations (i.e., mean significant t-values
per frequency). Frequencies range from 2 Hz to 40 Hz in linearly-spaced steps
of 1 Hz. T-statistics are normalized according to the maximum value of each
plot (scale: −1 to +1) and color-coded by the direction of effects: cooler,
identity > temporal; warmer, temporal > identity. S, subject.

Figure 1A) and not time-resolved. Each subject’s outputs were
z-scored against frequency-shuffled reference distributions to
assess directionality and then submitted to group-level testing as
a function of task interval (Johnson et al., 2017, 2018).

Time-resolved PSI was re-computed per condition over the
post-cue processing interval at all electrode pairs that were
found to be significantly directional overall during the processing
interval (n = 1,008 delta-theta, 984 alpha-beta). By including only
directional electrode pairs, this step ensures that net output PSI
values close to zero (i.e., |z|< 1.96, p> 0.05) would be considered
evidence of bidirectionality. Each subject’s PSI outputs were
z-scored per time point and then tested on the group level for
differences between identity and spatial/temporal conditions.

Task-Induced Effects
The maintenance interval was characterized by unidirectional
parietal→ PFC connectivity in both frequency ranges (threshold

z <−1.96, p< 0.05), mean± SD, delta-theta: z <−40.03± 8.73;
alpha-beta: z < −30.37 ± 2.60. However, following presentation
of the test cue to select identity, spatial, or temporal information
from working memory stores, delta-theta directionality shifted
from a unidirectional to bidirectional frontoparietal network
(processing > maintenance, F(1,2256) = 1936.10, p < 8 × 10−306;
Figures 4A,B). Within individual subjects, some electrodes
shifted in direction from parietal to PFC leads, while others
decreased in the strength of parietal lead or did not change,
reflecting spatially diverse patterns of bidirectional delta-theta
connectivity during information processing (see Johnson et al.,
2018). Importantly, the processing interval was characterized
by net connectivity greater than zero in 6/7 subjects (86%),
mean ± SD: z > 6.01 ± 6.42, revealing a network-wide shift
from parietal-led to frontoparietal in the delta-theta range with
working memory task demands (see Johnson et al., 2017).

All analyses were repeated for PSI in the alpha-beta range.
In the alpha-beta range, there was again a shift in directionality
with presentation of the test cue (processing > maintenance,
F(1,2256) = 2302.30, p = 0; Figures 4C,D). Despite the shift,
however, all subjects continued to exhibit net parietal → PFC
connectivity at processing, mean ± SD: z < −12.60 ± 7.51 (see
Johnson et al., 2017).

Spatiotemporal Processing Effects
Having established that distributed frontoparietal sites coded
the contents of working memory (see Figures 2, 3) and that
information processing elicited bidirectional frontotemporal
interactions (Figure 4), we proceeded to examine rapid,
time-resolved network interactions as a function of condition.
We observed that delta-theta frontoparietal network connectivity
was sensitive to the contents of working memory (Figure 5A).
In the contrast between identity and spatial conditions
(left), significant differences were sustained at the beginning
(0–120 ms) and early in the second half (470–610 ms) of
the post-cue processing interval (FDR-corrected p < 0.05,
marked in black). In the contrast between identity and temporal
conditions (right), significant differences were again sustained at
the beginning (0–170 ms) and in the second half (660–860 ms) of
the processing interval (FDR-corrected p < 0.05).

Further examination of the early post-cue processing data
(0–120/170 ms) indicated that the PFC led parietal sites
during the ongoing maintenance of identity information (mean,
identity > spatial: z > 2.62, p < 9 × 10−3; identity > temporal:
z > 2.35, p < 0.02). Later in processing (470–610/660–860 ms),
however, the parietal cortex led prefrontal sites (mean,
identity < spatial: z <−3.04, p < 3× 10−3; identity < temporal:
z < −3.57, p < 4 × 10−4), revealing sub-second shifts in
directionality during working memory for information about
item identity.

In contrast, the selection of spatial (Figure 5A, left)
and temporal (right) information exhibited bidirectionality
throughout the processing interval (all |z| < 1.60, p > 0.11).
Early in processing (shaded in yellow), this dichotomy
demonstrates that the selection of spatiotemporal information
was more parietal-led than that for the ongoing maintenance
of information about item identity. Later in processing, we
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FIGURE 4 | Bidirectional frontoparietal oscillations for information processing. (A) Delta-theta (2–7 Hz) phase slope index (PSI) shifted from a unidirectional,
parietal-led network during maintenance to a bidirectional, frontoparietal network during the processing interval (p < 8 × 10−306). Data are represented as
mean ± SEM per subject across all trials; positive values indicate that the prefrontal cortex (PFC) leads the parietal cortex and negative values indicate that the
parietal cortex leads the PFC. S, subject. (B) Topographical representations of the PSI data depicted in (A) in two subjects. PSI is masked per electrode pair, with
significant PFC leads in the top row (z > 1.96, p < 0.05) and parietal leads (z < −1.96, p < 0.05) in the bottom row. S3 was implanted subdurally in the right
hemisphere and S5 in the left hemisphere. (C) Equivalent to (A): alpha-beta (9–24 Hz) PSI shifted from a unidirectional, parietal-led network during maintenance to a
bidirectional, but still net parietal-led network during the processing interval (p = 0). (D) Equivalent to (B): topographical representations of the PSI data depicted in
(C) in two subjects.

observed that the epoch corresponding to the selection of
spatial information ended ∼50 ms before the start of the epoch
corresponding to that of temporal information [shaded in blue
(left vs. right)]. These results suggest that working memory for
spatial and temporal information is supported by relatively more
PFC-led network interactions than for identity information, and
that spatial and temporal information selection occurs serially
in the delta-theta band. Taken together, these results indicate
that delta-theta rhythms exerted bidirectional control between
prefrontal and parietal cortices during working memory, coding
the contents of working memory with sub-second precision.

All analyses were repeated for PSI in the alpha-beta
range. Unlike delta-theta directional connectivity, alpha-beta
frontoparietal directionality switched rapidly between
parietal-led and bidirectional over the course of the 900-ms
post-cue processing interval (Figure 5B). Although there were
significant differences between conditions (FDR-corrected
p < 0.05, marked in black), the differences were not sustained
for one condition or the other during either condition-pair
contrast [i.e., identity vs. spatial conditions (left), identity vs.

temporal conditions (right)]. Rather, it appears that these effects
resulted from per-condition means that differed slightly in the
timing of inter-regional connectivity. These results suggest that
alpha-beta rhythms did not carry information about the contents
of working memory on the network-level between prefrontal
and parietal cortices.

DISCUSSION

Our findings demonstrate that low-frequency frontoparietal
rhythms support the flexible coding of task-specific events in
humans. Using an ecologically valid task of working memory
for everyday ‘‘what,’’ ‘‘where,’’ and ‘‘when’’ associations (Johnson
et al., 2017, 2018), we show that oscillations between 2 Hz and
24 Hz displayed sensitivity to both within- and between-trial
shifts in task demands. First, per-subject analyses of task-induced
power in the post-cue processing interval revealed that the
majority of frontoparietal sites coded space and time, while a
sparse minority also coded task difficulty (Figures 2, 3). This
result indicates that spectral imprints of everyday associations in
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FIGURE 5 | Spatiotemporal processing connectivity effects. (A) Grand mean time-resolved delta-theta PSI over the processing interval for the contrast between
identity and spatial (left)/temporal (right) conditions. Data are represented as mean ± SEM across subjects; positive values indicate that the PFC leads the parietal
cortex and negative values indicate that the parietal cortex leads the PFC. Black marks indicate the timepoints of significant condition effects at the false discovery
rate (FDR)-corrected threshold of 0.05. Shaded epochs represent effects that were sustained for >100 ms, color-coded by the direction of effects: cooler,
identity > spatial/temporal; warmer, spatial/temporal > identity. Orange, spatial trials; blue, identity trials; pink, temporal trials. (B) Equivalent to (A): alpha-beta PSI
did not show sustained effects for one condition or the other in either contrast.

working memory are distributed throughout the frontoparietal
network, supporting a network-level model of control (Duncan,
2010, 2013; Stoewer et al., 2010). Furthermore, we observed that
this information was carried at distinct delta-theta (2–7 Hz)
and alpha-beta (9–24 Hz) frequency ranges—the same frequency
ranges previously identified as prefrontal- vs. parieto-occipital-
led using scalp EEG on the same task (Johnson et al., 2017).
We then proceeded to examine directional connectivity between
prefrontal and parietal sites at each frequency range with the high
spatial precision afforded by iEEG/ECoG recordings.

Second, analyses of per-subject directional connectivity
revealed that maintenance of information in working memory
was led by the parietal cortex. This result is consistent with
proposals of mnemonic information storage in parietal regions
(Bettencourt and Xu, 2015; Ku et al., 2015; Galeano Weber
et al., 2017), upon which the PFC interacts in response to
task demands (Miller and Cohen, 2001; Lara and Wallis, 2014;
Sreenivasan et al., 2014; D’Esposito and Postle, 2015; Eriksson
et al., 2015). However, we did not observe a reversal in
directionality from parietal- to prefrontal-led with a shift in
task demands, as would be expected under PFC-dependent
control. Instead, we observed that presentation of the test
prompt to retroactively cue and select specific information
from working memory stores attenuated the parietal lead

over the PFC (Figure 4). In the alpha-beta range, network
connectivity remained parietal-led. In the delta-theta range,
network connectivity exhibited a within-trial change from
parietal-led to bidirectional frontoparietal coordination. These
critical results support a network-wide model of control
(Duncan, 2010, 2013; Stoewer et al., 2010), and reveal that
bidirectional frontoparietal network connectivity is specific to
the delta-theta range.

Third, analyses of time-resolved network connectivity
revealed that spatiotemporal processing was linked to
bidirectional delta-theta interactions (see Johnson et al.,
2018), while the processing of identity information shifted
from prefrontal- to parietal-led over the course of a 900-ms
delay interval (Figure 5). This means that early in the post-cue
processing interval, the coding of space and time was more
parietal-led and later, that it was more prefrontal-led than
that of the ongoing maintenance of identity information.
Furthermore, we observed that space and time were processed
serially in the PFC → parietal direction, suggesting that
delta-theta rhythms flexibly code everyday spatiotemporal
associations in quick succession. In contrast, we observed that
alpha-beta connectivity was largely parietal-led and did not
exhibit network-level, condition-specific coding of the contents
of working memory.
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These results are consistent with the hypothesis that
frontoparietal delta-theta rhythms support the flexible coding of
task-events, both locally and on the network level. However, we
also observed that alpha-beta rhythms carried information about
the contents of working memory at sites distributed across the
frontoparietal network (see Salazar et al., 2012; Dotson et al.,
2014; Antzoulatos and Miller, 2016; Jacob et al., 2018). These
findings suggest that a range of low-frequency spectra carry
transient imprints of everyday working memory associations
at frontoparietal sites, while delta-theta oscillations selectively
guide network communication according to task demands. The
generalizability of the current findings is limited by the low
number of incorrect trials, preventing direct comparison of
correct and incorrect trials, and low number of subjects with
simultaneous frontal and parietal cortical implants. However,
as all statistical analyses were performed per subject prior to
any group modeling, the consistency in results across subjects
(Figures 2–4) indicates that the results are reliable.

Finally, we note that another group of iEEG patients displayed
a similarly complex pattern of bidirectional interactions between
the PFC and medial temporal lobe on the same working memory
task, with exceptional patterns of bidirectional communication
in the theta band (Johnson et al., 2018). Taken together,
the results from these studies indicate that maintenance of
information in working memory is linked to unidirectional
delta-theta connectivity on a larger scale from parietal →
prefrontal→medial temporal regions. Critically, flexible coding
demands imposed by retrocuing specific ‘‘what,’’ ‘‘where,’’
or ‘‘when’’ information from working memory stores are
sufficient to change the large-scale system from unidirectional
to bidirectional, with delta-theta rhythmicity observed in both
directions between the PFC and parietal and medial temporal
regions during information selection. These findings build
on recent work showing that frontoparietal networks are
fundamentally rhythmic in nature, with delta-theta rhythms
supporting attention-related activity in humans (Helfrich et al.,

2018) and macaques (Fiebelkorn et al., 2018). They also apply to
memory more generally, building on a recent finding that cued
recall likewise fluctuates at theta frequencies in the human EEG
(Kerrén et al., 2018).

We argue that, not only do delta and theta oscillations
flexibly guide network control across frontoparietal regions, but
also globally across multiple neural networks (see Cole et al.,
2010) during working memory. These findings add to a growing
body of literature proposing that low-frequency rhythms provide
the infrastructure for neural communication supporting flexible
cognitive processing.
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